MTAT.07.003 Cryptology II

Entity Authentication

Sven Laur University of Tartu

Formal Syntax

Entity authentication

- ▷ The communication between the prover and verifier must be authentic.
- ▷ To establish electronic identity, Charlie must generate $(pk, sk) \leftarrow$ Gen and convinces others that the public information pk represents him.
- The entity authentication protocol must convince the verifier that his or her opponent possesses the secret sk.
- ▷ An entity authentication protocol is *functional* if an honest verifier \mathcal{V}_{pk} always accepts an honest prover \mathcal{P}_{sk} .

Classical impossibility results

Inherent limitations. Entity authentication is impossible

(i) **if** authenticated communication is unaffordable in the setup phase;

(ii) **if** authenticated communication is unaffordable in the second phase.

Proof. Man-in-the-middle attacks. Chess-master attacks.

Conclusions

- ▷ It is impossible to establish legal identity without physical measures.
- Any smart card is susceptible to physical attacks regardless of the cryptographic countermeasures used to authenticate transactions.
- Secure e-banking is impossible if the user does not have full control over the computing environment (secure e-banking is practically impossible).

Physical and legal identities

- Entity authentication is possible only if all participants have set up a network with authenticated communication links.
- A role of a entity authentication protocol is to establish a convincing bound between physical network address and legal identities.
- A same legal identity can be in many physical locations and move from one physical node to another node.

Challenge-Response Paradigm

Salted hashing

Global setup:

Authentication server \mathcal{V} outputs a description of a hash function h.

Entity creation:

A party \mathcal{P} chooses a password $\mathsf{sk} \leftarrow \{0,1\}^{\ell}$ and a nonce $r \leftarrow \{0,1\}^{k}$. The public authentication information is $\mathsf{pk} = (r,c)$ where $c \leftarrow h(\mathsf{sk},r)$.

Entity authentication:

To authenticate him- or herself, \mathcal{P} releases sk to the server \mathcal{V} who verifies that the hash value is correctly computed, i.e., c = h(sk, r).

Theorem. If h is (t, ε) -secure one-way function, then no t-time adversary \mathcal{A} without sk can succeed in the protocol with probability more than ε .

- ▷ There are no secure one-way functions for practical sizes of sk.
- ▷ A malicious server can completely break the security.

RSA based entity authentication

Global setup:

Authentication server $\boldsymbol{\mathcal{V}}$ fixes the minimal size of RSA keys.

Entity creation:

A party \mathfrak{P} runs a RSA key generation algorithm $(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}_{\mathrm{rsa}}$ and outputs the public key pk as the authenticating information.

Entity authentication:

- 1. \mathcal{V} creates a challenge $c \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m)$ for $m \leftarrow \mathcal{M}$ and sends c to \mathcal{P} .
- 2. \mathcal{P} sends back $\overline{m} \leftarrow \mathsf{Dec}_{\mathsf{sk}}(c)$.
- 3. \mathcal{V} accepts the proof if $m = \overline{m}$.

This protocol can be generalised for any public key cryptosystem. The general form of this protocol is known as *challenge-response protocol*. This mechanism provides explicit security guarantees in the TLS protocol.

The most powerful attack model

Consider a setting, where an adversary ${\mathcal A}$ can impersonate verifier ${\mathcal V}$

- \triangleright The adversary $\mathcal A$ can execute several protocol instances with the honest prover $\mathcal P$ in parallel to spoof the challenge protocol.
- \triangleright The adversary \mathcal{A} may use protocol messages arbitrarily as long as \mathcal{A} does not conduct the crossmaster attack.

Let us denote the corresponding success probability by

$$\mathsf{Adv}^{\mathsf{ent-auth}}(\mathcal{A}) = \Pr\left[(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}: \mathcal{V}^{\mathcal{A}} = 1\right] \ .$$

Corresponding security guarantees

Theorem. If a cryptosystem used in the challenge-response protocol is (t, ε) -IND-CCA2 secure, then for any t-time adversary \mathcal{A} the corresponding success probability $\operatorname{Adv}^{\operatorname{ent-auth}}(\mathcal{A}) \leq \frac{1}{|\mathcal{M}|} + \varepsilon$.

Proof. A honest prover acts as a decryption oracle.

The nature of the protocol

- ▷ The protocol proves only that the prover has access to the decryption oracle and therefore the prover must *possess* the secret key sk.
- The possession of the secret key sk does not imply the knowledge of it. For example, the secret key sk might be hardwired into a smart card.
- Usually, the inability to decrypt is a strictly stronger security requirement than the ability to find the secret key.
- ▷ *Knowledge* is permanent whereas *possession* can be temporal.

Proofs of knowledge

Schnorr identification protocol

The group $\mathbb{G} = \langle g \rangle$ must be a DL group with a prime cardinality q.

- \triangleright The secret key x is the discrete logarithm of y.
- \triangleright The verifier $\mathcal V$ is assumed to be semi-honest.
- \triangleright The prover \mathcal{P} is assumed to be potentially malicious.
- ▷ We consider only security in the standalone setting.

Zero-knowledge principle

Lucy should be equally *successful* in both experiments.

Simulation principle

Lucy should not be able to distinguish between these two experiments.

Zero-knowledge property

Theorem. If a *t*-time verifier \mathcal{V}_* is semi-honest in the Schnorr identification protocol, then there exists t + O(1)-algorithm \mathcal{V}_\circ that has the same output distribution as \mathcal{V}_* but do not interact with the prover \mathcal{P} .

Proof.

Consider a code wrapper S that chooses $\beta \leftarrow \mathbb{Z}_q$ and $\gamma \leftarrow \mathbb{Z}_q$ and computes $\alpha \leftarrow g^{\gamma} \cdot y^{-\beta}$ and outputs whatever \mathcal{V}_* outputs on the transcript (α, β, γ) . \triangleright If $x \neq 0$, then $\gamma = \beta + xk$ has indeed a uniform distribution. \triangleright For fixed β and γ , there exist only a single consistent value of α .

Rationale: Semi-honest verifier learns nothing from the interaction with the prover. The latter is known as *zero-knowledge* property.

Knowledge-extraction lemma

This property is known as *special-soundness*.

- \triangleright If adversary \mathcal{A} succeeds with probability 1, then we can extract the secret key x by rewinding \mathcal{A} to get two runs with a coinciding prefix α .
- \triangleright If adversary A succeeds with a non-zero probability ε , then we must use more advanced knowledge-extraction techniques.

Let A(r,c) be the output of the honest verifier $\mathcal{V}(c)$ that interacts with a potentially malicious prover $\mathcal{P}_*(r)$.

- \triangleright Then all matrix elements in the same row $A(r,\cdot)$ lead to same α value.
- \triangleright To extract the secret key sk, we must find two ones in the same row.
- \triangleright We can compute the entries of the matrix on the fly.

We derive the corresponding security guarantees a *bit later*.

Modified Fiat-Shamir identification protocol

All computations are done in \mathbb{Z}_n , where n is an RSA modulus.

- \triangleright The secret key s is a square root of v.
- \triangleright The verifier ${\mathcal V}$ is assumed to be semi-honest.
- \triangleright The prover $\mathcal P$ is assumed to be potentially malicious.
- ▷ We consider only security in the standalone setting.

Zero-knowledge property

Theorem. If a *t*-time verifier \mathcal{V}_* is semi-honest in the modified Fiat-Shamir identification protocol, then there exists t + O(1)-algorithm \mathcal{V}_\circ that has the same output distribution as \mathcal{V}_* but do not interact with the prover \mathcal{P} .

Proof.

Consider a code wrapper S that chooses $\beta \leftarrow \{0,1\}$, $\gamma \leftarrow \mathbb{Z}_n^*$, computes $\alpha \leftarrow v^{-\beta} \cdot \gamma^2$ and outputs whatever \mathcal{V}_* outputs on the transcript (α, β, γ) . \triangleright Since s is invertible, we can prove that $s \cdot \mathbb{Z}_n^* = \mathbb{Z}_n^*$ and $s^2 \cdot \mathbb{Z}_n^* = \mathbb{Z}_n^*$. As a result, γ is independent of β and has indeed a uniform distribution. \triangleright For fixed β and γ , there exist only a single consistent value of α .

Knowledge-extraction lemma

Theorem. The Fiat-Shamir protocol is specially sound.

Proof. Assume that a prover \mathcal{P}_* succeeds for both challenges $\beta \in \{0, 1\}$:

$$\gamma_0^2 = \alpha, \quad \gamma_1^2 = \alpha v \qquad \Longrightarrow \qquad \frac{\gamma_1}{\gamma_0} = \sqrt{v} .$$

The corresponding extractor construction \mathcal{K} :

- \triangleright Choose random coins r for \mathcal{P}_* .
- \triangleright Run the protocol with $\beta=0$ and record γ_0
- \triangleright Run the protocol with $\beta=1$ and record γ_1

$$\triangleright$$
 Return $\zeta = \frac{\gamma_1}{\gamma_0}$

Bound on success probability

Theorem. Let v and n be fixed. If a potentially malicious prover \mathcal{P}_* succeeds in the modified Fiat-Shamir protocol with probability $\varepsilon > \frac{1}{2}$, then the knowledge extractor $\mathcal{K}^{\mathcal{P}_*}$ returns \sqrt{v} with probability $\varepsilon - \frac{1}{2}$.

Proof. Consider the success matrix A(r,c) as before. Let p_1 denote the fraction rows that contain only single one and p_2 the fraction of rows that contain two ones. Then evidently $p_1 + p_2 \leq 1$ and $\frac{p_1}{2} + p_2 \geq \varepsilon$ and thus we can establish $p_2 \geq \varepsilon - \frac{1}{2}$. \Box

Rationale: The knowledge extraction succeeds in general only if the success probability of \mathcal{P}_* is above $\frac{1}{2}$. The value $\kappa = \frac{1}{2}$ is known as *knowledge error*.

Matrix Games

Classical algorithm

Task: Find two ones in a same row.

Rewind:

- 1. Probe random entries A(r,c) until A(r,c) = 1.
- 2. Store the matrix location (r, c).
- 3. Probe random entries $A(r, \overline{c})$ in the same row until $A(r, \overline{c}) = 1$.
- 4. Output the location triple (r, c, \overline{c}) .

Rewind-Exp:

- 1. Repeat the procedure Rewind until $c \neq \overline{c}$.
- 2. Use the knowledge-extraction lemma to extract sk.

Average-case running time

Theorem. If a $m \times n$ zero-one matrix A contains ε -fraction of nonzero entries, then the Rewind and Rewind-Exp algorithm make on average

$$\begin{aligned} \mathbf{E}[\text{probes}|\text{Rewind}] &= \frac{2}{\varepsilon}\\ \mathbf{E}[\text{probes}|\text{Rewind-Exp}] &= \frac{2}{\varepsilon-\kappa} \end{aligned}$$

probes where $\kappa = \frac{1}{n}$ is a *knowledge error*.

Proof. We prove this theorem in another lecture.

Strict time bounds

Markov's inequality assures that for a non-negative random variable probes

$$\Pr\left[\mathsf{probes} \ge \alpha\right] \le \frac{\mathbf{E}\left[\mathsf{probes}\right]}{\alpha}$$

and thus Rewind-Exp succeeds with probability at least $\frac{1}{2}$ after $\frac{4}{\varepsilon-\kappa}$ probes.

If we repeat the experiment ℓ times, we the failure probability goes to $2^{-\ell}$.

From Soundness to Security

Soundness and subjective security

Assume that we know a constructive proof:

If for fixed pk a potentially malicious t-time prover \mathcal{P}_* succeeds with probability $\varepsilon > \kappa$, then a knowledge extractor $\mathcal{K}^{\mathcal{P}}$ that runs in time $\tau(\varepsilon) = O(\frac{t}{\varepsilon - \kappa})$ outputs sk with probability $1 - \varepsilon_2$.

and we *believe*:

No human can create a $\tau(\varepsilon_1)$ -time algorithm that computes sk from pk with success probability at least $1 - \varepsilon_2$.

then it is *rational* to assume that:

No human without the knowledge of sk can create a algorithm \mathcal{P}_* that succeeds in the proof of knowledge with probability at least ε_1 .

Caveat: For each fixed pk, there exists a trivial algorithm that prints out sk. Hence, we cannot get objective security guarantees.

Soundness and objective security

Assume that we know a constructive proof:

If for a fixed pk a potentially malicious t-time prover \mathcal{P}_* succeeds with probability $\varepsilon > \kappa$, then a knowledge extractor $\mathcal{K}^{\mathcal{P}}$ that runs in time $\tau(\varepsilon) = O(\frac{t}{\varepsilon - \kappa})$ outputs sk with probability $1 - \varepsilon_2$.

and know a mathematical fact that any $au(2arepsilon_1)$ -time algorithm $\mathcal A$

$$\Pr\left[(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}: \mathcal{A}(\mathsf{pk}) = \mathsf{sk}\right] \le \varepsilon_1(1 - \varepsilon_2)$$

then we can prove an average-case security guarantee:

For any *t*-time prover \mathcal{P}_* that does not know the secret key

$$\mathsf{Adv}^{\mathsf{ent-auth}}(\mathcal{A}) = \Pr\left[(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}: \mathcal{V}^{\mathcal{P}_*(\mathsf{pk})} = 1\right] \le 2\varepsilon_1$$

Objective security guarantees

Schnorr identification scheme

If \mathbb{G} is a DL group, then the Schnorr identification scheme is secure, where the success probability is averaged over all possible runs of the setup Gen.

Fiat-Shamir identification scheme

Assume that modulus n is chosen form a distribution \mathcal{N} of RSA moduli such that on average factoring is hard over \mathcal{N} . Then the Fiat-Shamir identification scheme is secure, where the success probability is averaged over all possible runs of the setup Gen and over all choices of modulus n.