MTAT.07.003 Cryptology II

Commitment Schemes

Sven Laur University of Tartu

Formal Syntax

Canonical use case

- A randomised key generation algorithm Gen outputs a *public parameters* pk that must be authentically transferred all participants.
- \triangleright A commitment function $Com_{pk} : \mathcal{M} \to \mathcal{C} \times \mathcal{D}$ takes in a *plaintext* and outputs a corresponding *digest* c and decommitment string d.
- $\triangleright \text{ A commitment can be opened with } \mathsf{Open}_{\mathsf{pk}} : \mathcal{C} \times \mathcal{D} \to \mathcal{M} \cup \{\bot\}.$
- \triangleright The commitment primitive is *functional* if for all $\mathsf{pk} \leftarrow \mathsf{Gen}$ and $m \in \mathcal{M}$:

$$\operatorname{Open}_{\mathsf{pk}}(\operatorname{Com}_{\mathsf{pk}}(m)) = m$$
 .

Binding property

A commitment scheme is (t, ε) -*binding* if for any *t*-time adversary \mathcal{A} :

$$\operatorname{Adv}^{\operatorname{bind}}(\mathcal{A}) = \Pr\left[\mathcal{G}^{\mathcal{A}} = 1\right] \leq \varepsilon$$
,

where the challenge game is following

$$\mathcal{G}^{\mathcal{A}}$$

$$\begin{bmatrix} \mathsf{pk} \leftarrow \mathsf{Gen} \\ (c, d_0, d_1) \leftarrow \mathcal{A}(\mathsf{pk}) \\ m_i \leftarrow \mathsf{Open}_{\mathsf{pk}}(c, d_i) \mathsf{for} \ i = 0, 1 \\ \mathsf{if} \ m_0 = \bot \ \mathsf{or} \ m_1 = \bot \ \mathsf{then} \ \mathsf{return} \ 0 \\ \mathsf{else} \ \mathsf{return} \ \neg [m_0 \stackrel{?}{=} m_1] \end{bmatrix}$$

Collision resistant hash functions

A function family \mathcal{H} is (t, ε) -collision resistant if for any t-time adversary \mathcal{A} :

$$\mathsf{Adv}_{\mathcal{H}}^{\mathsf{cr}}(\mathcal{A}) = \Pr\left[\mathcal{G}^{\mathcal{A}} = 1\right] \leq \varepsilon$$
,

where the challenge game is following

$$\mathcal{G}^{\mathcal{A}}$$

$$\begin{bmatrix} h \leftarrow_{\overline{u}} \mathcal{H} \\ (m_0, m_1) \leftarrow \mathcal{A}(h) \\ \text{if } m_0 = m_1 \text{ then return } 0 \\ \text{else return } [h(m_0) \stackrel{?}{=} h(m_1) \end{bmatrix}$$

Hash commitments

Let \mathcal{H} be (t, ε) -collision resistant hash function family. Then we can construct a binding commitment:

- \triangleright The setup algorithm returns $h \leftarrow \mathcal{H}$ as a public parameter.
- \triangleright To commit *m*, return h(m) as digest and *m* as a decommitment string.
- \triangleright The message m is a valid opening of c if h(m) = c.

Usage

- ▷ Integrity check for files and file systems in general.
- ▷ Minimisation of memory footprint in servers:
 - 1. A server stores the hash $c \leftarrow h(m)$ of an initial application data m.
 - 2. Data is stored by potentially malicious clients.
 - 3. Provided data m' is correct if h(m') = c.

Hiding property

A commitment scheme is (t, ε) -*hiding* if for any *t*-time adversary \mathcal{A} :

$$\mathsf{Adv}^{\mathsf{hid}}(\mathcal{A}) = \left| \Pr \left[\mathcal{G}_0^{\mathcal{A}} = 1 \right] - \Pr \left[\mathcal{G}_1^{\mathcal{A}} = 1 \right] \right| \le \varepsilon \ ,$$

where

$$\begin{aligned} \mathcal{G}_{0}^{\mathcal{A}} & \mathcal{G}_{1}^{\mathcal{A}} \\ \begin{bmatrix} \mathsf{pk} \leftarrow \mathsf{Gen} & \\ (m_{0}, m_{1}) \leftarrow \mathcal{A}(\mathsf{pk}) & \\ (c, d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(m_{0}) & \\ \mathsf{return} \ \mathcal{A}(c) & \\ \end{aligned} } \\ \begin{bmatrix} \mathsf{pk} \leftarrow \mathsf{Gen} & \\ (m_{0}, m_{1}) \leftarrow \mathcal{A}(\mathsf{pk}) & \\ (c, d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(m_{1}) & \\ \mathsf{return} \ \mathcal{A}(c) & \\ \end{aligned}$$

Any cryptosystem is a commitment scheme

Setup:

Compute $(pk, sk) \leftarrow$ Gen and delete sk and output pk.

Commitment:

To commit m, sample necessary randomness $r \leftarrow \mathcal{R}$ and output:

$$\begin{cases} c \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m;r) \\ d \leftarrow (m,r) \end{cases}.$$

Opening:

A tuple (c, m, r) is a valid decommitment of m if $c = \text{Enc}_{pk}(m; r)$.

Security guarantees

If a cryptosystem is (t, ε) -IND-CPA secure and functional, then the resulting commitment scheme is (t, ε) -hiding and perfectly binding.

- ◊ We can construct commitment schemes from the ElGamal and Goldwasser-Micali cryptosystems.
- ◇ For the ElGamal cryptosystem, one can create public parameters pk without the knowledge of the secret key sk.
- ◊ The knowledge of the secret key sk allows a participant to extract messages from the commitments.
- ♦ The extractability property is useful in security proofs.

Simple Commitment Schemes

Modified Naor commitment scheme

Setup:

Choose a random *n*-bit string $\mathsf{pk} \leftarrow \{0,1\}^n$. Let $f : \{0,1\}^k \to \{0,1\}^n$ be a pseudorandom generator.

Commitment:

To commit $m \in \{0,1\}$, generate $d \leftarrow \{0,1\}^k$ and compute digest

$$c \leftarrow \begin{cases} f(d), & \text{if } m = 0 \\ f(d) \oplus \mathsf{pk}, & \text{if } m = 1 \end{cases}.$$

Opening:

Given
$$(c,d)$$
 check whether $c = f(d)$ or $c = f(d) \oplus \mathsf{pk}$.

MTAT.07.003 Cryptology II, Commitment Schemes, 25 March, 2009

Security guarantees

If $f : \{0,1\}^k \to \{0,1\}^n$ is (t,ε) -secure pseudorandom generator, then the modified Naor commitment scheme is $(t, 2\varepsilon)$ -hiding and 2^{2k-n} -binding.

Proof

Hiding claim is obvious, since we can change f(d) with uniform distribution. For the binding bound note that

$$|\mathcal{PK}_{\text{bad}}| = \# \{ \mathsf{pk} : \exists d_0, d_1 : f(d_0) \oplus f(d_1) = \mathsf{pk} \} \le 2^{2k}$$
$$|\mathcal{PK}_{\text{all}}| = \# \{0, 1\}^n = 2^n$$

and thus

$$\operatorname{Adv}^{\operatorname{bind}}(\mathcal{A}) \leq \Pr\left[\operatorname{pk} \in \mathcal{PK}_{\operatorname{bad}}\right] \leq 2^{2k-n}$$

Discrete logarithm

Let $\mathbb{G} = \langle g \rangle$ be a q-element group that is generated by a single element g. Then for any $y \in \mathbb{G}$ there exists a minimal value $0 \le x \le q$ such that

$$g^x = y \quad \Leftrightarrow \quad x = \log_g y \;.$$

A group \mathbb{G} is (t, ε) -secure *DL* group if for any *t*-time adversary \mathcal{A}

$$\operatorname{\mathsf{Adv}}^{\operatorname{\mathsf{dl}}}_{\mathbb{G}}(\mathcal{A}) = \Pr\left[\mathcal{G}^{\mathcal{A}} = 1\right] \leq \varepsilon$$
,

where

$$\mathcal{G}^{\mathcal{A}} \begin{bmatrix} y \leftarrow_{\overline{u}} \mathbb{G} \\ x \leftarrow \mathcal{A}(y) \\ \mathbf{return} \ [g^x \stackrel{?}{=} y] \end{bmatrix}$$

Pedersen commitment scheme

Setup:

Let q be a prime and let $\mathbb{G} = \langle g \rangle$ be a q-element DL-group. Choose y uniformly from $\mathbb{G} \setminus \{1\}$ and set $\mathsf{pk} \leftarrow (g, y)$.

Commitment:

To commit $m \in \mathbb{Z}_q$, choose $r \leftarrow \mathbb{Z}_q$ and output

$$\begin{cases} c \leftarrow g^m y^r \\ d \leftarrow (m, r) \end{cases}.$$

Opening:

A tuple (c, m, r) is a valid decommitment for m if $c = g^m y^r$.

Security guarantees

Assume that \mathbb{G} is (t, ε) -secure discrete logarithm group. Then the Pedersen commitment is perfectly hiding and (t, ε) -binding commitment scheme.

Proof

- \triangleright HIDING. The factor y^r has uniform distribution over \mathbb{G} , since $y^r = g^{xr}$ for $x \neq 0$ and \mathbb{Z}_q is simple ring: $x \cdot \mathbb{Z}_q = \mathbb{Z}_q$.
- \triangleright BINDING. A valid double opening reveals a discrete logarithm of y:

$$g^{m_0}y^{r_0} = g^{m_1}y^{r_1} \quad \Leftrightarrow \quad \log_g y = \frac{m_1 - m_0}{r_0 - r_1}$$

Note that $r_0 \neq r_1$ for valid double opening. Hence, a double opener \mathcal{A} can be converted to a solver of discrete logarithm.

Other Useful Properties

Extractability

A commitment scheme is (t, ε) -*extractable* if there exists a modified setup procedure $(pk, sk) \leftarrow Gen^*$ such that

- ▷ the distribution of public parameters **pk** coincides with the original setup;
- $\triangleright \text{ there exists an efficient extraction function } \mathsf{Extr}_{\mathsf{sk}} : \mathcal{C} \to \mathcal{M} \text{ such that for any } t\text{-time adversary } \mathsf{Adv}^{\mathsf{ext}}(\mathcal{A}) = \Pr\left[\mathcal{G}^{\mathcal{A}} = 1\right] \leq \varepsilon \text{ where}$

$$\mathcal{G}^{\mathcal{A}} \begin{bmatrix} (\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Gen}^* \\ (c, d) \leftarrow \mathcal{A}(\mathsf{pk}) \\ \mathsf{if} \ \mathsf{Open}_{\mathsf{pk}}(c, d) = \bot \mathsf{then} \ \mathsf{return} \ 0 \\ \mathsf{else} \ \mathsf{return} \ \neg[\mathsf{Open}_{\mathsf{pk}}(c, d) \stackrel{?}{=} \mathsf{Extr}_{\mathsf{sk}}(c) \end{bmatrix}$$

Equivocability

A commitment scheme is *equivocable* if there exists

- $\triangleright \text{ a modified setup procedure } (\mathsf{pk}, \mathsf{sk}) \gets \mathsf{Gen}^*$
- $\triangleright \text{ a modified fake commitment procedure } (\hat{c}, \sigma) \leftarrow \mathsf{Com}_{\mathsf{sk}}^*$
- \triangleright an efficient equivocation algorithm $\hat{d} \leftarrow \mathsf{Equiv}_{\mathsf{sk}}(\hat{c},\sigma,m)$ such that
- ▷ the distribution of public parameters **pk** coincides with the original setup;
- $\triangleright\,$ fake commitments \hat{c} are indistinguishable from real commitments
- $\triangleright\,$ fake commitments \hat{c} can be opened to arbitrary values

$$\forall m \in \mathcal{M}, (\hat{c}, \sigma) \leftarrow \mathsf{Com}_{\mathsf{sk}}^*, \hat{d} \leftarrow \mathsf{Equiv}_{\mathsf{sk}}(\hat{c}, \sigma, m) : \mathsf{Open}_{\mathsf{pk}}(\hat{c}, \hat{d}) \equiv m \ .$$

▷ opening fake and real commitments are indistinguishable.

Formal security definition

A commitment scheme is (t, ε) -equivocable if for any t-time adversary \mathcal{A}

$$\mathsf{Adv}^{\mathsf{eqv}}(\mathcal{A}) = \left| \Pr\left[\mathcal{G}_0^{\mathcal{A}} = 1 \right] - \Pr\left[\mathcal{G}_1^{\mathcal{A}} = 1 \right] \right| \le \varepsilon \ ,$$

where

$\mathcal{G}_0^\mathcal{A}$	${\mathcal F}_1^{\mathcal A}$
<mark>∣pk</mark> ← Gen	$\left(pk,sk ight) \leftarrow Gen^*$
repeat	repeat
$\mid m_i \leftarrow \mathcal{A}$	$\left (c, \sigma) \leftarrow Com^*_{sk}, m_i \leftarrow \mathcal{A} \right $
$(c,d) \leftarrow Com_{pk}(m)$	$d \leftarrow Equiv_{sk}(c,\sigma,m)$
$ig $ Give (c,d) to ${\mathcal A}$	Give (c,d) to ${\mathcal A}$
until $m_i = ot$	until $m_i = ot$
return A	return A

A famous example

The Pedersen is perfectly equivocable commitment.

- \triangleright Setup. Generate $x \leftarrow \mathbb{Z}_q^*$ and set $y \leftarrow g^x$.
- \triangleright Fake commitment. Generate $s \leftarrow \mathbb{Z}_q$ and output $\hat{c} \leftarrow g^s$.
- \triangleright Equivocation. To open \hat{c} , compute $r \leftarrow (s m) \cdot x^{-1}$.

Proof

- \triangleright Commitment value c has uniform distribution.
- \triangleright For fixed c and m, there exists a unique value of r.

Equivocation leads to perfect simulation of (c, d) pairs.

Homomorphic commitments

A commitment scheme is \otimes -*homomorphic* if there exists an efficient coordinate-wise multiplication operation \cdot defined over C and D such that

 $\operatorname{Com}_{\mathsf{pk}}(m_1) \cdot \operatorname{Com}_{\mathsf{pk}}(m_2) \equiv \operatorname{Com}_{\mathsf{pk}}(m_1 \otimes m_2)$,

where the distributions coincide even if $Com_{pk}(m_1)$ is fixed.

Examples

- ▷ ElGamal commitment scheme
- Pedersen commitment scheme

Active Attacks

Non-malleability wrt opening

A commitment scheme is non-malleable wrt. opening if an adversary who knows the input distribution \mathcal{M}_0 cannot alter commitment and decommitment values c, d on the fly so that

 $\triangleright \mathcal{A}$ cannot *efficiently* open the altered commitment value \overline{c} to a message \overline{m} that is related to original message m.

Commitment c does not help the adversary to create other commitments.

MTAT.07.003 Cryptology II, Commitment Schemes, 25 March, 2009

Formal definition

 $\mathcal{G}_0^{\mathcal{A}}$

 $\mathcal{G}_1^\mathcal{A}$ $\begin{bmatrix}
\mathsf{pk} \leftarrow \mathsf{Gen} \\
\mathcal{M}_0 \leftarrow \mathcal{A}(\mathsf{pk}) \\
m \leftarrow \mathcal{M}_0, \quad \overline{m} \leftarrow \mathcal{M}_0 \\
(\overline{c}, \overline{d}) \leftarrow \mathsf{Com}_{\mathsf{pk}}(\overline{m}) \\
\pi(\cdot), \hat{c}_1, \dots, \hat{c}_n \leftarrow \mathcal{A}(\overline{c}) \\
\hat{d}_1, \dots \hat{d}_n \leftarrow \mathcal{A}(\overline{d})
\end{bmatrix}$ $\begin{bmatrix} \mathsf{pk} \leftarrow \mathsf{Gen} \\ \mathcal{M}_0 \leftarrow \mathcal{A}(\mathsf{pk}) \\ m \leftarrow \mathcal{M}_0 \\ (c, d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(m) \\ \pi(\cdot), \hat{c}_1, \dots, \hat{c}_n \leftarrow \mathcal{A}(c) \\ \hat{d}_1, \dots, \hat{d}_n \leftarrow \mathcal{A}(d) \\ \text{if } c \in \{\hat{c}_1, \dots, \hat{c}_n\} \text{ then return } 0 \\ \hat{m}_i \leftarrow \mathsf{Open}_{\mathsf{pk}}(\hat{c}_i, \hat{d}_i) \text{ for } i = 1, \dots, n \\ \text{return } \pi(m, \hat{m}_1, \dots, \hat{m}_n) \end{bmatrix} \begin{bmatrix} \mathsf{pk} \leftarrow \mathsf{Gen} \\ \mathcal{M}_0 \leftarrow \mathcal{A}(\mathsf{pk}) \\ m \leftarrow \mathcal{M}_0, \quad \overline{m} \leftarrow \mathcal{M}_0 \\ m \leftarrow \mathcal{M}_0, \quad \overline{m} \leftarrow \mathcal{M}_0 \\ (\overline{c}, \overline{d}) \leftarrow \mathsf{Com}_{\mathsf{pk}}(\overline{m}) \\ m \leftarrow \mathcal{M}_0, \quad \overline{m} \leftarrow \mathcal{M}_0 \\ (\overline{c}, \overline{d}) \leftarrow \mathsf{Com}_{\mathsf{pk}}(\overline{m}) \\ (\overline{c}, \overline{d}) \leftarrow \mathsf{Com}_{\mathsf{pk}}(\overline{m}) \\ (\overline{c}, \overline{d}) \leftarrow \mathsf{Com}_{\mathsf{pk}}(\overline{m}) \\ \pi(\cdot), \hat{c}_1, \dots, \hat{c}_n \leftarrow \mathcal{A}(\overline{d}) \\ \text{if } c \in \{\hat{c}_1, \dots, \hat{c}_n\} \text{ then return } 0 \\ \hat{m}_i \leftarrow \mathsf{Open}_{\mathsf{pk}}(\hat{c}_i, \hat{d}_i) \text{ for } i = 1, \dots, n \\ \mathsf{return } \pi(m, \hat{m}_1, \dots, \hat{m}_n) \end{bmatrix}$

Non-malleability wrt commitment

A commitment scheme is non-malleable wrt commitment if an adversary A_1 who knows the input distribution \mathcal{M}_0 cannot alter the commitment value c on the fly so that

 \triangleright an unbounded adversary \mathcal{A}_2 cannot open the altered commitment value \overline{c} to a message \overline{m} that is related to original message m.

Commitment c does not help the adversary to create other commitments even if some secret values are leaked after the creation of c and \overline{c} .

Homological classification

Can we define decommitment oracles such that the graph depicted above captures relations between various notions where

- ▷ NM1-XXX denotes non-malleability wrt opening,
- ▷ NM2-XXX denotes non-malleability wrt commitment.