
MTAT.07.003 Cryptology II
Spring 2009 / Exercise session X

Examples of Sigma Protocols

1. The Guillou-Quisquater identification scheme (GQ scheme) is directly
based on the RSA problem. The identification scheme is a honest verifier
zero-knowledge proof that the prover knows x such that xe = y mod n

where n is an RSA modulus, i.e., the public information pk = (n, e, y) and
the secret is x. The protocol itself is following:

1. P chooses r←
u

Z
∗

n and sends α← re to V.

2. V chooses β ←
u
{0, 1} and sends it to P.

3. P computes γ ← rxβ and sends it to V.

4. V accepts the proof if γe = αyβ .

Prove that the Guillou-Quisquater identification scheme is sigma protocol.

(a) The GQ identification scheme is functional.

(b) The GQ identification scheme has the zero-knowledge property.

(c) The GQ identification protocol is specially sound.

(d) Amplify soundness guarantees with parallel and sequential composi-
tion and derive the corresponding knowledge bounds.

2. Let G be a cyclic group with prime number of elements q and let g1 and g2

be generators of the group. Now consider a sigma protocol for proving the
knowledge of x such that gx

1 = y1 and gx
2 = y2, i.e., the public information

is (g1, g2, y1, y2) and the secret knowledge is x. The protocol is following:

1. P chooses r←
u

Zq and sends α1 ← gr
1

and α2 ← gr
2

to V.

2. V chooses β ←
u

Zq and sends it to P.

3. P computes γ ← xβ + r and sends it to the verifier V.

4. V accepts the proof if g
γ
1

= α1y
β
1

and g
γ
2

= α2y
β
2
.

Prove that the protocol is indeed a sigma protocol.

(a) The protocol is functional and has the zero-knowledge property.

(b) The protocol is specially sound and two colliding transcripts indeed
reveal x such that gx

1
= y1 and gx

2
= y2.

As a concrete application of this protocol construct a proof that the El-
Gamal encryption (c1, c2) is an encryption of Encpk(1).
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Applications of Sigma Protocols

3. Recall that in the first step of certified computations the prover P commits
bit by bit to his or inputs x1, . . . , xn and uses sigma protocol to prove the
validity of commitments. Use Pedersen commitments and the Schnorr
protocol pokx [y = gx] to implement this strategy.

(a) Construct a sigma protocol pokc,g [∃r : c = yxgr].

(b) Construct a sigma protocol pokc,g [∃d : Open(c, d) ∈ {0, 1}].

(c) Use homomorphic properties of the Pedersen commitment to con-
struct a sigma protocol for proving x1 + · · ·+xn = 1 and xi ∈ {0, 1}.

4. In the second phase of certified computations the prover reveals com-
mitments to all intermediate values in the Boolean circuit. As in the
previous exercise use Pedersen commitments and the Schnorr protocol
pokx [y = gx] to construct sigma protocols to prove the following facts

(a) Values cu and cv are the commitments of u and v such that v = ¬u.

(b) Commitments cu, cv cw of u, v and w are such that w = u ∧ v.

(c) Commitment cf of f is such that f = x0 ∧ ¬x1 ∨ ¬x3 ∧ x4.

5. Many e-voting protocols use sigma protocols to prove the correctness of
several crucial steps. In particular, one often needs to prove

(a) c is an ElGamal encryption of 0 or 1;

(b) c is an ElGamal encryption of x ∈
{

0, . . . 2ℓ
}

;

(c) (cij)
n
i,j=1

is an Pedersen commitment to a permutation matrix.

Use the Schnorr protocol pokx [y = gx] and properties of ElGamal and
Pedersen commitments to construct the corresponding sigma protocols.

(⋆) Let G be a cyclic group with prime number of elements q as in the previous
exercise. Design a sigma proof that the prover knows x1 and x2 such that
y = gx1

1
gx2

2
. The latter is often used together with the lifted ElGamal

encryption Encpk(x) = Enc(gx) that is additively homomorphic. Construct
sigma protocols for the following statements.

(a) An encryption c is Encpk(m) and m is known or publicly fixed.

(b) An encryption c2 is computed as c · Encpk(1).

(c) An encryption c2 is computed as c
y
1
· Encpk(1).

(d) An encryption c3 is computed as c1 · c2 · Encpk(1).

6. Recall that a generic Schnorr signature (m, α, β, γ) is defined as follows
α ← gr for r ←

u
Zq, β ← h(m, α) and γ = xβ + r where y = gx is the

public key of a signer and x is the secret key. Consider the security of the
Schnorr signature scheme against existential forgeries, where the function
h is replaced with a random oracle Oh(·) that computes uniformly chosen
function from Fall = {h : G×M→ Zq}.
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(a) Convert an adversary that makes at most qh queries to random oracle
Oh(·) and succeeds with the probability ε in the key only model can
be converted to an adversary A∗, which queries each message only
once from Oh and returns only valid signatures or halts. Show that
the running times of A and A∗ are comparable and A∗ makes at most
qh + 1 queries.

(b) Convert A∗ to an adversary B that initiates up to qh + 1 Schnorr
identification protocols and then finishes successfully one these iden-
tification protocols with the same probability than A∗ succeeds in
existential forgery.

(c) Look at the second type of matrix games we considered in the lectures
and provide the expected number of probes needed to extract the
secret key from B and A.

(d) It is common to consider security in the model where adversary can
use signing oracle up to gs times. Show that each of the queries
Sign(m) can be simulated by choosing β, γ ← Zq and computing
α ← gγy−β and then defining Oh(m, α) = β. Why and when is this
assignment consistent with the definition of random oracle?

3


