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Formal Syntax



Symmetric key cryptosystem

Gen

sk sk

m ←M0

c← Encsk(m) c

m ← Decsk(c)

⊲ A randomised key generation algorithm outputs a secret key sk that must
be transferred privately to the sender and to the receiver.

⊲ A randomised encryption algorithm Encsk :M→ C takes in a plaintext

and outputs a corresponding ciphertext.

⊲ A decryption algorithm Decsk : C → M∪ {⊥} recovers the plaintext or
a special abort symbol ⊥ to indicate invalid ciphertexts.
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Public key cryptosystem

(sk, pk)← Gen
pk

m ←M0

c← Encpk(m) c

m ← Decsk(c)

⊲ A randomised key generation algorithm outputs a secret key sk and a
public key pk. A public key gives ability to encrypt messages.

⊲ A randomised encryption algorithm Encpk :M→ C takes in a plaintext

and outputs a corresponding ciphertext.

⊲ A decryption algorithm Decsk : C → M∪ {⊥} recovers the plaintext or
a special abort symbol ⊥ to indicate invalid ciphertexts.
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Example. RSA-1024 cryptosystem

Key generation Gen:

1. Choose uniformly 512-bit prime numbers p and q.

2. Compute N = p · q and φ(N) = (p− 1)(q − 1).

3. Choose uniformly e← Z
∗
φ(N) and set d = e−1 mod φ(N).

4. Output sk = (p, q, e, d) and pk = (N, e).

Encryption and decryption:

M = ZN , C =ZN , R = ∅
Encpk(m) = me mod N Decsk(c) = cd mod N .
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Semantic Security



IND-CPA security

As a potential adversary A can influence which messages are encrypted, we
must model the corresponding effects in our attack model. A cryptosystem
(Gen, Enc, Dec) is (t, ε)-IND-CPA secure if for all t-time adversaries A:

Advind-cpa(A) =
∣

∣Pr
[

GA

0 = 1
]

− Pr
[

GA

1 = 1
]
∣

∣ ≤ ε ,

where the security games are defined as follows

GA

0








(sk, pk)← Gen

(m0, m1)← A(pk)

return A(Encpk(m0))

GA

1








(sk, pk)← Gen

(m0, m1)← A(pk)

return A(Encpk(m1))
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Semantic security against adaptive influence

m

m ←M0

pk

M0

Encpk(m)

Given
– pk

– M0

– Encpk(m)
Charlie tries to guess g(m)

m

m ←M0

pk

M0

Given
– pk
Charlie tries to guess g(m)
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Formal definition

Consider following games:

GA

0




















(sk, pk)← Gen

M0 ← A(pk)

m←M0

c← Encpk(m)

return [g(m)
?
= A(c)]

GA

1
























(sk, pk)← Gen

M0 ← A(pk)

m←M0, m←M0

c← Encpk(m)

return [g(m)
?
= A(c) ]

The true guessing advantage is

Advsem
g (A) = Pr [GA

0 = 1]− Pr [GA

1 = 1] .
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IND-CPA ⇒ SEM-CPA

Theorem. Assume that g is a tg-time function and it is always possible
to obtain a sample from M0 in time tm. Now if the cryptosystem is
(t, ε)-IND-CPA secure, then for all (t− tg − 2tm)-time adversaries A:

Advsem
g (A) ≤ ε .

Note that

⊲ The function g might be randomised.

⊲ The function g must be a computationally efficient function.

⊲ The distribution M0 must be efficiently samplable.
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The corresponding proof

Let B be an adversary that can predict the value of g well in SEM-CPA
game. Now consider a new IND-CPA adversary A:

1. A forwards pk to B who describes the distribution M0 to A.

2. A independently samples m0 ←M0 and m1←M0.

3. A forwards c← Encpk(mb) to B.

4. B outputs its guess guess to A who
– outputs 1 if guess = g(m0),

– outputs 0 if guess 6= g(m0) .

Running time

The running time of A is tb + tg + 2tm where tb is the running time of B.
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Further analysis by code rewriting

For clarity, let Q0 and Q1 denote the IND-CPA security games and G0 and
G1 IND-SEM security games. Then note

QA

0 ≡ GB

0 and QA

1 ≡ GB

1

where

QA

0








(sk, pk)← Gen

(m0, m1)← A(pk)

return A(Encpk(m0))

QA

1








(sk, pk)← Gen

(m0, m1)← A(pk)

return A(Encpk(m1))
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An example of IND-CPA secure
cryptosystem



ElGamal cryptosystem

Combine the Diffie-Hellman key exchange protocol

Alice Bob

x← Z|G|
y=gx

−−−→ k ← Z|G|

gk

←−−
gxk = (gk)x gxk = (gx)k

with one-time pad by multiplication using in G = 〈g〉 as encoding rule

Encpk(m) = (gk, m · gxk) = (gk, m · yk) for all elements m ∈ G

with a public key pk = y = gx and a secret key sk = x.
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Decisional Diffie-Hellman Assumption (DDH)

Definition. We say that a q-element multiplicative group G is (t, ε)-
Decisional Diffie-Hellman group if for all t-time adversaries A:

Advddh
G (A) = |Pr [GA

0 = 1]− Pr [GA

1 = 1]| ≤ ε

where the security games are defined as follows

GA

0
[

x, k ← Zq

return A(g, gx, gk, gxk)

GA

1
[

x, k, c← Zq

return A(g, gx, gk, gc)

The Diffie-Hellman key exchange protocol is secure under the DDH
assumption, as an attacker cannot distinguish values gxk and gc.

MTAT.07.003 Cryptology II, Security of Cryptosystems, 11 March, 2009 11



DDH ⇒ IND-CPA

Theorem. Let G be a (t, ε)-DDH group. Then the corresponding
instantiation of the ElGamal cryptosystem is (t, 2ε)-IND-CPA secure.

Let B be good against IND-CPA games. Then we can consider the following
algorithm A:

1. Given (g, gx, gk, z), set pk = gx and (m0, m1)← B(pk).

2. Toss a fair coin b← {0, 1} and set c = (gk, mbz).

3. If b
?
= A(c) return 1 else output 0.

We argue that this is a good strategy to win the DDH game:

• In the game G0, we simulate the bit guessing game.

• In the game G1, the guess guess is independent form b.
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Hybrid encryption

Assume that (Gen,Enc,Dec) is a IND-CPA secure cryptosystem and
(Gen◦,Enc◦, Dec◦) is a IND-CPA secure symmetric key cryptosystem. Then
we can construct a hybrid IND-CPA secure cryptosystem.

Encrypt. For m ∈M◦ generate a session key sk◦← Gen◦ and compute

Enc∗pk(m) = (Encpk(sk
◦),Encsk◦(m))

Decrypt. Given (c1, c2) compute sk◦← Decsk(c1) and output Decsk◦(c2).

Theorem. The hybrid encryption is IND-CPA secure if both components
are IND-CPA secure.
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Ciphertext modification attacks



Symmetric key cryptosystem

Gen

sk sk

m ←M0

c← Encsk(m) c c

m ← Decsk(c)

⊲ A malicious participant may control the communication network and
alter the ciphertexts to bypass various security checks.

⊲ A malicious participant may interact with a key holder and use him or
her as an encryption or decryption oracle.

⊲ A non-malleable encryption detects modifications in ciphertexts
(authenticated encryption) or assures that m and m are unrelated.
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Public key cryptosystem

(sk, pk)← Gen
pk

m ←M0

c← Encpk(m) c c

m ← Decsk(c)

⊲ Active attacks are similar for public key cryptosystems. Except there is
no need for encryption oracle, since the adversary knows the public key.

⊲ Commonly used cryptosystems detect tampered ciphertexts with high
probability and thus the adversary cannot use the decryption oracle for
useful tasks.
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Homological classification

NM-CPA

IND-CPA

NM-CCA1

IND-CCA1

NM-CCA2

IND-CCA2

The figure above depicts the relations among various security properties of
public key cryptosystems. In practise one normally needs:

⊲ semantic security that follows IND-CPA security,

⊲ safety against improper usage that follows form IND-CCA1 security,

⊲ non-malleability of ciphertexts that follows form NM-CPA security.
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Safety against improper usage

Cleverly crafted ciphertexts or ciphertext-like messages may provide relevant
information about the secret key or even reveal the secret key.

Such attacks naturally occur in:

⊲ smart card cracking (Satellite TV, TPM-modules, ID cards)

⊲ authentication protocols (challenge-response protocols)

⊲ side channel attack (timing information, encryption failures)

Minimal security level:

⊲ Attacks reveal information only about currently known ciphertexts.

Affected cryptosystems:

– Rabin cryptosystem, some versions of NTRU cryptosystem, etc.

MTAT.07.003 Cryptology II, Security of Cryptosystems, 11 March, 2009 17



IND-CCA1 security

A cryptosystem is (t, ε)-IND-CCA1 secure if for all t-time adversaries A:

Advind-cca1(A) =
∣

∣Pr
[

GA

0 = 1
]

− Pr
[

GA

1 = 1
]
∣

∣ ≤ ε ,

where the security games are defined as follows

GA

0








(sk, pk)← Gen

(m0, m1)← A
O1(·)(pk)

return A(Encpk(m0))

GA

1








(sk, pk)← Gen

(m0, m1)← A
O1(·)(pk)

return A(Encpk(m1))

and the oracle O1 serves decryption queries, i.e., O1(c) = Decsk(c).
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Rabin cryptosystem

Key generation Gen:

1. Choose uniformly 512-bit prime numbers p and q.

2. Compute N = p · q and φ(N) = (p− 1)(q − 1).

3. Output sk = (p, q) and pk = N .

Encryption and decryption:

M = ZN , C =ZN , R = ∅
Encpk(m) = m2 mod N Decsk(c) =

√
c mod N .
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Lunchtime attack

1. Choose x← Z
∗
N and set c← x2 mod N .

2. Compute decryption x← O1(c).

3. If x 6= ±x then
– Compute nontrivial square root ξ = x · x−1 mod N

– Compute a nontrivial factors p← gcd(N, ξ + 1) and q = N/p.

– Output a secret key sk = (p, q).

4. Continue from Step 1.

Efficiency analysis

– Each iteration fails with probability 1
2.

– With 80 decryption queries the failure probability is 2−80.

MTAT.07.003 Cryptology II, Security of Cryptosystems, 11 March, 2009 20



IND-CCA2 security

A cryptosystem is (t, ε)-IND-CCA2 secure if for all t-time adversaries A:

Advind-cca1(A) =
∣

∣Pr
[

GA

0 = 1
]

− Pr
[

GA

1 = 1
]
∣

∣ ≤ ε ,

where the security games are defined as follows

GA

0








(sk, pk)← Gen

(m0,m1)← A
O1(·)(pk)

return A
O2(·)(Encpk(m0))

GA

1








(sk, pk)← Gen

(m0, m1)← A
O1(·)(pk)

return A
O2(·)(Encpk(m1))

and oracles O1 and O2 serve decryption queries, i.e., O1(c) = Decsk(c) and
O2(c) = Decsk(c) for all non-challenge ciphertexts.
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IND-CCA2 secure cryptosystems

All known IND-CCA2 secure cryptosystems include a non-interactive proof
that the creator of the ciphertexts c knows the corresponding message m:

– the RSA-OAEP cryptosystem in the random oracle model,

– the Cramer-Shoup cryptosystem in standard model,

– the Kurosawa-Desmedt key encapsulation scheme.
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Non-malleability



NM-CPA security

m

m ←M0

pk

M0

Encpk(m)

π(·), ĉ1, . . . , ĉn

Given
– pk

– M0

– Encpk(m)
Charlie tries to construct a
predicate π(·) such that

π(m, Decsk(ĉ1), . . . ,Decsk(ĉn)) = 1

m

m ←M0

pk

M0

π(·), ĉ1, . . . , ĉn

Given
– pk

Charlie tries to construct a
predicate π(·) such that

π(m, Decsk(ĉ1), . . . ,Decsk(ĉn)) = 1
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Formal definition

GA

0






























(sk, pk)← Gen

M0← A(pk)

m←M0

c← Encpk(m)

π(·), ĉ1, . . . ĉn← A(c)

if c ∈ {ĉ1, . . . ĉn} then return 0

return π(m, Decsk(ĉ1), . . .)

GA

1


































(sk, pk)← Gen

M0← A(pk)

m←M0, m←M0

c← Encpk(m)

π(·), ĉ1, . . . ĉn← A(c)

if c ∈ {ĉ1, . . . ĉn} then return 0

return π(m, Decsk(ĉ1), . . .)

The true advantage is

Advnm-cpa(A) = |Pr [GA

0 = 1]− Pr [GA

1 = 1]|
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Homological classification

NM-CPA

IND-CPA

NM-CCA1

IND-CCA1

NM-CCA2

IND-CCA2

Horizontal implications are trivial.

• The adversary just gets more powerful in the row.

Downwards implications are trivial.

• A guess guess can be passed as a predicate π(·) ≡ 0 and π(·) ≡ 1.
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IND-CCA2 ⇒ NM-CC2

Theorem. Assume that π(·) is always a tπ-time predicate and it is always
possible to obtain a sample from M0 in time tm. Now if the cryptosystem
is (t, ε)-IND-CCA2 secure, then for all (t− tg − 2tm)-time adversaries A:

Advnm-cca2(A) ≤ ε .

Note that

⊲ The predicate π(·) might be randomised.

⊲ The predicate π(·) might have variable number of arguments.

⊲ The predicate π(·) must be a computationally efficient function.

⊲ The distribution M0 must be efficiently samplable.
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The corresponding proof

Let B be an adversary that is goon in NM-CCA2 games. Then we can
emulate NM-CCA2 game given access to the decryption oracle O2:

1. A forwards pk to B who sends back a description ofM0.

2. A independently samples m0 ←M0 and m1←M0.

3. A forwards the challenge Encpk(mb) to B.

4. B sends ĉ1, . . . , ĉn and π(·) to A who
– uses O2 to recover Decsk(ĉ1), . . . , Decsk(ĉn),

– outputs π(m0, Decsk(ĉ1), . . . ,Decsk(ĉn)) as the final output.

Running time

The running time of A is tb + tg + 2tm where tb is the running time of B.
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Further analysis by code rewriting

For clarity, let Q0 and Q1 denote the IND-CCA2 security games and G0 and
G1 NM-CCA2 security games. Then note

QA

0 ≡ GB

0 and QA

1 ≡ GB

1

where

QA

0








(pk, sk)← Gen

(m0,m1)← A
O1(·)(pk)

return A
O2(·)(Encpk(m0))

QA

1








(pk, sk)← Gen

(m0, m1)← A
O1(·)(pk)

return A
O2(·)(Encpk(m1))
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