### MTAT.07.003 Cryptology II

## **Security of Protocols**

Sven Laur University of Tartu

### **Primitives and protocols**

**Cryptographic primitives.** Primitives are tailor-made constructions that have to preserve their security properties in very specific scenarios.

- IND-CPA cryptosystem is guaranteed to be secure *only* with respect to the simplistic games that define IND-CPA security.
- ▷ A binding commitment is secure *only* against double opening.

**Cryptographic protocols.** Protocols must preserve security under the wide range of conditions that are implicitly specified by security model.

- ▷ An adversary might try to learn inputs of honest parties.
- ▷ An adversary might try to change the outputs of honest parties.
- ▷ An adversary might force honest parties to compute something else.
- An adversary might try to learn his or her outputs so that honest parties learn nothing about their outputs.

### Security against a specific security goal

For each specific security goal and input distribution  $\mathfrak{D}$ , we can construct a security game  $\mathcal{G}_{real}$  that models the corresponding protocol run.



Any well-defined security goal can be formalised as a predicate  $\mathcal{B}(\cdot)$ . It is common to model the adversary  $\mathcal{A}$  as a dedicated entity in the model.

### Relevant attack scenarios

No protocol can be secure against all imaginable attacks and security goals. Hence, we have to specify the answer for the following questions.

- ◊ What is tolerated adversarial behaviour?
- $\diamond$  What type of predicates  $\mathcal{B}(\cdot)$  are considered relevant?
- ◊ What is the model of communication and computations?
- ◊ In which context the protocol is executed?
- ◊ When is a plausible attack successful enough?

**Common security levels.** Let  $\mathfrak{B}$  be the set of relevant predicates.

 $\triangleright$  If  $\mathfrak{B}$  consists of all predicates then we talk about *statistical security*.

 $\triangleright$  If  $\mathfrak{B}$  is a set of all *t*-time predicates, we talk about *computational security*.

# Resilience Principle

### **Resilience** principle

Let  $\pi_{\alpha}$  and  $\pi_{\beta}$  be protocols such that any plausible attack  $\mathcal{A}$  against  $\pi_{\alpha}$  can be converted to a plausible attack against the  $\pi_{\beta}$  roughly with the same success rate. Then protocol  $\pi_{\alpha}$  is as secure as  $\pi_{\beta}$ . We denote it  $\pi_{\beta} \leq \pi_{\alpha}$ .

**Ideal implementation.** For any functionality  $\mathcal{F}$ , we can consider the ideal implementation  $\pi^{\circ}$ , which uses *unconditionally trusted third party*  $\mathfrak{T}$ :

- 1. All parties submit their inputs to a trusted party  $\ensuremath{\mathbb{T}}.$
- 2.  $\ensuremath{\mathbb{T}}$  computes and sends the desired outputs back.

**Resilience principle.** An ideal implementation  $\pi^{\circ}$  is as secure as any protocol  $\pi$  that correctly implements the functionality  $\mathcal{F}$ . Any protocol  $\pi \succeq \pi^{\circ}$  achieves maximal security level for any relevant security goal  $\mathcal{B}(\cdot)$ .

### Ideal vs real world paradigm

Let  $\mathcal{G}_{id-atk}$  and  $\mathcal{G}_{re-atk}$  be the games that model the execution of an ideal and real protocols  $\pi^{\circ}$  and  $\pi$  and let  $\mathcal{A}^{\circ}$  and  $\mathcal{A}$  be the corresponding real and ideal world adversaries. Then we can compare the following games.

$$\begin{array}{ll} \mathcal{G}_{\mathrm{ideal}}^{\mathcal{A}^{\circ}} & \mathcal{G}_{\mathrm{real}}^{\mathcal{A}} \\ \\ \phi \leftarrow \mathfrak{D} \\ \psi^{\circ} \leftarrow \mathcal{G}_{\mathrm{id-atk}}^{\mathcal{A}^{\circ}}(\phi) \\ \mathbf{return} \ \mathcal{B}(\boldsymbol{\psi}^{\circ}) \end{array} & \begin{array}{l} \boldsymbol{\varphi} \leftarrow \mathfrak{D} \\ \boldsymbol{\psi} \leftarrow \mathcal{G}_{\mathrm{re-atk}}^{\mathcal{A}}(\phi) \\ \mathbf{return} \ \mathcal{B}(\boldsymbol{\psi}) \end{array} \end{array}$$

Now  $\pi^{\circ} \leq \pi$  if for any  $\mathcal{B} \in \mathfrak{B}$  and for any  $t_{re}$ -time real world adversary there exists a  $t_{id}$ -time ideal world adversary  $\mathcal{A}^{\circ}$  such that

$$\left|\Pr\left[\mathcal{G}_{\text{real}}^{\mathcal{A}}=1\right]-\Pr\left[\mathcal{G}_{\text{ideal}}^{\mathcal{A}^{\circ}}=1\right]\right| \leq \varepsilon$$

### **Simulation principle**



The correspondence  $\mathcal{A}, \mathcal{B} \mapsto \mathcal{A}^{\circ}$  is usually implemented by *simulator*  $\mathcal{S}$  that act as a translator between real world adversary  $\mathcal{A}$  and ideal world.

MTAT.07.003 Cryptology II, Security of Protocols, 6 May, 2009

## Standalone Security Model

Two Parties and Static Corruption

### Formal description

**Computational context.** The protocol  $\pi$  is executed once with the inputs  $x_1, x_2$  and auxiliary information  $\sigma_1, \sigma_2$ , i.e.,  $\phi_1 = (x_1, \sigma_1)$  and  $\phi_2 = (x_2, \sigma_2)$ . The output of honest parties is  $\psi_i = (y_i, \sigma_i)$  where  $y_i$  is the protocol output.

**Corruption model.** Adversary can corrupt one party before the protocol. A *semihonest* adversary only observes the computations done by the corrupted party. A *malicious* adversary can alter the behaviour of the party.

**Communication model.** Each party sends and receives one message during a round. A maliciously corrupted party can send his or her message the honest party has sent his or her message (*rushing adversary*).

**Ideal world model.** Both parties submit their inputs  $x_1, x_2$  to  $\mathcal{T}$  who computes the corresponding outputs  $y_1, y_2$ . Party  $\mathcal{P}_1$  gets his or her input  $y_1$  first and *maliciously* corrupted  $\mathcal{P}_1$  can abort the protocol after that.

### **Classical security definitions**

### Statistical security

A protocol is  $(t_{\rm re}, t_{\rm id}, \varepsilon)$ -secure if for any  $t_{\rm re}$ -time real world adversary  $\mathcal{A}$  there exists a  $t_{\rm id}$ -time ideal world adversary  $\mathcal{A}^{\circ}$  such that for any input distribution  $\mathfrak{D}$  the output distributions  $\psi$  and  $\psi^{\circ}$  are statistically  $\varepsilon$ -close.

#### **Computational security**

A protocol is  $(t_{\rm re}, t_{\rm id}, t_{\rm pred}, \varepsilon)$ -secure if for any  $t_{\rm re}$ -time real world adversary  $\mathcal{A}$  there exists a  $t_{\rm id}$ -time ideal world adversary  $\mathcal{A}^{\circ}$  such that for any input distribution  $\mathfrak{D}$  the output distributions  $\psi$  and  $\psi^{\circ}$  are  $(t_{\rm pred}, \varepsilon)$ -close.

# Examples

### Protocol for rock-paper-scissors game



Assume that (Gen, Com, Open) is perfectly binding commitment scheme. Let  $x_1 \circledast x_2$  denote the outcome of the game for  $x_1, x_2 \in \{0, 1, 2\}$  and  $y = (x_1, x_2, x_1 \circledast x_2)$  denote the desired end result of the game.

MTAT.07.003 Cryptology II, Security of Protocols, 6 May, 2009

### Simulator for the first player

```
\mathcal{S}^{\mathcal{P}_1}(\sigma_1, x_1)
   \begin{array}{l} (\texttt{o}\ 1,\texttt{w}\ 1) \\ \hline (\texttt{pk},c) \leftarrow \mathcal{P}_1^*(\sigma_1,x_1) \\ \texttt{Use rewinding to get} \\ \begin{bmatrix} d_0 \leftarrow \mathcal{P}_1^*(0), d_1 \leftarrow \mathcal{P}_1^*(1), d_2 \leftarrow \mathcal{P}_1^*(2) \\ \texttt{Compute}\ x_1^i \leftarrow \texttt{Open}_{\texttt{pk}}(c,d_i) \ \texttt{for}\ i \in \{0,1,2\} \,. \end{array}
     Send 0 to \ensuremath{\mathfrak{T}} if none of the decommitments are valid.
    Otherwise send x_1^i \neq \bot to \mathfrak{T}.
    Given y form \mathfrak{T} store d \leftarrow \mathfrak{P}_1^*(x_2).
    If {\rm Open}_{\rm pk}(c,d)=\bot then order {\mathfrak T} to halt the computations. Output whatever {\mathfrak P}_1^* outputs.
```

### Simulator for the second player

We cannot build simulator for the second player since  $\hat{x}_2$  sent to  $\mathcal{P}_1$  may depend on the commitment value and the following code fragment fails

$$\begin{split} \mathcal{S}^{\mathcal{P}_2^*}(\sigma_2, x_2) \\ \begin{bmatrix} \mathsf{pk} \leftarrow \mathsf{Gen} \\ (c, d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(0) \\ \mathsf{Send} \ \hat{x}_2 \leftarrow \mathcal{P}_2^*(\sigma_2, x_2, c) \ \mathsf{to} \ \mathfrak{T}. \\ \mathsf{Given} \ y \ \mathsf{from} \ \mathfrak{T} \ \mathsf{rewind} \ \mathsf{until} \ \mathsf{success}. \\ \begin{bmatrix} (c, d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(x_1) \\ \mathsf{lf} \ \mathcal{P}_2^*(\sigma_2, x_2, c) \neq \hat{x}_2 \ \mathsf{repeat} \ \mathsf{the} \ \mathsf{cycle} \\ \mathsf{Output} \ \mathsf{whatever} \ \mathcal{P}_2^* \ \mathsf{does}. \end{split}$$

### **Further analysis**

If commitment scheme is  $(t_{\rm re}, \varepsilon)$ -hiding then probabilities

$$\alpha(x_1, x_2) = \Pr\left[\mathsf{pk} \leftarrow \mathsf{Gen}, (c, d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(x_1) : \mathcal{P}_2^*(c) = x_2\right]$$

can vary at most  $\varepsilon$  if we alter  $x_1$ . Hence, on average after  $\frac{1}{\alpha(0,x_2)-\varepsilon}$  the rewinding succeeds and the continuation of the simulation is perfect.

As the running-time must be finite, a nonzero failure probability causes statistical difference. The statistical difference comes from two sources:

- $\triangleright$  The distribution of inputs  $\hat{x}_2$  submitted to  $\mathcal{T}$  is different from the distribution of  $\hat{x}_2$  over the real protocol runs.
- ▷ A nonzero simulation failure cause secondary difference.

### Coin flipping by telephone



The protocol above assures that participants output a uniformly distributed bit even if one of the participants is malicious.

- If the commitment scheme is perfectly binding, then Lucy can also generate public parameters for the commitment scheme.
- If the commitment scheme is perfectly hiding, then Charlie can also generate public parameters for the commitment scheme.

### Simulator for the second party

$$\begin{split} \mathcal{S}^{\mathcal{P}_{2}^{*}}(\phi_{2}, y) \\ \hline \mathbf{pk} \leftarrow \mathsf{Gen} \\ & \text{For } i = 1, \dots k \text{ do} \\ & \begin{bmatrix} b_{1} \leftarrow \{0, 1\} \\ (c, d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(b_{1}) \\ b_{2} \leftarrow \mathcal{P}_{2}^{*}(\phi_{2}, \mathsf{pk}, c) \\ & \text{if } b_{1} \oplus b_{2} = y \text{ then} \\ & \begin{bmatrix} \mathsf{Send} \ d \text{ to } \mathcal{P}_{2}^{*} \text{ and output whatever } \mathcal{P}_{2}^{*} \text{ outputs.} \\ & \text{return Failure} \\ \end{split}$$
return Failure

### **Failure probability**



If commitment scheme is  $(k\cdot t,\varepsilon_1)$ -hiding, then for any t-time adversary  $\mathcal{P}_2^*$  the failure probability

$$\Pr\left[\mathsf{Failure}\right] \le \Pr\left[\mathcal{S}_2^{\mathcal{P}_2^*}(y) = \mathsf{Failure}\right] + k \cdot \varepsilon_1 \le 2^{-k} + k \cdot \varepsilon_1 \quad .$$

### The corresponding security guarantee

If the output y is chosen uniformly over  $\{0,1\}$ , then the last effective value of  $b_1$  has also an almost uniform distribution:  $\left|\Pr\left[b_1=1|\neg\mathsf{Failure}\right]-\frac{1}{2}\right| \leq k \cdot \varepsilon_1$ . Hence, for  $\mathcal{P}_2^\circ = \mathcal{S}^{\mathcal{P}_2^*}$  the outputs of games

$$\begin{aligned}
\mathcal{G}_{\text{ideal}}^{\mathfrak{P}_{2}^{\circ}} & \mathcal{G}_{\text{real}}^{\mathfrak{P}_{2}^{\ast}} \\
\begin{bmatrix} (\phi_{1}, \phi_{2}) \leftarrow \mathfrak{D} \\
y \leftarrow \overline{u} \{0, 1\} \\
\psi_{1} \leftarrow (\phi_{1}, y) \\
\psi_{2} \leftarrow \mathcal{S}_{2}^{\mathfrak{P}_{2}^{\ast}(\phi_{2})} \\
\text{return } (\psi_{1}, \psi_{2})
\end{aligned}$$

$$\begin{aligned}
\mathcal{G}_{\text{real}}^{\mathfrak{P}_{2}^{\ast}} \\
\mathcal{P}_{1} \text{ and } \mathcal{P}_{2}^{\ast} \text{ run the protocol.} \\
\psi_{1} \leftarrow \mathfrak{P}_{1} \\
\psi_{2} \leftarrow \mathfrak{P}_{2}^{\ast} \\
\text{return } (\psi_{1}, \psi_{2})
\end{aligned}$$

are at most  $k \cdot \varepsilon_2$  apart if the run of  $\mathcal{S}_2^{\mathcal{P}_2^*}$  is successful. Consequently, the statistical distance between output distributions is at most  $2^{-k} + 2k \cdot \varepsilon_1$ .

### Simulator for the first party

 $\mathcal{S}^{\mathcal{P}_1^*}(\phi_1, y)$ 

 $\begin{array}{l} \mathsf{pk} \leftarrow \mathsf{Gen} \ , \ c \leftarrow \mathcal{P}_1^*(\phi_1, \mathsf{pk}) \\\\ \mathsf{Rewind} \ \mathcal{P}_1 \ \mathsf{to} \ \mathsf{get} \ d_0 \leftarrow \mathcal{P}_1^*(0), \ d_1 \leftarrow \mathcal{P}_1^*(1) \\\\ b_1^0 \leftarrow \mathsf{Open}_{\mathsf{pk}}(c, d_0), \ b_1^1 \leftarrow \mathsf{Open}_{\mathsf{pk}}(c, d_1) \end{array}$ if  $\bot \neq b_1^0 \neq b_1^1 \neq \bot$  then Failure if  $b_1^0 = \bot = b_1^1$  then Send the Halt command to  $\mathcal{T}$ . Choose  $b_2 \leftarrow \{0,1\}$  and re-run the protocol with  $b_2$ . Return whatever  $\mathcal{P}_1^*$  returns. if  $b_1^0 = \bot$  then  $b_1 \leftarrow b_1^1$  else  $b_1 \leftarrow b_1^0$  $b_2 \leftarrow b_1 \oplus y$ Re-run the protocol with  $b_2$ if  $b_1^{b_2} = \bot$  then Send the Halt command to  $\mathfrak{T}$ . Return whatever  $\mathcal{P}_1^*$  returns.

### **Further analysis**

If the commitment scheme is  $(t, \varepsilon_2)$ -binding, then the failure probability is less than  $\varepsilon_2$ . If the output y is chosen uniformly over  $\{0, 1\}$ , then the value of  $b_2$  seen by  $\mathcal{P}_1^*$  is uniformly distributed.

Consequently, the output distributions of  $S^{\mathcal{P}_1^*}$  and  $\mathcal{P}_2$  in the ideal world coincide with the real world outputs if S does not fail.

### **Resulting security guarantee**

**Theorem.** If a commitment scheme is  $(k \cdot t, \varepsilon_1)$ -hiding and  $(t, \varepsilon_2)$ -binding, then for any plausible *t*-time real world adversary there exists  $O(k \cdot t)$ -time ideal world adversary such that the output distributions in the real and ideal world are max  $\{2^{-k} + 2k \cdot \varepsilon_1, \varepsilon_2\}$ -close.