
MTAT.07.003 Cryptology II
Spring 2009 / Exercise session XII

1. Sometimes it is inherently possible to implement the desired functionality
without breaching desired security. For instance, consider a two-party
protocol for addition, where at the end both parties obtain x1 + x2.

(a) Show that any protocol that implements addition also reveals the in-
put of the opponent. Generalise the result and show that it is always
possible to deduce something about the opponents input unless the
desired output is not a constant (protocol is actually redundant).

(b) Show that if a malicious party knows the parity of the opponents
input before the protocol, then he or she can control the output
parity in the addition protocol. Generalise the result and show that
given enough information the adversary can always partially control
the opponents output unless the output is constant.

2. To illustrate some aspects of secure computations, consider a simultaneous
broadcast protocol used for the rock-paper-scissors game:

• P1 computes pk← Gen. (c, d)← Compk(x1) and sends pk, c to P2.

• P2 replies x2 to P1 who after that releases d to P1,

• P2 computes x1 ← Openpk(c, d) and both parties output x1, x2.

Let P∗

2
be a semi-malicious adversary that chooses x̂2 as an efficiently com-

putable randomised function f(c, x2) but outputs (x1, x̂2) as an output.
For simplicity, assume that the input of party P1 consists only form the
protocol input x1 and thus P1 outputs (x1, x̂2).

(a) Compute the corresponding output distribution if the initial input
distribution D is a uniform distribution over Z3 × Z3 and

α(x1, x2, x̂2) = Pr [pk← Gen, (c, d)← Compk(x1) : f(c, x2) = x̂2]

is independent form x2. To get concrete results, fix some concrete
values for the α table.

(b) Compute the output distribution in the ideal world under the as-
sumption that the commitment scheme is perfectly hiding and we
use a naive simulation construction

SP
∗

2 (x2)
















pk← Gen

(c, d)← Compk(0)

Send x̂2 ← P
∗

2
(σ2, x2, c) to T.

Given x1, x̂2 from T set (c, d)← Compk(x1).

Rewind P
∗

2
and output whatever P

∗

2
on pk, c, d does.

1



What is the corresponding statistical difference between real and
ideal world implementations?

3. Consider the implementation of simultaneous broadcast primitive detailed
in the previous exercise. For simplicity and concreteness, let the input
distribution and P∗

2 be the same as in the previous exercise.

(a) Compute the distance between ideal and real world distributions if
we use an inefficient but perfect simulator

S
P

∗

2

◦ (x2)
































pk← Gen

(c, d)← Compk(0)

Send x̂2 ← P
∗

2(σ2, x2, c) to T.

Given x1, x̂2 from T, generate all runs between P1(x2) and P2(x2):
[

Choose randomness ω1 ← Ω1 and ω2 ← Ω2 for P1 and P
∗

2.

Run the protocol and store the output (x1, x2) of P
∗

2
into a list L.

Let Lx̂2
be the list of pairs (x1, x2) ∈ L such that x̂2 = x2.

Choose uniformly a pair for the list Lx̂2
and output it.

Show that if the commitment scheme is perfectly hiding then the
output distributions in the real and ideal world coincide.

(b) Show that the simulator

SP
∗

2 (x2)


























pk← Gen

(c, d)← Compk(0)

Send x̂2 ← P
∗

2(x2, c) to T.

Given x1, x̂2 from T rewind until success.
[

(c, d)← Compk(x1)

If P
∗

2
(x2, c) 6= x̂2 repeat the cycle.

Output whatever P
∗

2
does.

provides same output distribution as the simulator S◦ provided that
S stops before the time-bound tid. Compute the failure probabil-
ity for a fixed value of tid and estimate the final statistical distance
between real and ideal world distributions.

4. The Blum coin-fipping protocol is very similar to the simultaneous broad-
cast protocol described and analysed in previous exercises.

(a) This resemblance is not a coincidence. Prove that given an ideal
implementation of addition protocol, it is trivial to implement coin-
flipping protocol. Also, prove that given an ideal addition protocol it

2



is trivial to implement simultaneous broadcast protocol, where both
parties learn their inputs and vice versa.

(b) Construct a coin-flipping protocol from the ideal simultaneous broad-
cast protocol and substitute the ideal implementation with the pro-
tocol analysed in previous exercises. Compare the end result with
the description of the Blum protocol:

• P1 generates b1 ←u {0, 1}, computes pk← Gen, (c, d)← Compk(b1)
and sends pk, c to P2.

• P2 generates b2 ←u {0, 1} to P1 who after that releases d to P1.

• P2 computes b1 ← Openpk(c, d) and both parties output b1 ⊕ b2.

5. Let π⊛ denote the the coin-flipping protocol that uses an ideal simultane-
ous broadcast primitive and π the Blum protocol.

(a) Construct a simulator for P∗

1
for the protocol π⊛. Next, modify the

simulator so that it works with the Blum coin-flipping protocol. For
that recall that the simulator for P∗

1
for the simultaneous broadcast

protocol consists of an input extractor block

K
P

∗

1 (σ1, x1)






































Generate randomness ω1 ← Ω1 for P
∗

1.

(pk, c)← P
∗

1
(σ1, x1; ω1)

Use rewinding to get
[

d0 ← P
∗

1(0), d1 ← P
∗

1(1),

Reveal the actual inputs:
[

x̂0

1 ← Openpk(c, d0)

x̂1

1
← Openpk(c, d1)

If ⊥ 6= x̂0

1
6= x̂1

1
6= ⊥ then output double-opening.

If x̂0

1
6= ⊥ output x̂0

1
else output x̂0

1
.

followed by the protocol simulation block

S
P

∗

1

◦ (x1, ω1, x2)










(pk, c)← P
∗

1(σ1, x1; ω1)

d← P
∗

1
(x2)

If Openpk(c, d) = ⊥ then order T to halt the computations.

Output whatever P
∗

1
outputs.

(b) Analyse the quality and running time of these simulators. Show that
both achieve perfect simulation of the output distributions, i.e., the
real and ideal world distributions coincide.

3



6. Let π⊛ denote the the coin-flipping protocol that uses an ideal simultane-
ous broadcast primitive and π the Blum protocol.

(a) Construct a simulator for P∗

2 for the protocol π⊛. Next, modify the
simulator so that it works with the Blum coin-flipping protocol. For
that recall that the simulator for P∗

1
for the simultaneous broadcast

protocol consists of an input extractor block

K
P

∗

2 (σ2, x2)










Generate randomness ω2 ← Ω2 for P
∗

2.

pk← Gen

(c, d)← Compk(0)

Return x̂2 ← P
∗

2
(x2, c).

followed by the protocol simulation block

S
P

∗

2

◦ (x2, ω2, x1, x̂2)












Rewind until success.
[

(c, d)← Compk(x1)

If P
∗

2(x2, c; ω2) 6= x̂2 repeat the cycle.

Output whatever P
∗

2
does.

(b) Analyse the quality and running time of these simulators. Show that
the real and ideal world distributions are statistically close if the
number of rewinds is high enough.

4


