MTAT.07.003 Cryptology II Spring 2009 / Exercise Session III

- 1. Recall that a game is a two-party protocol between the challenger \mathcal{G} and an adversary \mathcal{A} and that the output of the game $\mathcal{G}^{\mathcal{A}}$ is always determined by the challenger. Prove the following claims:
 - (a) Any hypothesis testing scenario \mathcal{H} can be formalised as a game \mathcal{G} such that $\Pr[\mathcal{A} = b|\mathcal{H}] = \Pr[\mathcal{G}^{\mathcal{A}} = b]$ for all adversaries \mathcal{A} .
 - (b) For two simple hypotheses \mathcal{H}_0 and \mathcal{H}_1 , there is a game \mathcal{G} such that

$$\mathsf{cd}^t_{\star}(\mathcal{H}_0, \mathcal{H}_1) = 2 \cdot \max_{\mathcal{A} \text{ is } t\text{-time}} \left| \Pr\left[\mathcal{G}^{\mathcal{A}} = 1 \right] - \frac{1}{2} \right|$$

(c) The computational distance between games defined as follows

$$\mathsf{cd}_{\star}(\mathcal{G}_0, \mathcal{G}_1) = \max_{\mathcal{A} \text{ is } t\text{-time}} \left| \Pr\left[\mathcal{G}_0^{\mathcal{A}} = 1\right] - \Pr\left[\mathcal{G}_1^{\mathcal{A}} = 1\right] \right| \ .$$

Show that this quantity is indeed a pseudo-metric:

$$\begin{aligned} \mathsf{cd}^t_\star(\mathcal{G}_0,\mathcal{G}_1) &= \mathsf{cd}^t_\star(\mathcal{G}_1,\mathcal{G}_0) \ ,\\ \mathsf{cd}^t_\star(\mathcal{G}_0,\mathcal{G}_2) &\leq \mathsf{cd}^t_\star(\mathcal{G}_0,\mathcal{G}_1) + \mathsf{cd}^t_\star(\mathcal{G}_1,\mathcal{G}_2) \ .\end{aligned}$$

When is the computational distance a proper metric, i.e.,

$$\mathsf{cd}^t_\star(\mathcal{G}_0,\mathcal{G}_1) \neq 0 \qquad \Leftrightarrow \qquad \mathsf{sd}_\star(\mathcal{G}_0,\mathcal{G}_1) \neq 0 ?$$

- (?) Usually, the statistical distance $\mathsf{sd}_{\star}(\mathcal{G}_0, \mathcal{G}_1)$ is defined as a limiting value $\mathsf{sd}_{\star}(\mathcal{G}_0, \mathcal{G}_1) = \lim_{t \to \infty} \mathsf{cd}_{\star}^t(\mathcal{G}_0, \mathcal{G}_1)$. Give an alternative interpretation in terms of output distributions.
- 2. Let \mathcal{A} be a *t*-time distinguisher and let $\alpha(\mathcal{A}) = \Pr[\mathcal{A} = 1|\mathcal{H}_0]$ and $\beta(\mathcal{A}) = \Pr[\mathcal{A} = 0|\mathcal{H}_1]$ be the ratios of false negatives and false positives. Show that for any *c* there exists a t + O(1)-time adversary \mathcal{B} such that

$$\alpha(\mathcal{B}) = (1-c) \cdot \alpha(\mathcal{A})$$
 and $\beta(\mathcal{B}) = c + (1-c) \cdot \beta(\mathcal{A})$.

Are there any practical settings where such trade-offs are economically justified? Give some real world examples.

Hint: What happens if you first throw a fair coin and run \mathcal{A} only if you get tail and otherwise output 0?

3. Let \mathcal{X}_0 and \mathcal{X}_1 efficiently samplable distributions that are (t, ε) -indistinguishable. Show that distributions \mathcal{X}_0 and \mathcal{X}_1 remain computationally indistinguishable even if the adversary can get n samples.

(a) First estimate computational distances between following games

$\mathcal{G}^{\mathcal{A}}_{00}$	$\mathcal{G}_{01}^{\mathcal{A}}$	$\mathcal{G}_{11}^\mathcal{A}$
$\int x_0 \leftarrow \mathcal{X}_0$	$\int x_0 \leftarrow \mathcal{X}_0$	$\begin{bmatrix} x_0 \leftarrow \mathcal{X}_1 \\ \cdots \\ \cdots \end{bmatrix}$
$x_1 \leftarrow \mathcal{X}_0$	$x_1 \leftarrow \mathcal{X}_1$	$x_1 \leftarrow \mathcal{X}_1$
return $\mathcal{A}(x_0, x_1)$	return $\mathcal{A}(x_0, x_1)$	return $\mathcal{A}(x_0, x_1)$

Hint: What happens if you feed a sample $x_0 \leftarrow \mathcal{X}_0$ together an unknown sample $x_1 \leftarrow \mathcal{X}_i$ to \mathcal{A} and use the reply to guess *i*.

- (b) Generalise the argumentation to the case, where the adversary \mathcal{A} gets n samples from a distribution \mathcal{X}_i . That is, define the corresponding sequence of games $\mathcal{G}_{00...0}, \ldots, \mathcal{G}_{11...1}$.
- (c) Why do we need to assume that distributions \mathcal{X}_0 and \mathcal{X}_1 are efficiently samplable?
- 4. Consider the following game, where an adversary \mathcal{A} gets three values x_1 , x_2 and x_3 . Two of them are sampled from the efficiently samplable distribution \mathcal{X}_0 and one of them is sampled from the efficiently samplable distribution \mathcal{X}_1 . The adversary wins the game if it correctly determines which sample is taken from \mathcal{X}_1 .
 - (a) Find an upper bound to the success probability if distributions \mathcal{X}_0 and \mathcal{X}_1 are (t, ε) -indistinguishable.
 - (b) How does the bound on the success change if we modify the game in the following manner. First, the adversary can first make its initial guess i_0 . Then the challenger reveals $j \neq i_0$ such that x_j was sampled from \mathcal{X}_0 and then the adversary can output its final guess i_1 .

Hint: How well the adversary can perform if the challenger gives no samples to the adversary? How can you still simulate the game to the adversary who expects these samples?

5. A predicate $\pi : \{0,1\}^n \to \{0,1\}$ is said to be a ε -regular if the output distribution for uniform input distribution is nearly uniform:

$$|\Pr[s \leftarrow \{0,1\}^n : \pi(s) = 0] - \Pr[s \leftarrow \{0,1\}^n : \pi(s) = 1]| \le \varepsilon$$

A predicate π is a (t, ε) -unpredictable also known as (t, ε) -hardcore predicate for a function $f : \{0, 1\}^n \to \{0, 1\}^{n+\ell}$ if for any t-time adversary

Prove the following statements.

- (a) Any (t, ε) -hardcore predicate is 2ε -regular.
- (b) For a function $f : \{0,1\}^n \to \{0,1\}^{n+\ell}$, let $\pi_k(s)$ denote the *k*th bit of f(s) and $f_k(s)$ denote the output of f(s) without the *k*th bit. Show that if f is a (t, ε) -secure pseudorandom generator, then π_k is (t, ε) -hadcore predicate for f_k .

- (*) If a function $f : \{0,1\}^n \to \{0,1\}^{n+\ell}$ is (t,ε_1) -pseudorandom generator and $\pi : \{0,1\}^n \to \{0,1\}$ is efficiently computable predicate (t,ε_1) -hadcore, then a concatenation $f_*(s) = f(s)||\pi(s)$ is $(t,\varepsilon_1+\varepsilon_2)$ -pseudorandom generator.
- 6. Let \mathcal{F} be a (t, q, ε) -pseudorandom function family that maps a domain \mathcal{M} to the range \mathcal{C} . Let $g : \mathcal{M} \to \{0, 1\}$ be an arbitrary predicate. What is the success probability of a *t*-time adversary \mathcal{A} in the following games?

$$\begin{array}{ll} \mathcal{G}_{0}^{\mathcal{A}} & \mathcal{G}_{1}^{\mathcal{A}} \\ \\ & & \\ f \xleftarrow{u} \mathcal{F} \\ c \leftarrow f(m) \\ \mathbf{return} \ [\mathcal{A}(c) \stackrel{?}{=} m] \end{array} \qquad \begin{array}{l} m \xleftarrow{u} \mathcal{M} \\ f \xleftarrow{u} \mathcal{F} \\ c \leftarrow f(m) \\ \mathbf{return} \ [\mathcal{A}(c) \stackrel{?}{=} g(m)] \end{array}$$

Establish the same result by using the IND \Longrightarrow SEM theorem. More precisely, show that the hypothesis testing games

$$\begin{array}{ll} \mathcal{G}_{m_0}^{\mathcal{A}} & \mathcal{G}_{m_1}^{\mathcal{A}} \\ \begin{bmatrix} f \xleftarrow{}{}_{\varpi} \mathcal{F} & & \\ c \leftarrow f(m_0) & & \\ \mathbf{return} \ \mathcal{A}(c) & & \\ \end{array} \end{array} \begin{array}{l} f \xleftarrow{}{}_{\varpi} \mathcal{F} \\ c \leftarrow f(m_1) \\ \mathbf{return} \ \mathcal{A}(c) \end{array}$$

are $(t, 2\varepsilon)$ -indistinguishable for all $m_0, m_1 \in \mathcal{M}$.