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Spring 2009 / Exercise session IV

PRP/PRF switching lemma
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1. Let A be the adversary that tries to distinguish a random permutation
f : {1, 2, 3} → {1, 2, 3} from a random function f : {1, 2, 3} → {1, 2, 3}
according to the adaptive deterministic querying strategy depicted above.
More formally, nodes represents adversaries queries. The adversary A

starts form the root node and moves to next nodes according to the an-
swers depicted as arc labels. The dashed line corresponds to the decision
border, where A stops querying and outputs his or her guess.

(a) Compute the following probabilities

Pr [f ← Fall : A reaches vertex u] ,

Pr [f ← Fall : A reaches vertex u ∧ ¬Collision] ,

Pr [f ← Fall : ¬Collision] ,

Pr [f ← Fall : A reaches vertex u|¬Collision] ,

Pr [f ← Fprm : A reaches vertex u]

for all nodes u in the decision border.

(b) Compute these probabilities for an arbitrary message spaceM under
the assumption that A makes exactly q queries and conclude

Pr [A = 0|Fall ∧ ¬Collision] = Pr [A = 0|Fprm] .

2. For the proof of the PRP/PRF switching lemma, consider the following
games. In the game G0, the challenger first draws f ← Fall and then
answers up to q distinct queries. In the game G1, the challenger draws
f ← Fprm and then answers up to q distinct queries. In both games, the
output is determined by the adversary A who submits its final verdict.

(a) Formalise both games as short programs, where G can make oracle
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calls to A. For example, something like

GA

0


























f ←
u
Fall

y0 ← ⊥

For i ∈ {1, . . . , q} do






xi ← A(yi−1)

If xi = ⊥ then break the cycle

yi ← f(xi)

return A

(b) Rewrite both games so that there are no references to the function f

but the behaviour does not change. Denote these games by G2,G3.

(c) Analyse what is the probability that execution in the games G2 and
G3 starts to diverge. Conclude sd⋆(G2,G3) = Pr [Collision]

Hint: Note that following code fragment samples uniformly permutations

Sample f(xi)






yi ←u M

If yi ∈ {y1, . . . , yi−1} then
[

yi ←u M\ {y1, . . . , yi}

What is the probability we ever reach the if branch?

3. Let y1, . . . , yq be chosen uniformly and independently from the set M.
Let Distinct(k) denote the event that y1, . . . , yk are distinct. Estimate the
value of Pr [Distinct(k)|Distinct(k − 1)] and this result to prove

Pr [Distinct(k)] ≤ e−q(q−1)/(2|M|)

How one can use this result to prove the birthday bound

Pr [Collision|q queries] ≥ 0.316 ·
q(q − 1)

|M|
.

Hint: Note that 1− x ≤ e−x.
Hint: Note that 1− e−x ≥ (1− e−1)x if x ∈ [0, 1].
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Computational indistinguishability

4. The IND-CPA security notion is also applicable for symmetric cryptosys-
tems. Namely, a symmetric cryptosystem (Gen, Enc, Dec) is (t, ε)-IND-
CPA secure, if for any t-time adversary A:

Advind-cpa(A) = |Pr [QA

0 = 1]− Pr [QA

1 = 1]| ≤ ε

where

QA

0






sk← Gen

(m0, m1)← A
O1(·)

return A
O1(·)(Encsk(m0))

QA

0






sk← Gen

(m0, m1)← A
O1(·)

return A
O1(·)(Encsk(m1))

and the oracle O1 serves encryption calls.

Estimate computational distance between following games

(a) Left-or-right games

GA
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sk← Gen

For i = 1, . . . , q do
[

(mi
0, m

i
1)← A

Give Encsk(m
i
0) to A

return the output of A

GA

1


















sk← Gen

For i = 1, . . . , q do
[

(mi
0, m

i
1)← A

Give Encsk(m
i
1) to A

return the output of A

(b) Real-or-random games

GA

0


















sk← Gen

For i = 1, . . . , q do
[

mi ← A

Give Encsk(m
i) to A

return the output of A

GA

1


















sk← Gen

For i = 1, . . . , q do
[

mi
0 ← A, mi

1 ←u M

Give Encsk(m
i
1) to A

return the output of A

5. Show that the Goldwasser-Micali cryptosystem is IND-CPA secure if the
Quadratic Residuosity Problem is hard. All necessary concepts are defined
below. The proof is similar to the analysis of the ElGamal cryptosystem.

Number theory. A prime p is a Blum prime if p ≡ 3 mod 4. Let
N = pq where p, q are Blum primes. Then for each element a ∈ ZN , we
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can efficiently compute the Jacobi symbol ( a
n ). One can show that Jacobi

symbols satisfies following equations
(

ab

n

)

=
(a

n

)

·

(

b

n

)

and

(

a2

n

)

= 1 .

In the following, we also need a set

JN (1) =
{

x ∈ ZN :
(x

n

)

= 1
}

.

Finally, recall that an element b is a quadratic residue if there exists a such
that b = a2 mod N . The set of quadratic residues is denoted by QRN .

Quadratic residuosity problem. Let Pn denote uniform distribution
over n-bit Blum primes. We say that the set of n-bit Blum primes is
(t, ε)-secure with respect to quadratic residuosity problem if for all t-time
adversaries A:

Adv
qrp
Pn

(A) = |Pr [QA

0 = 1]− Pr [QA

0 = 1]| ≤ ε

where

QA

0










p, q ←
u

P(n)

N ← pq

x←
u

QRN

return A(x)

QA

1










p, q ←
u

P(n)

N ← pq

x←
u

JN \QRN

return A(x)

Goldwasser-Micali cryptosystem.

• Key generation. Sample primes p, q ∈ P(n) and choose quadratic
non-residue y ∈ JN (1) modulo N = pq. Set pk = (N, y), sk = (p, q).

• Encryption. First choose a random x← Z
∗
N and then compute

Encpk(0) = x2 mod N and Encpk(1) = yx2 mod N.

• Decryption. Output 0 if the ciphertext c is quadratic residue and
1 otherwise. The latter is easy if the factorisation of N is known.

6. Recall that a block cipher is modelled as a (t, q, ε)-pseudo-random per-
mutation family F . As such it is perfect for encrypting a single message
block. To encrypt longer messages, we have to use encryption modes that
can handle multiple blocks. Three most common encryption modes are
following:

Ecb: The electronic codebook mode uses the same permutation f ← F for
all message blocks:

Ecbf (m1‖ . . . ‖mn) = f(m1)‖ . . . ‖f(mn) .
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• The counter encryption mode uses the permutation f ← F as a
pseudo-random generator

Ctrf (m1‖ . . . ‖mn) = f(1)⊕m1‖ . . . ‖f(n)⊕mn .

• The cipher-block chaining mode uses the permutation f ← F to link
plaintext and ciphertexts

Cbcf (m1‖ . . . ‖mn) = c1‖ . . . ‖cn where ci = f(mi ⊕ ci−1)

and c0 is know as initialisation vector (nonce).

Let us now analyse the security of these working modes.

(a) Show that the Ecb working mode is insecure, i.e., construct a dis-
tinguisher that can distinguish Ecbf : Mn → Mn from random
permutation overMn. Is this weakness relevant in practise or not?

(b) Show that the Ctr working mode is secure. More precisely, show that
the sequence f(1)‖ . . . ‖f(n) is indistinguishable from the uniform
distribution overMn. Conclude that Ctr working mode is secure for
a single encryption query. How to make it secure for many encryption
queries? What are the corresponding security guarantees?

(⋆) Show that the Cbc working mode is secure. Again, show that the
output is indistinguishable from the uniform distribution over Mn.
How to make it secure for many encryption queries? What are the
corresponding security guarantees?

(⋆) We say that a cryptosystem is (t, ε)-IND-FPA (indistinguishable in fixed
plaintext attacks) if for all t-time adversaries

Advind-fpa(A) = |Pr [GA

0 = 1]− Pr [GA

1 = 1]| ≤ ε

where

GA

0






(m0, m1)← A

(sk, pk)← Gen

return A(Encpk(m0))

GA

1






(m0, m1)← A

(sk, pk)← Gen

return A(Encpk(m1))

Show that IND-FPA security implies that distributions (pk, Encpk(m0))
and (pk, Encpk(m1)) are computationally indistinguishable for all m0, m1 ∈
M. Secondly, show that if there exists an efficient IND-CPA secure cryp-
tosystem, there also exists an efficient IND-FPA secure cryptosystem that
is not IND-CPA secure.
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