Formal Security Definition

Recall that a keyed hash function $h: \mathcal{M} \times \mathcal{K} \to \mathcal{T}$ is a (t, q, ε) -secure message authentication code if any t-time adversary \mathcal{A} :

$$\mathsf{Adv}_h^{\mathsf{mac}}(\mathcal{A}) = \Pr\left[\mathcal{G}^{\mathcal{A}} = 1\right] \le \varepsilon$$
,

where the security game is following

$$\mathcal{G}^{\mathcal{A}}$$

$$\begin{bmatrix} k \leftarrow_{u} \mathcal{K} \\ \text{For } i \in \{1, \dots, q\} \text{ do} \\ [\text{ Given } m_{i} \leftarrow \mathcal{A} \text{ send } t_{i} \leftarrow h(m_{i}, k) \text{ back to } \mathcal{A} \\ (m, t) \leftarrow \mathcal{A} \\ \text{return } [t \stackrel{?}{=} h(m, k)] \wedge [(m, t) \notin \{(m_{1}, t_{1}), \dots, (m_{q}, t_{q})\}] \end{bmatrix}$$

Applications of Message Authetication Codes

- 1. Although a good message authentication code $h: \mathcal{M} \times \mathcal{K} \to \mathcal{T}$ protects against impersonation and substitution attacks, it does not guarantee security against reflection and interleaving attacks.
 - (a) Show that message authentication protocol, where \mathcal{P}_1 sends m and the corresponding authentication tag $t \leftarrow h(m,k)$ to \mathcal{P}_2 , is not secure if we want to send several messages.
 - (b) Construct a protocol for authenticated communication that preserves message order and handles bidirectional message transfer.
 - (c) Construct a similar protocol without an internal state. Use random nonces $r_i \leftarrow \mathcal{R}$ to guarantee that messages arrive in correct order.
 - (d) What are the advantages and disadvantages of stateful and stateless protocols for authenticated communication?
- 2. Let ($\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec}$) be a IND-CPA secure symmetric encryption scheme and let h be a secure message authentication code with the appropriate message and key domains. Show that the following protection methods assure IND-CCA2 security:

(a) first encrypt and then authenticate

$$\begin{array}{ll} \mathsf{Auth\text{-}Enc}_{\mathsf{sk},k}(m) & \mathsf{Auth\text{-}Dec}_{\mathsf{sk},k}(c_1,c_2) \\ \\ \begin{bmatrix} c_1 \leftarrow \mathsf{Enc}_{\mathsf{sk}}(m) & & & \\ c_2 \leftarrow h(c_1,k) & & \\ \mathbf{return} \ (c_1,c_2) & & \\ \end{bmatrix} \text{ if } c_2 \neq h(c_1,k) \text{ then } \mathbf{return} \perp \\ \\ \mathsf{else} \ \mathbf{return} \ \mathsf{Dec}_{\mathsf{sk}}(c_1) \\ \\ \end{array}$$

(b) first authenticate and then encrypt

(c) What are the advantages and drawbacks of both approaches? Why the construction does not generalise to public key cryptosystems?

Common Message Authentication Codes

3. A keyed hash function $h: \mathcal{M} \times \mathcal{K} \to \mathcal{T}$ is (t, q, ε) -weakly collision resistant if any t-time adversary \mathcal{A} that makes at most q oracle queries finds a collision with probability

$$\mathsf{Adv}^{\mathsf{w\text{-}cr}}_h(\mathcal{A}) = \Pr\left[\mathcal{G}^{\mathcal{A}} = 1\right] \leq \varepsilon$$

where the security game is defined as follows

$$\mathcal{G}^{\mathcal{A}}$$
For $i \in \{1, ..., q\}$ do

[Given $m_i \leftarrow \mathcal{A}$ send $t_i \leftarrow h(m_i, k)$ back to \mathcal{A} .

[$(m_0, m_1) \leftarrow \mathcal{A}$

return $[m_0 \neq m_1] \wedge [h(m_0, k) = h(m_1, k)]$

(a) Let $h: \mathcal{M}^* \times \mathcal{K}_1 \to \mathcal{M}_2$ and $f: \mathcal{M}_2 \times \mathcal{K}_2 \to \mathcal{T}$ be keyed hash functions such that h is (t, q_1, ε_1) -weakly collision resistant and f is (t, q_2, ε_2) -secure message authentication code. Show that the NMAC construction

$$NMAC_{f,h}(m, k_1, k_2) = f(h(m, k_1), k_2)$$

is secure message authentication code.

- (b) Analyse the NMAC construction under the assumption that that h is (t, q_1, ε_1) -weakly collision resistant and $\mathcal{F} = \{f_k\}$ where $f_k(x) = f(x, k)$ is (t, q_2, ε_2) -pseudorandom function family.
- (?) The NMAC construction is often instantiated with a single cryptographic hash function $h: \{0,1\}^* \to \{0,1\}^{256}$ by defining $f(m,k_1) = h(k_1||42||m)$ and $g(m,k_2) = h(k_2||13||m)$. Is this construction secure?

Hint: Write down the corresponding security game. What happens if the adversary provides a message m that creates a collision $h(m, k) = h(m_i, k)$ as an answer? How probable this event can be?

4. A keyed hash function $h: \mathcal{M} \times \mathcal{K} \to \mathcal{T}$ is ε_1 -almost universal if for all distinct message pairs $m_0 \neq m_1$ the collision probability is bounded

$$\Pr[k \leftarrow_{\overline{u}} \mathcal{K} : h(m_0, k) = h(m_1, k)] \leq \varepsilon_1$$
.

Prove that hybrid-MAC construction

HYB-MAC_{f,h}
$$(m, k_1, k_2) = f(h(m, k_1), k_2)$$

is secure message authentication code if $\mathcal{F} = \{f_{k_2}\}_{k_2 \in \mathcal{K}_2}$ is (t, q, ε_2) -pseudorandom function family and $h: \mathcal{M} \times \mathcal{K}_2 \to \mathcal{T}$ is ε_1 -almost universal. What are the corresponding security guarantees?

Hints: Write down the corresponding security game. Unroll the for cycle. Replace f with a random function. Replace t_i with randomly chosen element of \mathcal{T} when possible. Most importantly, treat the cases when f is evaluated several times at the same argument correctly. What is the main difference in the security analysis compared to the previous exercise?

- 5. The polynomial message authentication code is secure only if we do not reuse the authentication key. Construct a modified stateful authentication code that allows us to use the same key for many messages. You can use the AES block cipher as a (t, ε) -pseudorandom permutation:
 - (a) use the AES cipher to build hybrid-MAC;
 - (b) use the AES cipher to stretch the initial key.

Give the corresponding security proofs.

6. Let $\mathcal{F} \subseteq \{f : \mathcal{M} \to \mathcal{M}\}$ be a pseudorandom function family. Then we can use the CBC-MAC construction to stretch the input domain:

$$f^{(k)}(m_1,\ldots,m_k) = f(f(\cdots f(f(m_1)+m_2)+\cdots+m_{k-1})+m_k)$$
,

provided that $(\mathcal{M}, +)$ is a commutative group. Prove the following facts about CBC-MAC construction.

- (a) If f is (t, q, ε) -pseudorandom function, then $f^{(k)}: \mathcal{M}^k \to \mathcal{M}$ is also pseudorandom function. Find the corresponding security guarantees. **Hint:** Write down the corresponding security game and simplify the evaluation of $f^{(k)}$ until all intermediate values are chosen uniformly from \mathcal{M} . Compute the probability of collisions.
- (b) Let $f^{(*)}: \mathcal{M}^* \to \mathcal{M}$ be a natural extension for variable input lengths, i.e., $f^{(*)}(m_1, \ldots, m_k) = f^{(k)}(m_1, \ldots, m_k)$ for any $k \in \mathbb{N}$. Prove that $f^{(*)}$ is not a pseudorandom function. Give a corresponding distinguisher that makes only 3 oracle calls.
- (c) Can we use CBC-MAC as an message authentication code?
- 7. The hybrid hybrid CBC-MAC construction is following

Hyb-Cbc-Mac
$$(m, f_1, f_2) = f_2(f_1^{(*)}(m))$$
 for $f_1 \in \mathcal{F}_1, f_2 \in \mathcal{F}_2$,

where \mathcal{F}_1 and \mathcal{F}_2 be a pseudorandom permutation families. Show that the Hyb-Cbc-Mac construction is secure message authentication code even for variable input lengths. What is the role of f_2 ?