MTAT.07.003 CRYPTOLOGY II

Commitment Schemes

Sven LaurUniversity of Tartu

Formal Syntax

Canonical use case

- ⊳ A randomised key generation algorithm Gen outputs a *public parameters* <mark>pk</mark> that must be authentically transferred all participants.
- \triangleright A commitment function $\mathsf{Com}_{\sf pk} : \mathcal{M} \to \mathcal{C} \times \mathcal{D}$ takes in a plaintext and outputs a corresponding \emph{digest} c and decommitment string $d.$
- ⊳ A commitment can be opened with $\mathsf{Open}_{\mathsf{pk}} : \mathcal{C} \times \mathcal{D} \rightarrow \mathcal{M} \cup \{\bot\}.$
- \triangleright The commitment primitive is *functional* if for all $\mathsf{pk} \leftarrow$ Gen and $m \in \mathcal{M}$:

 $\mathsf{Open}_{\mathsf{pk}}(\mathsf{Com}_{\mathsf{pk}}(m)) = m$.

Binding property

A commitment scheme is $(t,\varepsilon)\hbox{-}$ $\!$ binding if for any $t\hbox{-}$ time adversary $\mathcal A$:

$$
Adv^{\text{bind}}(\mathcal{A}) = \Pr\left[\mathcal{G}^{\mathcal{A}}=1\right] \leq \varepsilon \enspace ,
$$

where the challenge game is following

$$
\mathcal{G}^{\mathcal{A}}
$$
\n
$$
\begin{bmatrix}\n\mathbf{pk} \leftarrow \mathsf{Gen} \\
(c, d_0, d_1) \leftarrow \mathcal{A}(\mathsf{pk}) \\
m_i \leftarrow \mathsf{Open}_{\mathsf{pk}}(c, d_i) \mathsf{for } i = 0, 1 \\
\text{if } m_0 = \perp \text{ or } m_1 = \perp \text{ then return } 0 \\
\text{else return } \neg[m_0 \stackrel{?}{=} m_1]\n\end{bmatrix}
$$

Collision resistant hash functions

A function family ${\mathcal H}$ is (t,ε) -collision resistant if for any t -time adversary ${\mathcal A}$:

$$
\mathsf{Adv}^{\mathsf{cr}}_{\mathcal{H}}(\mathcal{A}) = \Pr\left[\mathcal{G}^{\mathcal{A}} = 1\right] \leq \varepsilon \enspace,
$$

where the challenge game is following

$$
\mathcal{G}^{\mathcal{A}}
$$
\n
$$
\begin{cases}\nh \leftarrow u \mathcal{H} \\
(m_0, m_1) \leftarrow \mathcal{A}(h) \\
\text{if } m_0 = m_1 \text{ then return } 0 \\
\text{else return } [h(m_0) \stackrel{?}{=} h(m_1)]\n\end{cases}
$$

Hash commitments

Let $\mathcal H$ be (t,ε) -collision resistant hash function family. Then we can
construct a binding commitment: construct ^a binding commitment:

- ⊲ The setup algorithm returns ^h [←]^u ^H as ^a public parameter.
- ⊳ To commit m , return $h(m)$ as digest and m as a decommitment string.
- \triangleright The message m is a valid opening of c if $h(m) = c$.

Usage

- \triangleright Integrity check for files and file systems in general.
- ⊲ Minimisation of memory footprint in servers:
	- 1. A server stores the hash $c \leftarrow h(m)$ of an initial application data m .
2. Data is stored by potentially malicious clients.
	-
	- 3. Provided data m' is correct if $h(m') = c$.

Hiding property

A commitment scheme is (t,ε) - h iding if for any t -time adversary ${\cal A}$:

$$
Adv^{\text{hid}}(\mathcal{A}) = \left| \Pr \left[\mathcal{G}_0^{\mathcal{A}} = 1 \right] - \Pr \left[\mathcal{G}_1^{\mathcal{A}} = 1 \right] \right| \leq \varepsilon ,
$$

where

$$
\mathcal{G}_0^{\mathcal{A}}
$$
\n
$$
\begin{bmatrix}\n\mathbf{pk} \leftarrow \mathsf{Gen} \\
(m_0, m_1) \leftarrow \mathcal{A}(\mathbf{pk}) \\
(c, d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(m_0)\n\end{bmatrix}\n\begin{bmatrix}\n\mathbf{pk} \leftarrow \mathsf{Gen} \\
(m_0, m_1) \leftarrow \mathcal{A}(\mathsf{pk}) \\
(c, d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(m_1)\n\end{bmatrix}
$$
\nreturn $\mathcal{A}(c)$ \nreturn $\mathcal{A}(c)$

Any cryptosystem is ^a commitment scheme

Setup:

 $\mathsf{Compute}\ (\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}$ and delete sk and output $\mathsf{pk}.$

Commitment:

To commit m , sample necessary randomness $r \leftarrow \mathcal{R}$ and output:

$$
\begin{cases} c \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m;r) ,\\ d \leftarrow (m,r) . \end{cases}
$$

Opening:

A tuple (c, m, r) is a valid decommitment of m if $c = \mathsf{Enc}_{\sf pk}(m; r)$.

Security guarantees

If a cryptosystem is (t,ε) -IND-CPA secure and functional, then the resulting commitment scheme is (t,ε) -hiding and perfectly binding.

- \diamond We can construct commitment schemes from the ElGamal and Goldwasser-Micali cryptosystems.
- \diamond For the ElGamal cryptosystem, one can create public parameters pk without the knowledge of the secret key <mark>sk</mark>.
- \diamond The knowledge of the secret key <mark>sk all</mark>ows a participant to extract messages from the commitments.
- \diamond The extractability property is useful in security proofs.

Simple Commitment Schemes

Modified Naor commitment scheme

Setup:

Choose a random n -bit string pk $\overline{\mathcal{H}}\left\{0,1\right\}^n$ Let $f: \left\{ 0, 1\right\}^{k} \rightarrow \left\{ 0, 1\right\}^{n}$ be a pseudorando . $\kappa \to \left\{ 0,1\right\} ^{n}$ be a pseudorandom generator.

Commitment:

To commit $m \in \{0,1\}$, generate $d \leftarrow \left\{0,1\right\}^k$ and compute digest

$$
c \leftarrow \begin{cases} f(d), & \text{if } m = 0, \\ f(d) \oplus \mathsf{pk}, & \text{if } m = 1. \end{cases}
$$

Opening:

Given
$$
(c, d)
$$
 check whether $c = f(d)$ or $c = f(d) \oplus pk$.

MTAT.07.003 Cryptology II, Commitment Schemes, ²⁵ March, ²⁰⁰⁹

Security guarantees

If $f: \{0,1\}^k \to \{0,1\}^n$ is (t,ε) -secure pseudorandom generator, then the modified Naor commitment scheme is $(t,2\varepsilon)$ -hiding and 2^{2k-n} -binding.

Proof

Hiding claim is obvious, since we can change $f(d)$ with uniform distribution. For the binding bound note that

$$
|\mathcal{PK}_{bad}| = \#\{pk : \exists d_0, d_1 : f(d_0) \oplus f(d_1) = pk\} \le 2^{2k}
$$

$$
|\mathcal{PK}_{all}| = \#\{0, 1\}^n = 2^n
$$

and thus

$$
\mathsf{Adv}^{\mathsf{bind}}(\mathcal{A}) \leq \Pr\left[\mathsf{pk} \in \mathcal{PK}_{\mathsf{bad}}\right] \leq 2^{2k-n}.
$$

Discrete logarithm

Let ^GLet $\mathbb{G} = \langle g \rangle$ be a q -element group that is generated by a single element g .
Then for any $y \in \mathbb{G}$ there exists a minimal value $0 \leq x \leq q$ such that

$$
g^x = y \quad \Leftrightarrow \quad x = \log_g y \enspace .
$$

A group $\mathbb G$ is (t,ε) -secure D L group if for any t -time adversary $\mathcal A$

$$
\mathsf{Adv}_{\mathbb{G}}^{\mathsf{dl}}(\mathcal{A}) = \Pr\left[\mathcal{G}^{\mathcal{A}}=1\right] \leq \varepsilon \enspace,
$$

where

$$
\mathcal{G}^{\mathcal{A}}
$$
\n
$$
\begin{bmatrix}\ny \leftarrow & \mathbb{G} \\
x \leftarrow & \mathcal{A}(y) \\
\text{return } [g^x \stackrel{?}{=} y]\n\end{bmatrix}
$$

Pedersen commitment scheme

Setup:

Let q be a prime and let $\mathbb{G}=\langle g\rangle$ be a q -element DL-group. Choose y uniformly from $\mathbb{G}\setminus\{1\}$ and set $\mathsf{pk} \leftarrow (g, y)$.

Commitment:

To commit $m\in\mathbb{Z}_q$, choose $r\leftarrow \mathbb{Z}_q$ and output

$$
\begin{cases} c \leftarrow g^m y^r, \\ d \leftarrow (m, r) \end{cases}
$$

Opening:

A tuple (c, m, r) is a valid decommitment for m if $c = g^m y^r$.

Security guarantees

Assume that $\mathbb G$ is (t,ε) -secure discrete logarithm group. Then the Pedersen commitment is perfectly hiding and (t,ε) -binding commitment scheme.

Proof

- \triangleright \Box HIDING. The factor y^r has uniform distribution over $\mathbb{G}% _r$, since $y^r=g^{xr}$ for $x\neq 0$ and \mathbb{Z}_q is simple ring: $x\cdot \mathbb{Z}_q=\mathbb{Z}_q.$
- ⊲ Binding. ^A valid double opening reveals ^a discrete logarithm of ^y:

$$
g^{m_0}y^{r_0} = g^{m_1}y^{r_1} \quad \Leftrightarrow \quad \log_g y = \frac{m_1 - m_0}{r_0 - r_1} \; .
$$

Note that $r_0\neq r_1$ for valid double opening. Hence, a double opener ${\mathcal A}$ can be converted to ^a solver of discrete logarithm.

Other Useful Properties

Extractability

A commitment scheme is (t,ε) - $\bm{extractable}$ if there exists a modified setup $\mathsf{procedure}\ (\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}^* \ \mathsf{such} \ \mathsf{that}$

- \triangleright the distribution of public parameters ${\sf pk}$ coincides with the original setup;
- ⊳ there exists an efficient extraction function $\mathsf{Extr}_{\mathsf{sk}} : \mathcal{C} \to \mathcal{M}$ such that for
any t -time adversary $\mathsf{Adv}^{\mathsf{ext}}(\mathcal{A}) = \Pr\left[\mathcal{G}^\mathcal{A}=1\right] < \varepsilon$ where any t-time adversary $\mathsf{Adv}^{\mathsf{ext}}(\mathcal{A}) = \Pr\left[\mathcal{G}^\mathcal{A} = 1\right] \leq \varepsilon$ where

$$
\mathcal{G}^{\mathcal{A}}
$$
\n
$$
\begin{cases}\n(\mathbf{pk}, \mathbf{sk}) \leftarrow \mathsf{Gen}^* \\
(c, d) \leftarrow \mathcal{A}(\mathbf{pk}) \\
\text{if } \mathsf{Open}_{\mathsf{pk}}(c, d) = \bot \text{ then } \mathsf{return } 0 \\
\text{else } \mathsf{return } \neg[\mathsf{Open}_{\mathsf{pk}}(c, d) \stackrel{?}{=} \mathsf{Extr}_{\mathsf{sk}}(c)]\n\end{cases}
$$

Equivocability

A commitment scheme is *equivocable* if there exists

- \triangleright a modified setup procedure $(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}^*$
- \triangleright a modified fake commitment procedure $(\hat{c}, \sigma) \leftarrow \mathsf{Com}^*_{\mathsf{sk}}$
- \triangleright an efficient equivocation algorithm $\hat{d} \leftarrow \mathsf{Equiv}_{\mathsf{sk}}(\hat{c}, \sigma, m)$ such that
- \triangleright the distribution of public parameters ${\sf pk}$ coincides with the original setup;
- \triangleright fake commitments \hat{c} are indistinguishable from real commitments
- \triangleright fake commitments \hat{c} can be opened to arbitrary values

$$
\forall m \in \mathcal{M}, (\hat{c}, \sigma) \leftarrow \mathsf{Com}^*_{\mathsf{sk}}, \hat{d} \leftarrow \mathsf{Equiv}_{\mathsf{sk}} (\hat{c}, \sigma, m) : \mathsf{Open}_{\mathsf{pk}} (\hat{c}, \hat{d}) \equiv m \enspace .
$$

 \triangleright opening fake and real commitments are indistinguishable.

Formal security definition

A commitment scheme is (t, ε) -equivocable if for any t -time adversary ${\mathcal{A}}$

$$
\mathsf{Adv}^{\mathsf{eqv}}(\mathcal{A}) = \left| \Pr \left[\mathcal{G}_0^{\mathcal{A}} = 1 \right] - \Pr \left[\mathcal{G}_1^{\mathcal{A}} = 1 \right] \right| \leq \varepsilon ,
$$

where

^A famous example

The Pedersen is perfectly equivocable commitment.

- ⊳ Setup. Generate $x \leftarrow \mathbb{Z}^*_q$ and set $y \leftarrow g^x$.
⊳ Fake commitment. Generate $s \leftarrow \mathbb{Z}_q$ and
- ⊳ Fake commitment. Generate $s \leftarrow \mathbb{Z}_q$ and output $\hat{c} \leftarrow g^s$.
⊳ Equivocation. To open \hat{c} . compute $r \leftarrow (s-m) \cdot x^{-1}$.
- ⊳ Equivocation. To open \hat{c} , compute $r \leftarrow (s-m) \cdot x^{-1}$.

Proof

- \triangleright Commitment value c has uniform distribution.
- \triangleright For fixed c and m , there exists a unique value of $r.$

Equivocation leads to perfect simulation of (c,d) pairs.

Homomorphic commitments

A commitment scheme is ⊗-*homomorphic* if there exists an efficient coordinate-wise multiplication operation \cdot defined over ${\cal C}$ and ${\cal D}$ such that

 $\mathsf{Com}_{\mathsf{pk}}(m_1)\cdot \mathsf{Com}_{\mathsf{pk}}(m_2) \equiv \mathsf{Com}_{\mathsf{pk}}(m_1 \otimes m_2)$,

where the distributions coincide even if $\mathsf{Com}_{\mathsf{pk}}(m_1)$ is fixed.

Examples

- ⊳ ElGamal commitment scheme
- ⊳ Pedersen commitment scheme

Active Attacks

Non-malleability wrt opening

^A commitment scheme is non-malleable wrt. opening if an adversarywho knows the input distribution \mathcal{M}_0 cannot alter commitment and decommitment values c,d on the fly so that

 \triangleright ${\mathcal A}$ cannot efficiently open the altered commitment value \overline{c} to a message $\rule{1.5mm}{0.6mm}$ \overline{m} that is related to original message $m.$

Commitment c does not help the adversary to create other commitments.

MTAT.07.003 Cryptology II, Commitment Schemes, ²⁵ March, ²⁰⁰⁹

Formal definition

 $\mathcal{G}_0^{\mathcal{A}}$ $\sqrt{2}$ $\overline{\mathsf{L}}$ <mark>pk ←</mark> Gen $\mathcal{M}_0 \leftarrow \mathcal{A}(\mathsf{pk})$ $m \leftarrow \mathcal{M}_0$ $(c,d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(m)$ $\pi(\cdot), \hat{c}_1, \ldots, \hat{c}_n \leftarrow \mathcal{A}(c)$ $\,d$ ˆ $d_1, \ldots d$ ˆ $d_n \leftarrow \mathcal{A}(d)$ if $c \in {\hat{c}_1, \ldots, \hat{c}_n}$ then return 0 $m \$ ˆ $\hat{a}_i \leftarrow \mathsf{Open}_{\mathsf{pk}}(\hat{c}_i, \hat{d})$ i,j for $i = 1, \ldots, n$ return $\pi(m, \hat{m}_1, \ldots, \hat{m}_n)$

$$
\mathcal{G}_{1}^{A}
$$
\n
$$
\begin{bmatrix}\n\mathsf{pk} \leftarrow \mathsf{Gen} \\
\mathcal{M}_{0} \leftarrow \mathcal{A}(\mathsf{pk}) \\
m \leftarrow \mathcal{M}_{0}, \overline{m} \leftarrow \mathcal{M}_{0} \\
\overline{c}, \overline{d} \right) \leftarrow \mathsf{Com}_{\mathsf{pk}}(\overline{m}) \\
\pi(\cdot), \hat{c}_{1}, \dots, \hat{c}_{n} \leftarrow \mathcal{A}(\overline{c}) \\
\hat{d}_{1}, \dots \hat{d}_{n} \leftarrow \mathcal{A}(\overline{d}) \\
\text{if } c \in \{\hat{c}_{1}, \dots, \hat{c}_{n}\} \text{ then return } 0 \\
\hat{m}_{i} \leftarrow \mathsf{Open}_{\mathsf{pk}}(\hat{c}_{i}, \hat{d}_{i}) \text{ for } i = 1, \dots, n \\
\text{return } \pi(m, \hat{m}_{1}, \dots, \hat{m}_{n})\n\end{bmatrix}
$$

Non-malleability wrt commitment

A commitment scheme is non-malleable wrt commitment if an adversary \mathcal{A}_1 who knows the input distribution \mathcal{M}_0 cannot alter the commitment value c on the fly so that

 \triangleright an unbounded adversary \mathcal{A}_2 cannot open the altered commitment value \overline{c} to a message \overline{m} that is related to original message $m.$

Commitment c does not help the adversary to create other commitments even if some secret values are leaked after the creation of c and $\overline{c}.$

Homological classification

Can we define decommitment oracles such that the grap^h depicted abovecaptures relations between various notions where

- \triangleright NM1-XXX denotes non-malleability wrt opening,
- \triangleright NM2-XXX denotes non-malleability wrt commitment.