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Formal Syntax



Entity authentication

(sk, pk)← Gen
pk

· · ·

α1

β1

αk

βi ← Vpk(α1, . . . , αi−1) αi ← Psk(β1, . . . , βi−1)

Is it Charlie?

⊲ The communication between the prover and verifier must be authentic.

⊲ To establish electronic identity, Charlie must generate (pk, sk) ← Gen
and convinces others that the public information pk represents him.

⊲ The entity authentication protocol must convince the verifier that his or
her opponent possesses the secret sk.

⊲ An entity authentication protocol is functional if an honest verifier Vpk

always accepts an honest prover Psk.
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Classical impossibility results

Inherent limitations. Entity authentication is impossible

(i) if authenticated communication is unaffordable in the setup phase;

(ii) if authenticated communication is unaffordable in the second phase.

Proof. Man-in-the-middle attacks. Chess-master attacks.

Conclusions

⊲ It is impossible to establish legal identity without physical measures.

⊲ Any smart card is susceptible to physical attacks regardless of the
cryptographic countermeasures used to authenticate transactions.

⊲ Secure e-banking is impossible if the user does not have full control over
the computing environment (secure e-banking is practically impossible).
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Physical and legal identities

1.1.11.3 1.1.11.5

1.1.10.2

1.1.10.1 1.1.10.3

⊲ Entity authentication is possible only if all participants have set up a
network with authenticated communication links.

⊲ A role of a entity authentication protocol is to establish a convincing
bound between physical network address and legal identities.

⊲ A same legal identity can be in many physical locations and move from
one physical node to another node.
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Challenge-Response

Paradigm



Salted hashing

Global setup:

Authentication server V outputs a description of a hash function h.

Entity creation:

A party P chooses a password sk←u {0, 1}ℓ and a nonce r ←u {0, 1}k. The
public authentication information is pk = (r, c) where c← h(sk, r).

Entity authentication:

To authenticate him- or herself, P releases sk to the server V who verifies
that the hash value is correctly computed, i.e., c = h(sk, r).

Theorem. If h is (t, ε)-secure one-way function, then no t-time adversary
A without sk can succeed in the protocol with probability more than ε.

⊲ There are no secure one-way functions for practical sizes of sk.

⊲ A malicious server can completely break the security.
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RSA based entity authentication

Global setup:

Authentication server V fixes the minimal size of RSA keys.

Entity creation:

A party P runs a RSA key generation algorithm (pk, sk) ← Genrsa and
outputs the public key pk as the authenticating information.

Entity authentication:

1. V creates a challenge c← Encpk(m) for m←u M and sends c to P.

2. P sends back m← Decsk(c).

3. V accepts the proof if m = m.

This protocol can be generalised for any public key cryptosystem.
The general form of this protocol is known as challenge-response protocol.
This mechanism provides explicit security guarantees in the TLS protocol.
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The most powerful attack model

pk

Is it Charlie?

pk
sk

sk

sk

Consider a setting, where an adversary A can impersonate verifier V

⊲ The adversary A can execute several protocol instances with the honest
prover P in parallel to spoof the challenge protocol.

⊲ The adversary A may use protocol messages arbitrarily as long as A does
not conduct the crossmaster attack.

Let us denote the corresponding success probability by

Advent-auth(A) = Pr [(pk, sk)← Gen : V
A = 1] .
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Corresponding security guarantees

Theorem. If a cryptosystem used in the challenge-response protocol is
(t, ε)-IND-CCA2 secure, then for any t-time adversary A the corresponding
success probability Advent-auth(A) ≤ 1

|M| + ε.

Proof. A honest prover acts as a decryption oracle.

The nature of the protocol

⊲ The protocol proves only that the prover has access to the decryption
oracle and therefore the prover must possess the secret key sk.

⊲ The possession of the secret key sk does not imply the knowledge of it.
For example, the secret key sk might be hardwired into a smart card.

⊲ Usually, the inability to decrypt is a strictly stronger security requirement
than the ability to find the secret key.

⊲ Knowledge is permanent whereas possession can be temporal.
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Proofs of knowledge



Schnorr identification protocol

y = gx x ∈ Zq

β ←u Zq k ←u Zqα = gk

β

γ = k + βx

gγ = gkgβx ?
= αyβ

The group G = 〈g〉 must be a DL group with a prime cardinality q.

⊲ The secret key x is the discrete logarithm of y.

⊲ The verifier V is assumed to be semi-honest.

⊲ The prover P is assumed to be potentially malicious.

⊲ We consider only security in the standalone setting.
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Zero-knowledge principle

sk pk
α(sk)

β

γ(sk, α, β)

Even if Lucy is honest

⊲ she might learn something
about the secret sk.

since

⊲ messages α and γ depend
on the secret sk.

sk pk

If Lucy does not interact with
Charlie then nothing about
the secret sk is revealed

Lucy should be equally successful in both experiments.
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Simulation principle

sk pk
α(sk)

β

γ(sk, α, β)

Even if Lucy is honest

⊲ she might learn something
about the secret sk.

since

⊲ messages α and γ depend
on the secret sk.

sk pkpk, β
α(β)

β

γ(α, β)

Since Lucy is honest the value
of β is known by her before
the protocol and Snoopy can
use pk and β to simulate the
other messages.

Lucy should not be able to distinguish between these two experiments.
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Zero-knowledge property

Theorem. If a t-time verifier V∗ is semi-honest in the Schnorr identification
protocol, then there exists t + O(1)-algorithm V◦ that has the same output
distribution as V∗ but do not interact with the prover P.

Proof.

Consider a code wrapper S that chooses β ←u Zq and γ ←u Zq and computes
α← gγ · y−β and outputs whatever V∗ outputs on the transcript (α, β, γ).

⊲ If x 6= 0, then γ = β + xk has indeed a uniform distribution.

⊲ For fixed β and γ, there exist only a single consistent value of α.

�

Rationale: Semi-honest verifier learns nothing from the interaction with
the prover. The latter is known as zero-knowledge property.
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Knowledge-extraction lemma

α = gk

γ = k + βx γ′ = k + β′x

β β′

We can extract the secret key x = γ−γ′

β−β′ .

Given two runs with a coinciding prefix α

This property is known as special-soundness.

⊲ If adversary A succeeds with probability 1, then we can extract the secret
key x by rewinding A to get two runs with a coinciding prefix α.

⊲ If adversary A succeeds with a non-zero probability ε, then we must use
more advanced knowledge-extraction techniques.
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Find two ones in a row

V(c) P∗(r)

Random tape
c1 c2 · · · cn . . .

Random tape
r1 r2 · · · rn . . .

1

0

α
β

γ

Let A(r, c) be the output of the honest verifier V(c) that interacts with a
potentially malicious prover P∗(r).

⊲ Then all matrix elements in the same row A(r, ·) lead to same α value.

⊲ To extract the secret key sk, we must find two ones in the same row.

⊲ We can compute the entries of the matrix on the fly.

We derive the corresponding security guarantees a bit later.
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Modified Fiat-Shamir identification protocol

v = s2 s ∈ Z∗
n

β ←u {0, 1} r ←u Z∗
nα = r2

β

γ = rsβ

γ2 = r2s2β ?
= αvβ

Halt if γ /∈ Z∗
n

All computations are done in Zn, where n is an RSA modulus.

⊲ The secret key s is a square root of v.

⊲ The verifier V is assumed to be semi-honest.

⊲ The prover P is assumed to be potentially malicious.

⊲ We consider only security in the standalone setting.
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Zero-knowledge property

Theorem. If a t-time verifier V∗ is semi-honest in the modified Fiat-Shamir
identification protocol, then there exists t+O(1)-algorithm V◦ that has the
same output distribution as V∗ but do not interact with the prover P.

Proof.

Consider a code wrapper S that chooses β ←u {0, 1}, γ ←u Z∗
n, computes

α← v−β · γ2 and outputs whatever V∗ outputs on the transcript (α, β, γ).

⊲ Since s is invertible, we can prove that s · Z∗
n = Z∗

n and s2 · Z∗
n = Z∗

n.
As a result, γ is independent of β and has indeed a uniform distribution.

⊲ For fixed β and γ, there exist only a single consistent value of α.

�
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Knowledge-extraction lemma

Theorem. The Fiat-Shamir protocol is specially sound.

Proof. Assume that a prover P∗ succeeds for both challenges β ∈ {0, 1}:

γ2
0 = α, γ2

1 = αv =⇒ γ1

γ0
=
√

v .

The corresponding extractor construction K:

⊲ Choose random coins r for P∗.

⊲ Run the protocol with β = 0 and record γ0

⊲ Run the protocol with β = 1 and record γ1

⊲ Return ζ = γ1
γ0
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Bound on success probability

Theorem. Let v and n be fixed. If a potentially malicious prover P∗

succeeds in the modified Fiat-Shamir protocol with probability ε > 1
2, then

the knowledge extractor KP∗ returns
√

v with probability ε− 1
2.

Proof. Consider the success matrix A(r, c) as before. Let p1 denote the
fraction rows that contain only single one and p2 the fraction of rows that
contain two ones. Then evidently p1 + p2 ≤ 1 and p1

2 + p2 ≥ ε and thus we
can establish p2 ≥ ε− 1

2. �

Rationale: The knowledge extraction succeeds in general only if the success
probability of P∗ is above 1

2. The value κ = 1
2 is known as knowledge error.
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Matrix Games



Classical algorithm

Task: Find two ones in a same row.

Rewind:

1. Probe random entries A(r, c) until A(r, c) = 1.

2. Store the matrix location (r, c).

3. Probe random entries A(r, c) in the same row until A(r, c) = 1.

4. Output the location triple (r, c, c).

Rewind-Exp:

1. Repeat the procedure Rewind until c 6= c.

2. Use the knowledge-extraction lemma to extract sk.
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Average-case running time

Theorem. If a m × n zero-one matrix A contains ε-fraction of nonzero
entries, then the Rewind and Rewind-Exp algorithm make on average

E[probes|Rewind] =
2

ε

E[probes|Rewind-Exp] =
2

ε− κ

probes where κ = 1
n

is a knowledge error.

Proof. We prove this theorem in another lecture.
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Strict time bounds

Markov’s inequality assures that for a non-negative random variable probes

Pr [probes ≥ α] ≤ E [probes]

α

and thus Rewind-Exp succeeds with probability at least 1
2 after 4

ε−κ
probes.

If we repeat the experiment ℓ times, we the failure probability goes to 2−ℓ.
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From Soundness to Security



Soundness and subjective security

Assume that we know a constructive proof:

If for fixed pk a potentially malicious t-time prover P∗ succeeds with
probability ε > κ, then a knowledge extractor KP that runs in time
τ(ε) = O

(

t
ε−κ

)

outputs sk with probability 1− ε2.

and we believe:

No human can create a τ(ε1)-time algorithm that computes sk from
pk with success probability at least 1− ε2.

then it is rational to assume that:

No human without the knowledge of sk can create a algorithm P∗

that succeeds in the proof of knowledge with probability at least ε1.

Caveat: For each fixed pk, there exists a trivial algorithm that prints out
sk. Hence, we cannot get objective security guarantees.
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Soundness and objective security

Assume that we know a constructive proof:

If for a fixed pk a potentially malicious t-time prover P∗ succeeds with
probability ε > κ, then a knowledge extractor KP that runs in time
τ(ε) = O

(

t
ε−κ

)

outputs sk with probability 1− ε2.

and know a mathematical fact that any τ(2ε1)-time algorithm A

Pr [(pk, sk)← Gen : A(pk) = sk] ≤ ε1(1− ε2)

then we can prove an average-case security guarantee:

For any t-time prover P∗ that does not know the secret key

Advent-auth(A) = Pr
[

(pk, sk)← Gen : V
P∗(pk) = 1

]

≤ 2ε1 .
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Objective security guarantees

Schnorr identification scheme

If G is a DL group, then the Schnorr identification scheme is secure, where
the success probability is averaged over all possible runs of the setup Gen.

Fiat-Shamir identification scheme

Assume that modulus n is chosen form a distribution N of RSA moduli
such that on average factoring is hard over N . Then the Fiat-Shamir
identification scheme is secure, where the success probability is averaged
over all possible runs of the setup Gen and over all choices of modulus n.

MTAT.07.003 Cryptology II, Entity Authentication, 1 April, 2009 23


