### MTAT.07.003 Cryptology II

## **Message Authenitcation**

Sven Laur University of Tartu

# Formal Syntax

#### Symmetric message authentication



- ▷ A randomised *key generation algorithm* outputs a *secret key*  $sk \in K$  that must be transferred privately to the sender and to the receiver.
- ▷ A keyed hash function  $Mac_{sk} : \mathcal{M} \to \mathcal{T}$  takes in a *plaintext* and outputs a corresponding *digest* (also known as *hash value* or *tag*).
- $\triangleright$  A *verification algorithm* Ver<sub>sk</sub> :  $\mathcal{M} \times \mathcal{C} \rightarrow \{0, 1\}$  tries to distinguish between altered and original message pairs.
- $\label{eq:constraint} \begin{tabular}{ll} \begin{tabular}{ll} \mathsf{F} \begin{tabular}{ll} \mathsf{sh} \$

#### Two main attack types

**Substitution attacks.** An adversary substitutes (m, t) with a different message pair  $(\overline{m}, \overline{t})$ . An adversary succeeds in *deception* if

$$\operatorname{Ver}_{\mathsf{sk}}(\overline{m},\overline{t})=1$$
 and  $m\neq\overline{m}$ .

**Impersonation attacks.** An adversary tries to create a valid message pair  $(\overline{m}, \overline{t})$  without seeing any messages from the sender. An adversary succeeds in *deception* if

$$\mathsf{Ver}_{\mathsf{sk}}(\overline{m},\overline{t})=1$$

MTAT.07.003 Cryptology II, Message Authenitcation, 18 March, 2009

#### Maximal resistance against substitutions

For clarity, assume that  $\mathcal{M} = \{0, 1\}$ ,  $\mathcal{K} = \{0, 1, 2, 3\}$  and the key is chosen uniformly sk  $\leftarrow \mathcal{K}$ . Then the keyed hash function can be viewed as a table.

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | а | b | С | d |
| 1 | е | f | b | h |

If a, b, c and d are all different, then the pair (0, t) reveals the key sk and substitution becomes trivial. Hence, the optimal layout is following.

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | а | а | b | b |
| 1 | а | b | а | b |

#### Maximal resistance against impersonation

Again, assume that  $\mathcal{M} = \{0, 1\}$ ,  $\mathcal{K} = \{0, 1, 2, 3\}$  and  $\mathsf{sk} \leftarrow \mathcal{K}$ . Then the following keyed hash function achieves maximal impersonation resistance.

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | а | b | С | d |
| 1 | а | b | С | d |

However, this keyed hash function is insecure against substitution attacks.

**Conclusion.** Security against substitution attacks and security against impersonation attacks are contradicting requirements.

# Information Theoretical Security

#### Authentication as hypothesis testing

The procedure  $\operatorname{Ver}_{\mathsf{sk}}(\cdot)$  must distinguish between two hypotheses.

 $\mathcal{H}_0$ : The pair c = (m, t) is created by the sender.

 $\mathcal{H}_1$ : The pair  $c = (\overline{m}, \overline{t})$  is created by the adversary  $\mathcal{A}$ .

Let  $C_0$  and  $C_1$  be the corresponding distributions of messages.

Since the ratio of false negatives  $\Pr\left[{\rm Ver}_{\rm sk}(m,t)=0\right]$  must be zero, the optimal verification strategy is the following

$$\operatorname{Ver}_{\mathsf{sk}}(c) = 1 \quad \Leftrightarrow \quad c \in \operatorname{supp}(\mathcal{C}_0)$$

To defeat the message authentication primitive, the adversary A must chose the distribution  $C_1$  such that the ratio of false positives is maximal.

#### Kullback-Leibler divergence

Let  $(p_x)_{x \in \{0,1\}^*}$  and  $(q_x)_{x \in \{0,1\}^*}$  be probability distributions corresponding to hypotheses  $\mathcal{H}_0$  and  $\mathcal{H}_1$ . Then Kullback-Leibler divergence is defined as

$$d(p||q) \doteq \sum_{x:p_x>0} p_x \cdot \log_2 \frac{p_x}{q_x} ,$$

Note that Jensen's inequality assures

$$-d(p||q) = \sum_{x:p_x>0} p_x \cdot \log_2 \frac{q_x}{p_x} \le \log_2 \left(\sum_{x:p_x>0} q_x\right)$$

and consequently

$$\sum_{x:p_x>0} q_x \ge 2^{-d(p\|q)}$$

MTAT.07.003 Cryptology II, Message Authenitcation, 18 March, 2009

#### Lower bound on false positives

Fix a target message  $\overline{m}$ . Then by construction

$$\Pr\left[\mathsf{Ver}_{\mathsf{sk}}(\overline{m},\overline{t})=1\right] = \sum_{p_{\overline{t},\mathsf{sk}}>0} q_{\overline{t},\mathsf{sk}} \ge 2^{-d(p\|q)}$$

where

 $p_{\overline{t},\mathsf{sk}} = \Pr\left[\mathsf{sk} \leftarrow \mathsf{Gen} : \mathsf{sk} \land \mathsf{The \ sender \ creates \ } \overline{t} \ \mathsf{for \ } \overline{m}\right]$  $q_{\overline{t},\mathsf{sk}} = \Pr\left[\mathsf{sk} \leftarrow \mathsf{Gen} : \mathsf{sk} \land \mathsf{The \ adversary \ creates \ } \overline{t} \ \mathsf{for \ } \overline{m}\right]$ 

#### Simplest impersonation attack

Consider the following attack

$$\mathcal{A}_{\overline{m}}$$

$$\begin{bmatrix} \overline{\mathsf{sk}} \leftarrow \mathsf{Gen} \\ \overline{t} \leftarrow \mathsf{Mac}_{\overline{\mathsf{sk}}}(\overline{m}) \\ \mathsf{return} \ (\overline{m}, \overline{t}) \end{bmatrix}$$

Then obviously

$$\Pr\left[\overline{t}\right] = \sum_{\overline{sk}} \Pr\left[\mathsf{sk} \leftarrow \mathsf{Gen} : \mathsf{sk} = \overline{\mathsf{sk}}\right] \cdot \Pr\left[\overline{t} \leftarrow \mathsf{Mac}_{\overline{\mathsf{sk}}}(\overline{m})\right]$$

is a marginal distribution of  $\overline{t}$  generated by the sender.

#### **Success probability**

As  $q_{\mathbf{sk},t} = p_{\mathbf{sk}} \cdot p_t$  the Kullback-Leibler divergence can be further simplified

$$\begin{aligned} d(p||q) &= \sum_{\mathsf{sk},t} p_{t,\mathsf{sk}} \cdot \log_2 \frac{p_{t,\mathsf{sk}}}{p_{\mathsf{sk}} \cdot p_t} \\ &= \sum_{\mathsf{sk},t} p_{t,\mathsf{sk}} \cdot \log_2 p_{t,\mathsf{sk}} - \sum_{\mathsf{sk},t} p_{t,\mathsf{sk}} \log_2 p_{\mathsf{sk}} - \sum_{\mathsf{sk},t} p_{t,\mathsf{sk}} \cdot \log_2 p_t \\ &= -H(\mathsf{sk},t) + H(\mathsf{sk}) + H(t) \end{aligned}$$

and thus

$$\Pr\left[\text{Successful impersonation}\right] \ge 2^{H(\mathsf{sk},t) - H(\mathsf{sk}) - H(t)} = 2^{-I(\mathsf{sk}:t)}$$

for a fixed target message  $\overline{m}$ .

#### An obvious substitution attack

To replace m with  $\overline{m}$ , we can use the following strategy:

$$\begin{aligned} \mathcal{A}(m,t,\overline{m}) \\ \begin{bmatrix} \mathsf{sk}_* \leftarrow \operatorname{argmax} \Pr\left[\mathsf{sk} \leftarrow \mathsf{Gen} : \mathsf{sk} = \overline{\mathsf{sk}} | m, t \right] \\ \\ \overline{\mathsf{sk}} \\ \overline{t} \leftarrow \mathsf{Mac}_{\mathsf{sk}_*}(\overline{m}) \\ \\ \mathbf{return} \ (\overline{m},\overline{t}) \end{aligned}$$

Obviously, the adversary  $\mathcal A$  succeeds if it guesses the key sk

$$\Pr[\operatorname{Success}] \ge \Pr[\mathsf{sk} \leftarrow \mathsf{Gen} : \mathsf{sk} = \mathsf{sk}_*]$$
$$\ge \sum_t \Pr[t = \operatorname{Mac}_{\mathsf{sk}}(m)] \cdot \max_{\overline{\mathsf{sk}}} \Pr[\mathsf{sk} = \overline{\mathsf{sk}}|t]$$

#### **Properties of conditional entropy**

Note that for any distribution  $(p_x)_{x \in \{0,1\}^*}$ 

$$H_{\infty}(X) = -\log_2 \left( \max_{x:p_x > 0} p_x \right) = \min_{x:p_x > 0} \left( -\log_2 p_x \right)$$
$$\leq \sum_{x:p_x > 0} p_x \cdot \left( -\log_2 p_x \right) = H(X) .$$

Now for two variables

$$\sum_{y} \Pr\left[y\right] \cdot \max_{x} \Pr\left[x|y\right] = \sum_{y} \Pr\left[y\right] \cdot 2^{-H_{\infty}(X|y)} \ge \sum_{y} \Pr\left[y\right] \cdot 2^{-H(X|y)}$$
$$\ge 2^{\sum_{y} \Pr\left[y\right] \cdot (-H(X|y))} = 2^{-H(X|Y)} ,$$

where the second inequality follows from Jensen's inequality.

#### Lower bound on success probability

As the success probability of our impersonation attack is

$$\Pr[\operatorname{Success}] = \Pr[\mathsf{sk} \leftarrow \mathsf{Gen} : \mathsf{sk} = \mathsf{sk}_*] \\ = \sum_t \Pr[t = \mathsf{Mac}_{\mathsf{sk}}(m)] \cdot \max_{\overline{\mathsf{sk}}} \Pr[\mathsf{sk} = \overline{\mathsf{sk}}|t] ,$$

we can rewrite in terms of conditional entropy

 $\Pr\left[\operatorname{Success}\right] \ge 2^{-H(\mathsf{sk}|t)} \ .$ 

#### Simmons's lower bounds

For any message authentication primitive

$$\Pr\left[\mathsf{Successful\ impersonation}\right] \ge \max_{m \in \mathcal{M}} \left\{2^{-I(\mathsf{sk}:t)}\right\}$$
$$\Pr\left[\mathsf{Successful\ substitution}\right] \ge \max_{m \in \mathcal{M}} \left\{2^{-H(\mathsf{sk}|t)}\right\}$$

and thus

$$\Pr\left[\mathsf{Successful attack}\right] \ge \max_{m \in \mathcal{M}} \left\{ 2^{-\min\{I(\mathsf{sk}:t), H(\mathsf{sk}|t)\}} \right\} \ge \max_{m \in \mathcal{M}} \left\{ 2^{-\frac{H(\mathsf{sk})}{2}} \right\}$$
since  $I(\mathsf{sk}:t) = H(\mathsf{sk}) + H(t) - H(\mathsf{sk},t) = H(\mathsf{sk}) - H(\mathsf{sk}|t).$ 

# Examples

#### Universal hash functions

A universal hash function  $h : \mathcal{M} \times \mathcal{K} \to \mathcal{T}$  is a keyed hash function such that for any two different inputs  $m_0 \neq m_1$ , the corresponding hash values  $h(m_0, k)$  and  $h(m_1, k)$  are independent and have a uniform distribution over  $\mathcal{T}$  when k is chosen uniformly from  $\mathcal{K}$ .

**Corollary.** An authentication protocol that uses a universal hash function h achieves maximal security against impersonation and substitution attacks

$$\Pr\left[\mathsf{Successful} \ \mathsf{deception}\right] \le \frac{1}{|\mathcal{T}|}$$

**Example**. A function  $h(m, k_0 || k_1) = k_1 \cdot m + k_0$  is a universal hash function if  $\mathcal{M} = \mathsf{GF}(2^n)$ ,  $\mathcal{K} = \mathsf{GF}(2^n) \times \mathsf{GF}(2^n)$  and operations are done in  $\mathsf{GF}(2^n)$ .

#### Polynomial message authentication code

Let  $m_1, m_2, \ldots, m_\ell$  be *n*-bit blocks of the message and  $k_0, k_1 \in GF(2^n)$ sub-keys for the hash function. Then we can consider a polynomial

$$f(x) = m_{\ell} \cdot x^{\ell} + m_{\ell-1} \cdot x^{\ell-1} + \dots + m_1 \cdot x$$

over  $GF(2^n)$  and define the hash value as

$$h(m,k) = f(k_1) + k_0$$
.

If  $k_0$  is chosen uniformly over  $GF(2^n)$  then the hash value h(m, k) is also uniformly distributed over  $GF(2^n)$ :

 $\Pr[\text{Successful impersonation}] \le 2^{-n}$ .

#### Security against substitution attacks

Let  $\mathcal{A}$  be the best substitution strategy. W.I.o.g. we can assume that  $\mathcal{A}$  is a deterministic strategy. Consequently, we have to bound the probability

$$\max_{m \in \mathcal{M}} \Pr\left[k \leftarrow \mathcal{K}, (\overline{m}, \overline{t}) \leftarrow \mathcal{A}(m, h(m, k)) : h(\overline{m}, k) = \overline{t} \land m \neq \overline{m}\right] .$$

Since  $\mathcal{A}$  outputs always the same reply for  $k \in \mathcal{K}$  such that h(m, k) = t, we must find cardinalities of the following sets:

▷ a set of all relevant keys  $\mathcal{K}_{all} = \{k \in \mathcal{K} : h(m,k) = t\}$ ▷ a set of good keys  $\mathcal{K}_{good} = \{k \in \mathcal{K} : h(m,k) = t \land h(\overline{m},k) = \overline{t}\}.$ 

#### Some algebraic properties

For each m, t and  $k_1$ , there exists one and only one value of  $k_0$  such that h(m,k) = t. Therefore,  $|\mathcal{K}_{all}| = 2^n$  for any m and t.

If h(m,k)=t and  $h(\overline{m},k)=\overline{t}$  then

$$h(m,k) - h(\overline{m},k) - t + \overline{t} = 0$$

$$(k_1) - f_{\overline{m}}(k_1) - t + \overline{t} = 0$$

$$(k_1) - f_{\overline{m}}(k_1) - t + \overline{t} = 0$$

$$(k_1) - t + \overline{t} = 0$$

This equation has at most  $\ell$  solutions  $k_1 \in GF(2^n)$ , since degree of  $f_{m-\overline{m}}(x)$  is at most  $\ell$ . Since  $k_1$ , m, t uniquely determine  $k_0$ , we get  $|\mathcal{K}_{good}| \leq \ell$ .

#### The corresponding bounds

Hence, we have obtained

$$\Pr\left[k \leftarrow \mathcal{K} : h(\overline{m}, k) = \overline{t} | m \neq \overline{m}, t\right] = \frac{|\mathcal{K}_{\text{good}}|}{|\mathcal{K}_{\text{all}}|} \le \frac{\ell}{2^n} .$$

Since

$$\begin{split} &\Pr\left[k \leftarrow \mathcal{K}, (\overline{m}, \overline{t}) \leftarrow \mathcal{A}(m, h(m, k)) : h(\overline{m}, k) = \overline{t} \land m \neq \overline{m}\right] \\ &\leq \sum_{t} \Pr\left[k \leftarrow \mathcal{K} : h(m, k) = t\right] \cdot \max_{\substack{\overline{m} \neq m \\ \overline{t} \in \mathcal{T}}} \Pr\left[h(\overline{m}, k) = \overline{t} | m \neq \overline{m}, t\right] \\ &\leq \sum_{t} \Pr\left[k \leftarrow \mathcal{K} : h(m, k) = t\right] \cdot \frac{\ell}{2^n} \leq \frac{\ell}{2^n} \;, \end{split}$$

we also have a success bound on substitution attacks.

**Computational Security** 

#### Authentication with pseudorandom functions

Consider following authentication primitive:

- $\triangleright$  authentication code  $Mac_f(m) = f(m)$
- $\triangleright \ \text{verification procedure } \mathsf{Ver}_f(m,t) = 1 \Leftrightarrow f(m) = t.$

This authentication primitive is  $\frac{1}{|\mathcal{T}|}$  secure against impersonation and substitution attacks, since Mac is a universal hash function.

As this construction is practically uninstantiable, we must use  $(t,q,\varepsilon)$ -pseudorandom function family  $\mathcal F$  instead of  $\mathcal F_{\rm all}$ . As a result

$$\Pr\left[\mathsf{Successful attack}\right] \le \frac{1}{|\mathcal{T}|} + \varepsilon$$

against all *t*-time adversaries if  $q \ge 1$ .

#### Formal security definition

A keyed hash function  $h : \mathcal{M} \times \mathcal{K} \to \mathcal{T}$  is a  $(t, q, \varepsilon)$ -secure message authentication code if any t-time adversary  $\mathcal{A}$ :

$$\operatorname{Adv}_{h}^{\max}(\mathcal{A}) = \Pr\left[\mathcal{G}^{\mathcal{A}} = 1\right] \leq \varepsilon$$
,

where the security game is following

$$\mathcal{G}^{\mathcal{A}} \begin{bmatrix} k \leftarrow_{\overline{u}} \mathcal{K} \\ \text{For } i \in \{1, \dots, q\} \text{ do} \\ [ \text{ Given } m_i \leftarrow \mathcal{A} \text{ send } t_i \leftarrow h(m_i, k) \text{ back to } \mathcal{A} \\ (m, t) \leftarrow \mathcal{A} \\ \text{ return } [t \stackrel{?}{=} h(m, k)] \land [(m, t) \notin \{(m_1, t_1), \dots, (m_q, t_q)\}] \end{bmatrix}$$

#### **Problems with multiple sessions**

All authentication primitives we have considered so far guarantee security if they are used only once. A proper message authentication protocol can handle many messages. Therefore, we use additional mechanisms besides the authentication primitive to assure:

- ▷ security against reflection attacks
- ▷ message reordering
- ▷ interleaving attacks

#### **Corresponding enhancement techniques**

- ▷ Use nonces to defeat reflection attacks.
- ▷ Use message numbering against reordering.
- ▷ Stretch secret key using pseudorandom generator.