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Formal Syntax



Sigma protocols

sk Vpk(α, β, γ)

β ← Bα← R α

β

γ = γsk(α, β)

A sigma protocol for an efficiently computable relation R ⊆ {0, 1}∗×{0, 1}∗

is a three move protocol that satisfies the following properties.

⊲ Σ-structure. A prover first sends a commitment, next a verifier sends

varying challenge, and then the prover must give a consistent response.

⊲ Functionality. The protocol run between an honest prover P(sk) and

verifier V(pk) is always accepting if (sk, pk) ∈ R.
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Security properties of sigma protocols

sk Vpk(α, β, γ)

β ← Bα← R α

β

γ = γsk(α, β)

⊲ Perfect simulatability. There exists an efficient non-rewinding simulator

S such that the output distribution of a semi-honest verifier V∗ in the

real world and the output distribution of SV∗ in the ideal world coincide.

⊲ Special soundness. There exists an efficient extraction algorithm Extr

that, given two accepting protocol runs (α, β0, γ0) and (α, β1, γ1) with

β0 6= β1 that correspond to pk, outputs sk∗ such that (sk∗, pk) ∈ R
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Soundness of Sigma Protocols



Soundness in the standalone model

Main Theorem. Denote κ = |B|
−1

. Now if a t-time prover P∗ succeeds in

the sigma protocol with probability at least ε > κ, there exists a knowledge-

extraction algorithm KP∗ that always recovers a secret sk∗ corresponding to

pk and the expected running-time of KP∗ is

c1 ·
2

ε− κ
+ c2

for some small constants c1, c2 ∈ R.

Remark.

⊲ The coefficient c1 depends on the total complexity of the protocol.

⊲ The coefficient c2 depends on the complexity of the Extr algorithm.
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The corresponding matrix game

V(c) P∗(r)

Random tape
c1 c2 · · · cn . . .

Random tape
r1 r2 · · · rn . . .

1

0

α
β

γ

Let A(r, c) be the output of the honest verifier V(c) that interacts with a

potentially malicious prover P∗(r).

⊲ Then all matrix elements in the same row A(r, ·) lead to same α value.

⊲ To extract the secret key sk, we must find two ones in the same row.

⊲ We can compute the entries of the matrix on the fly.
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Classical algorithm

Task: Find two ones in a same row.

Rewind:

1. Probe random entries A(r, c) until A(r, c) = 1.

2. Store the matrix location (r, c).

3. Probe random entries A(r, c) in the same row until A(r, c) = 1.

4. Output the location triple (r, c, c).

Rewind-Exp:

1. Repeat the procedure Rewind until c 6= c.

2. Use the extraction algorithm Extr to extract sk.
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Average-case running time

Theorem. If a m × n zero-one matrix A contains ε-fraction of nonzero

entries, then the Rewind and Rewind-Exp algorithm make on average

E[probes|Rewind] =
2

ε

E[probes|Rewind-Exp] =
2

ε− κ

probes where κ = 1

n
is a knowledge error.
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Average case complexity I

Assume that the matrix contains ε-fraction of nonzero elements, i.e., P∗

convinces V with probability ε. Then on average we make

E [probes
1
] = ε + 2(1− ε)ε + 3(1− ε)2ε + · · · = 1

ε

matrix probes to find the first non-zero entry. Analogously, we make

E [probes
2
|r] = 1

εr

probes to find the second non-zero entry. Also, note that

E[probes
2
] =

∑

r

Pr [r] · E[probes
2
|r] =

∑

r

εr
∑

r′ εr′
·

1

εr

=
1

ε
,

where εr is the fraction of non-zero entries in the rth row.
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Average case complexity II

As a result we obtain that the Rewind algorithm does on average

E[probes] = 2

ε

probes. Since the Rewind algorithm fails with probability

Pr [failure] =
∑

r

Pr [c = c|halting] ≤
κ

ε

we make on average

E[probes∗] =
1

Pr [success]
·E[probes] ≤

ε

ε− κ
·
2

ε
=

2

ε− κ

probes.
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Soundness of sequential compositions

Main Theorem. Consider a setting where a prover P∗ and honest verifier

V sequentially execute the same sigma protocol ℓ times. Denote κ = |B|
−1

.

Also let P∗ be successful if P∗ succeeds at least in one protocol instance.

Now if a t-time prover P∗ succeeds with probability at least ε > ℓκ, there

exists a knowledge-extraction algorithm KP∗ that always recovers a secret

sk∗ corresponding to pk and the expected running-time of KP∗ is

c1 ·
ℓ + 1

ε− ℓκ
+ c2

for some small constants c1, c2 ∈ R.

Remark.

⊲ The coefficient c1 depends on the total complexity of the protocol.

⊲ The coefficient c2 depends on the complexity of the Extr algorithm.
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The corresponding matrix game

V(ω1, . . . , ωℓ) P∗(ω0)

Random tape
ω1 ω2 · · · ωℓ

Random tape
ω01 ω02 · · · ω0n . . .

i

0

α1

β1

γ1

· · ·
αℓ
βℓ
γℓ

Let A(ω0, ω1, . . . , ωℓ) denote the index of the first successful protocol

between honest verifier V(ω1, . . . , ωℓ) and a prover P∗(ω0).

⊲ Then a randomness prefix ω0, . . . , ωi−1 leads to the same αi value.

⊲ To extract the secret key sk, we must find two i-s with the same prefix.

⊲ We can compute the entries of the array on the fly.
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Classical algorithm

Rewind:

1. Probe random entries A(ω) until A(ω) 6= 0.

2. Store the matrix location ω and the rewinding point i← A(ω).

3. Probe random entries A(ω) with the prefix ω0, . . . , ωi−1 until A(ω) = i.

4. Output the location tuple (ω,ω).

Rewind-Exp:

1. Repeat the procedure Rewind until ωi 6= ωi.

2. Use the extraction algorithm Extr to extract sk.
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Average-case running time

Theorem. If a array A(ω) with entries in {0, . . . , ℓ} contains ε-fraction of

nonzero entries, then Rewind and Rewind-Exp make on average

E[probes|Rewind] =
2

ε

E[probes|Rewind-Exp] =
ℓ + 1

ε− κ

probes where the knowledge error

κ =
ℓ

∑

i=1

Pr [ωi = ωi] .
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Average case complexity I

Assume that A succeeds with probability ε. Then the results proved for the

zero-one matrix with fixed dimensions imply

E[probes
1
] = 1

ε
and E[probes

2
|A(ω) = i] = 1

εi

where εi is the fraction of entries labelled with i. Thus

E[probes
2
] =

ℓ
∑

i=1

Pr [A(ω) = i] ·E[probes
2
|A(ω) = i]

E[probes
2
] =

ℓ
∑

i=1

εi

ε
·

1

εi

=
ℓ

ε
.
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Average case complexity II

Consequently, the Rewind algorithm does on average

E[probes] =
ℓ + 1

ε

probes. Since the Rewind algorithm fails with probability

Pr [failure] =
ℓ

∑

i=1

Pr [A(ω) = i] Pr [ωi = ωi|halting] ≤
κ1 + · · ·+ κℓ

ε

we make on average

E[probes∗] =
1

Pr [success]
·E[probes] ≤

ε

ε− κ
·
ℓ + 1

ε
=

ℓ + 1

ε− κ
.
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Various Parallel Compositions



Conjunctive proofs

pk sk1, sk2

β ←u B

α1 ← P1(sk1)

α2 ← P2(sk2)

γ1 ← P1(sk1, β)

γ2 ← P2(sk2, β)

α1, α2

β

γ1, γ2

Halt if V1(pk, α1, β, γ1) = 0

Halt if V2(pk, α2, β, γ2) = 0

If we run two sigma protocols for different relations R1 and R2 in parallel,

we get a sigma protocol for new relation R1 ∧R2

(sk1, sk2, pk) ∈ R1 ∧R2 ⇔ (sk1, pk) ∈ R1 ∧ (sk1, pk) ∈ R2 .

provided that both sigma protocols have the same challenge space B and it

a perfect simulation of transcripts (αi, β, γi) is efficient for any β.
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The corresponding proof

Perfect simulatability. Let S1 be a canonical simulator for V1. Now if S1

outputs a properly distributed triple (α1, β, γ1), then we can augment this

with properly distributed (α2, β, γ2) and thus we get a properly distributed

protocol transcript (α1, α2, β, γ1, γ2).

Special soundness. Given two accepting transcripts

(α1, α2, β
0, γ0

1
, γ0

2
), (α1, α2, β

1, β1

2
, γ1

1
, γ1

2
), with β0 6= β1 ,

we can decompose them into original colliding transcripts

(α1, β
0, γ0

1
), (α1, β

1, γ1

1
), β0 6= β1 ,

(α2, β
0, γ0

2
), (α2, β

1, γ1

2
), β0 6= β1 .
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Disjunctive proofs

pk sk1 ∨ sk2

β ←u B

αi ← Pi(ski)

(αj, βj, γj)← Sj(pk)

βi ← β − βj

γi ← Pi(ski, βi)

α1, α2

β

β1, β2, γ1, γ2

Halt if β1 + β2 6= β

Halt if V1(pk, α1, β1, γ1) = 0

Halt if V2(pk, α2, β2, γ2) = 0

Assume that we have two sigma protocols for relations R1 and R2 such

that the challenge is chosen uniformly from a commutative group (B; +).

Then a prover can use a simulator Sj to create the transcript for missing

secret skj and then create response using the known secret ski.

MTAT.07.003 Cryptology II, Sigma Protocols, 23 April, 2009 17



Disjunctive proofs

pk sk1 ∨ sk2

β ←u B

αi ← Pi(ski)

(αj, βj, γj)← Sj(pk)

βi ← β − βj

γi ← Pi(ski, βi)

α1, α2

β

β1, β2, γ1, γ2

Halt if β1 + β2 6= β

Halt if V1(pk, α1, β1, γ1) = 0

Halt if V2(pk, α2, β2, γ2) = 0

As a result, we get a sigma protocol for new relation R1 ∨R2

(sk1, sk2, pk) ∈ R1 ∨R2 ⇔ (sk1, pk) ∈ R1 ∨ (sk1, pk) ∈ R2 .
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The corresponding proof

Perfect simulatability. Note that β1 and β2 are independent and have

a uniform distribution over B. Consequently, we can run the canonical

simulators S1 and S2 be for V1 and V2 in parallel to create the properly

distributed transcript (α1, α2, β1 + β2, β1, β2, γ1, γ2).

Special soundness. Given two transcripts

(α1, α2, β
0

1
+ β0

2
, β0

1
, β0

2
, γ0

1
, γ0

2
), (α1, α2, β

1

1
+ β1

2
, β1

1
, β1

2
, γ1

1
, γ1

2
)

such that β0

1
+ β0

2
6= β1

1
+ β1

2
, we can extract a colliding sub-transcript

{

(α1, β
0

1
, γ0

1
), (α1, β

1

1
, γ1

1
), if β0

1
6= β1

1
,

(α2, β
0

2
, γ0

2
), (α2, β

1

2
, γ1

2
), if β0

2
6= β1

2
.
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Parallel composition

pk sk1, sk2

β1 ←u B1

β2 ←u B2

α1 ← P1(sk1)

α2 ← P2(sk2)

γ1 ← P1(sk1, β1)

γ2 ← P2(sk2, β2)

α1, α2

β1, β2

γ1, γ2

Halt if V1(pk, α1, β1, γ1) = 0

Halt if V2(pk, α2, β2, γ2) = 0

If we run two sigma protocols for different relations R1 and R2 in parallel,

we get a sigma protocol∗ for new relation R1 ∧R2

(sk1, sk2, pk) ∈ R1 ∧R2 ⇔ (sk1, pk) ∈ R1 ∧ (sk1, pk) ∈ R2 .

∗ Modulo small details—not all colliding transcripts reveal both secrets.
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Certified Computations
Semihonest case



The concept

pk pkCompk(x)

f

f(x), α
β

γ

f x

f(x)

f

halt/ok

Lucy should learn f(x) and nothing more even if Charlie is malicious.
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Basic tools

There are many ways how to build protocols for certified computations.

Here, we consider one of the simplest protocols that is based DL group.

⊲ We use Pedersen commitments with a public parameter y ←u G

(yxgr, (x, r))← Com(x; r)

⊲ We use proofs of knowledge for various relations about discrete logarithms

pokz,g [∃x : gx = z]

pokg1,g2,z [∃x1, x2 : g2
x1g2

x2 = z]

to prove more complex properties about Pedersen commitments.
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Boolean circuit of commitments

Charlie prepares a Boolean circuit for f and commits all intermediate values.

x1 x2 x3 x4

∧ ∨

u1 u2

¬

u3

⊕

f(x)
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Augmentation by proofs of knowledge I

Charlie proves that all commitments Com(xi) are commitments of bits

pokg,y,c

[

∃r : gr = c ∨ gr = cy−1
]

x1 x2 x3 x4Pok Pok Pok Pok

∧ ∨

u1 u2

¬

u3

⊕

f(x)
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Augmentation by proofs of knowledge II

Charlie proves that all intermediate commitments are correct, e.g.

pok¬

g,y,c1,c2

[

∃r1r2 : gr1 = c ∧ gr2 = c2y
−1 ∨ . . .

]

x1 x2 x3 x4Pok Pok Pok Pok

∧ ∨

Pok Poku1 u2

¬

u3Pok

⊕

f(x)Pok
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Final protocol

Since we can use disjunctive composition to combine all sigma proofs, we

get the following protocol for certified computations.

⊲ Charlie commits his input bit by bit using Pedersen commitment.

⊲ Lucy sends the description of a function f .

⊲ Charlie creates Boolean circuit and commits all values.

⊲ Both parties agree one the corresponding validity proof.

⊲ Charlie decommits f(x) and sends the first proof message α.

⊲ Lucy sends the challenge message β ← B.

⊲ Charlie sends back the corresponding response γ.

⊲ Lucy accepts f(x) only if the sigma protocol succeeds.
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