MTAT.07.003 CRYPTOLOGY II

Entity Authentication

Sven LaurUniversity of Tartu

Formal Syntax

Entity authentication

- \triangleright The communication between the prover and verifier must be authentic.
- \triangleright To establish electronic identity, Charlie must generate $(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}$ and convinces others that the public information <mark>pk</mark> represents him.
- \triangleright The entity authentication protocol must convince the verifier that his or her opponent possesses the secret sk.
- \triangleright An entity authentication protocol is *functional* if an honest verifier $\mathcal{V}_{\sf pk}$ always accepts an honest prover $\mathcal{P}_{\mathsf{sk}}.$

Classical impossibility results

Inherent limitations. Entity authentication is impossible

(i) if authenticated communication is unaffordable in the setup phase;

(ii) if authenticated communication is unaffordable in the second phase.

Proof. Man-in-the-middle attacks. Chess-master attacks.

Conclusions

- \triangleright It is impossible to establish legal identity without physical measures.
- \triangleright Any smart card is susceptible to physical attacks regardless of the cryptographic countermeasures used to authenticate transactions.
- ⊲ Secure e-banking is impossible if the user does not have full control over the computing environment (secure e-banking is practically impossible).

Physical and legal identities

- \triangleright Entity authentication is possible only if all participants have set up a network with authenticated communication links.
- \triangleright $\mathsf A$ role of a entity authentication protocol is to establish a convincing bound between physical network address and legal identities.
- \triangleright A same legal identity can be in many physical locations and move from one physical node to another node.

Challenge-ResponseParadigm

Salted hashing

Global setup:

Authentication server ${\mathcal V}$ outputs a description of a hash function $h.$

Entity creation:

A party ${\mathcal P}$ chooses a password sk $\overline{{\cal H}}\left\{0,1\right\}^\ell$ and a nonce $r \overline{{\cal H}}\left\{0,1\right\}^k$. The public authentication information is $\mathsf{pk} = (r,c)$ where $c \leftarrow h(\mathsf{sk}, r)$.

Entity authentication:

To authenticate him- or herself, ${\mathcal P}$ releases sk to the server ${\mathcal V}$ who verifies that the hash value is correctly computed, i.e., $c = h(\mathsf{sk}, r)$.

Theorem. If h is (t, ε) -secure one-way function, then no t -time adversary ${\mathcal A}$ without sk can succeed in the protocol with probability more than $\varepsilon.$

- \triangleright There are no secure one-way functions for practical sizes of sk.
- \triangleright A malicious server can completely break the security.

RSA based entity authentication

Global setup:

Authentication server $\mathcal V$ fixes the minimal size of RSA keys.

Entity creation:

A party $\mathcal P$ runs a RSA key generation algorithm $(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}_\text{rsa}$ and
outputs the public key nk as the authenticating information outputs the public key <mark>pk</mark> as the authenticating information.

Entity authentication:

- 1. $\mathcal V$ creates a challenge $c \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m)$ for $m \leftarrow \mathcal M$ and sends c to $\mathcal P$.
2. $\mathcal P$ sends back $\overline{m} \leftarrow \mathsf{Dec}_+(c)$
- 2. P sends back $\overline{m} \leftarrow \mathsf{Dec}_{\mathsf{sk}}(c)$.
- 3. $\mathcal V$ accepts the proof if $m=\overline{m}.$

This protocol can be generalised for any public key cryptosystem. The general form of this protocol is known as *challenge-response protocol*. This mechanism provides explicit security guarantees in the TLS protocol.

The most powerful attack model

Consider a setting, where an adversary ${\mathcal A}$ can impersonate verifier ${\mathcal V}$

- > The adversary A can execute several protocol instances with the honest prover ${\mathcal P}$ in parallel to spoof the challenge protocol.
- ⊲ The adversary A may use protocol messages arbitrarily as long as A does not conduct the crossmaster attack.

Let us denote the corresponding success probability by

$$
Adv^{\text{ent-auth}}(\mathcal{A}) = \Pr\left[(\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Gen}: \mathcal{V}^{\mathcal{A}} = 1\right] \enspace .
$$

Corresponding security guarantees

Theorem. If a cryptosystem used in the challenge-response protocol is (t, ε) -IND-CCA2 secure, then for any t -time adversary ${\mathcal A}$ the corresponding success probability $\mathsf{Adv}^{\mathsf{ent}\text{-}\mathsf{auth}}(\mathcal{A}) \leq \frac{1}{|\mathcal{N}|}$ $|\mathcal{M}|$ $+ \varepsilon$.

Proof. A honest prover acts as a decryption oracle.

The nature of the protocol

- \triangleright The protocol proves only that the prover has access to the decryption oracle and therefore the prover must *possess* the secret key <mark>sk</mark>.
- \triangleright The possession of the secret key <mark>sk</mark> does not imply the *knowledge* of it. For example, the secret key <mark>sk</mark> might be hardwired into a smart card.
- \triangleright Usually, the inability to decrypt is a strictly stronger security requirement than the ability to find the secret key.
- ⊳ *Knowledge* is permanent whereas *possession* can be temporal.

Proofs of knowledge

Schnorr identification protocol

The group $\mathbb{G}=\langle g \rangle$ must be a DL group with a prime cardinality $q.$

- \triangleright The secret key x is the discrete logarithm of $y.$
- \triangleright The verifier $\mathcal V$ is assumed to be semi-honest.
- \triangleright \triangleright The prover ${\mathcal P}$ is assumed to be potentially malicious.
- \triangleright We consider only security in the standalone setting.

Zero-knowledge principle

Lucy should be equally <mark>*successful* in both experiments</mark>.

Simulation principle

Lucy should not be able to distinguish between these two experiments.

Zero-knowledge property

Theorem. If a t -time verifier $\boldsymbol{\mathcal{V}}_*$ protocol, then there exists $t + \mathrm{O}(1)$ -algorithm $\boldsymbol{\mathcal{V}}_{\circ}$ $_{\ast}$ is semi-honest in the Schnorr identification distribution as \mathcal{V}_* but do not interact with the $_{\circ}$ that has the same output $_{*}$ but do not interact with the prover $\mathcal{P}.$

Proof.

Consider a code wrapper ${\cal S}$ that chooses $\beta \leftarrow \mathbb{Z}_q$ and $\gamma \leftarrow \mathbb{Z}_q$ and computes $\alpha \leftarrow g^{\gamma} \cdot y^{-\beta}$ and outputs whatever \mathcal{V}_{*} outputs on the tra \triangleright If $x \neq 0$, then $\gamma = \beta + xk$ has indeed a uniform distribution. ${}^{\beta}$ and outputs whatever $\boldsymbol{\mathcal{V}}_{*}$ $_{*}$ outputs on the transcript $(\alpha,\beta,\gamma).$ \rhd For fixed β and γ , there exist only a single consistent value of $\alpha.$

Rationale: Semi-honest verifier learns nothing from the interaction with the prover. The latter is known as *zero-knowledge* property.

Knowledge-extraction lemma

This property is known as *special-soundness.*

- \triangleright If adversary $\mathcal A$ succeeds with probability 1, then we can extract the secret key x by rewinding ${\mathcal A}$ to get two runs with a coinciding prefix $\alpha.$
- \triangleright If adversary ${\mathcal{A}}$ succeeds with a non-zero probability ε , then we must use more advanced knowledge-extraction techniques.

Let $A(r,c)$ be the output of the honest verifier $\mathcal{V}(c)$ that interacts with a potentially malicious prover $\mathcal{P}_*(r).$

- \triangleright Then all matrix elements in the same row $A(r,\cdot)$ lead to same α value.
- \triangleright To extract the secret key sk, we must find two ones in the same row.
- \triangleright We can compute the entries of the matrix on the fly.

We derive the corresponding security guarantees a *bit later*.

Modified Fiat-Shamir identification protocol

All computations are done in \mathbb{Z}_n , where n is an RSA modulus.

- \triangleright \triangleright The secret key s is a square root of $v.$
- \triangleright \triangleright The verifier $\mathcal V$ is assumed to be semi-honest.
- \triangleright \triangleright The prover ${\mathcal P}$ is assumed to be potentially malicious.
- \triangleright We consider only security in the standalone setting.

Zero-knowledge property

Theorem. If a t -time verifier $\boldsymbol{\mathcal{V}}_*$ identification protocol, then there exists $t+\mathrm{O}(1)$ -algorithm \mathcal{V}_\circ $_{*}$ is semi-honest in the modified Fiat-Shamir same output distribution as \mathcal{V}_* but do not interact with the $_{\circ}$ that has the $_{*}$ but do not interact with the prover $\mathcal{P}.$

Proof.

Consider a code wrapper $\mathcal S$ that chooses $\beta \leftarrow\hspace{-3pt}\{0,1\}$, $\gamma \leftarrow\hspace{-3pt}\pi \mathbb Z_m^*$ $\alpha \leftarrow v^{-\beta}\cdot \gamma^2$ and outputs whatever \mathcal{V}_* outputs on the transcript (α,β,γ) $\stackrel{*}{n}$, computes \triangleright Since s is invertible, we can prove that $s\cdot\mathbb{Z}_n^*$ $^{\beta} \cdot \gamma$ 2 and outputs whatever $\boldsymbol{\mathcal{V}}_*$ $_{*}$ outputs on the transcript $(\alpha,\beta,\gamma).$ As a result, γ is independent of β and has indeed a uniform distribution. $\frac{*}{n}=\mathbb{Z}_n^*$ $\, n \,$ $\frac{*}{n}$ and s^2 $^2\cdot\mathbb{Z}_n^*$ $\frac{*}{n}=\mathbb{Z}_n^*$ $n\,$. \rhd For fixed β and γ , there exist only a single consistent value of $\alpha.$

Knowledge-extraction lemma

Theorem. The Fiat-Shamir protocol is specially sound.

<code>Proof.</code> Assume that a prover \mathcal{P}_* $_{*}$ succeeds for both challenges $\beta \in \{0,1\}$:

$$
\gamma_0^2 = \alpha, \quad \gamma_1^2 = \alpha v \quad \Longrightarrow \quad \frac{\gamma_1}{\gamma_0} = \sqrt{v} \ .
$$

The corresponding extractor construction $\mathcal K$:

- \triangleright Choose random coins r for $\mathcal{P}_*.$
- \rhd Run the protocol with $\beta=0$ and record γ_0
- \triangleright $\,$ Run the protocol with $\beta=1$ and record γ_1

$$
\triangleright \text{ Return } \zeta = \frac{\gamma_1}{\gamma_0}
$$

Bound on success probability

Theorem. Let v and n be fixed. If a potentially malicious prover \mathcal{P}_* succeeds in the modified Fiat-Shamir protocol with probability $\varepsilon>\frac{1}{2}$, thei $\frac{1}{2}$, then the knowledge extractor $\mathcal{K}^{\mathcal{P}}$ * returns \sqrt{v} with probability $\varepsilon-\frac{1}{2}$ 2.

Proof. Consider the success matrix $A(r, c)$ as before. Let p_1 denote the fraction rows that contain only single one and p_2 the fractior contain two ones. Then evidently $p_1+p_2\leq1$ and $\frac{p_1}{2}+p_2\geq\varepsilon$ and thus we $_2$ the fraction of rows that can establish $p_2\geq\varepsilon-\frac{1}{2}$ $\frac{1}{2}$. \Box

Rationale: The knowledge extraction succeeds in general only if the success probability of \mathcal{P}_* is above $\frac{1}{2}.$ The value $\kappa=\frac{1}{2}$ is known as k nowledge error $_{*}$ is above $\frac{1}{2}$ $\frac{1}{2}$. The value $\kappa=\frac{1}{2}$ 2 $\frac{1}{2}$ is known as *knowledge error*.

Matrix Games

Classical algorithm

Task: Find two ones in ^a same row.

Rewind:

- 1. Probe random entries $A(r,c)$ until $A(r,c)=1.$
- 2. Store the matrix location (r,c) .
- 3. Probe random entries $A(r,\overline{c})$ in the same row until $A(r,\overline{c})=1.$
- 4. Output the location triple (r,c,\overline{c}) .

Rewind-Exp:

- 1. Repeat the procedure Rewind until $c\neq$
- 1. Repeat tne procedure Rewind until $c\neq c$.
2. Use the knowledge-extraction lemma to extract <mark>sk</mark>.

Average-case running time

Theorem. If a $m \times n$ zero-one matrix A contains ε -fraction of nonzero entries, then the Rewind and Rewind-Exp algorithm make on average

$$
\mathbf{E}[\mathsf{probes}|\mathsf{Rewind}] = \frac{2}{\varepsilon}
$$

$$
\mathbf{E}[\mathsf{probes}|\mathsf{Rewind-Exp}] = \frac{2}{\varepsilon - \kappa}
$$

probes where $\kappa=\frac{1}{n}$ $\frac{1}{n}$ is a *knowledge error*.

Proof. We prove this theorem in another lecture.

Strict time bounds

Markov's inequality assures that for ^a non-negative random variable probes

$$
\Pr\left[\text{probes} \geq \alpha\right] \leq \frac{\mathbf{E}\left[\text{probes}\right]}{\alpha}
$$

and thus Rewind-Exp succeeds with probability at least $\frac{1}{2}$ after $\frac{4}{\varepsilon-\kappa}$ probes.

If we repeat the experiment ℓ times, we the failure probability goes to $2^{-\ell}.$

From Soundness to Security

Soundness and subjective security

Assume that we know ^a constructive proof:

If for fixed pk a potentially malicious t -time prover \mathcal{P}_* probability $\varepsilon>\kappa$, then a knowledge extractor $\mathfrak{K}^{\mathfrak{P}}$ that runs in time $*$ succeeds with $\tau(\varepsilon) = \mathrm{O}\bigl(\frac{t}{\varepsilon - \kappa} \bigr)$ outputs sk with probability $1 - \varepsilon_2.$

and we *believe*:

No human can create a $\tau(\varepsilon_1)$ -time algorithm that computes <mark>sk</mark> from pk with success probability at least $1-\varepsilon_2.$

then it is *rational* to assume that:

No human without the knowledge of <mark>sk</mark> can create a algorithm \mathcal{P}_* that succeeds in the proof of knowledge with probability at least $\varepsilon_1.$

 $\sf{Caveat:}$ For each fixed $\sf{pk},$ there exists a trivial algorithm that prints out sk. Hence, we cannot get objective security guarantees.

Soundness and objective security

Assume that we know ^a constructive proof:

If for a fixed pk a potentially malicious t -time prover \mathcal{P}_* probability $\varepsilon>\kappa$, then a knowledge extractor $\mathfrak{K}^{\mathfrak{P}}$ that runs in time $_{\ast}$ succeeds with $\tau(\varepsilon) = \mathrm{O}\bigl(\frac{t}{\varepsilon - \kappa} \bigr)$ outputs sk with probability $1 - \varepsilon_2.$

and know a mathematical fact that any $\tau(2\varepsilon_1)$ -time algorithm ${\mathcal{A}}$

$$
\Pr\left[(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen} : \mathcal{A}(\mathsf{pk}) = \mathsf{sk}\right] \leq \varepsilon_1 (1-\varepsilon_2)
$$

then we can prove an average-case security guarantee:

For any t -time prover \mathcal{P}_* $_{\ast}$ that does not know the secret key

$$
\mathsf{Adv}^{\mathsf{ent}\text{-}\mathsf{auth}}(\mathcal{A}) = \Pr\Big[(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}: \mathcal{V}^{\mathcal{P}_*(\mathsf{pk})} = 1\Big] \leq 2\varepsilon_1 \enspace.
$$

Objective security guarantees

Schnorr identification scheme

If G is a DL group, then the Schnorr identification scheme is secure, where
the second websiting is seen used seen all massible wave of the seture Gene the success probability is averaged over all possible runs of the setup Gen.

Fiat-Shamir identification scheme

Assume that modulus n is chosen form a distribution $\mathcal N$ of RSA moduli
such that an average factorias is hard aver $\mathcal N$. Then the Fist Shamir such that on average factoring is hard over \mathcal{N} . Then the Fiat-Shamir identification scheme is secure, where the success probability is averagedover all possible runs of the setup Gen and over all choices of modulus $n.$