MTAT.07.003 Cryptology II Spring 2009 / Exercise Session III

- 1. Recall that a game is a two-party protocol between the challenger $\mathcal G$ and an adversary $\tilde{\mathcal{A}}$ and that the output of the game $\mathcal{G}^{\mathcal{A}}$ is always determined by the challenger. Prove the following claims:
	- (a) Any hypothesis testing scenario H can be formalised as a game G such that $Pr[\mathcal{A} = b|\mathcal{H}] = Pr[\mathcal{G}^{\mathcal{A}} = b]$ for all adversaries \mathcal{A} .
	- (b) For two simple hypotheses \mathcal{H}_0 and \mathcal{H}_1 , there is a game $\mathcal G$ such that

$$
\operatorname{cd}^t_\star(\mathcal{H}_0,\mathcal{H}_1) = 2 \cdot \max_{\mathcal{A} \text{ is } t\text{-time}} \left| \Pr\left[\mathcal{G}^\mathcal{A} = 1\right] - \frac{1}{2} \right|
$$

.

(c) The computational distance between games defined as follows

$$
\mathsf{cd}_\star(\mathcal{G}_0,\mathcal{G}_1) = \max_{\mathcal{A} \text{ is } t\text{-time}}\left|\Pr\left[\mathcal{G}_0^\mathcal{A}=1\right] - \Pr\left[\mathcal{G}_1^\mathcal{A}=1\right]\right| \enspace .
$$

Show that this quantity is indeed a pseudo-metric:

$$
\begin{aligned} &\mathsf{cd}^\mathsf{t}_\star(\mathcal{G}_0,\mathcal{G}_1) = \mathsf{cd}^\mathsf{t}_\star(\mathcal{G}_1,\mathcal{G}_0) \, \ , \\ &\mathsf{cd}^\mathsf{t}_\star(\mathcal{G}_0,\mathcal{G}_2) \leq \mathsf{cd}^\mathsf{t}_\star(\mathcal{G}_0,\mathcal{G}_1) + \mathsf{cd}^\mathsf{t}_\star(\mathcal{G}_1,\mathcal{G}_2) \, \ . \end{aligned}
$$

When is the computational distance a proper metric, i.e.,

$$
\mathsf{cd}^t_\star(\mathcal{G}_0,\mathcal{G}_1) \neq 0 \qquad \Leftrightarrow \qquad \mathsf{sd}_\star(\mathcal{G}_0,\mathcal{G}_1) \neq 0 \enspace ?
$$

- (?) Usually, the statistical distance $sd_{\star}(\mathcal{G}_0, \mathcal{G}_1)$ is defined as a limiting value $sd_{\star}(\mathcal{G}_0, \mathcal{G}_1) = \lim_{t \to \infty} cd_{\star}^t(\mathcal{G}_0, \mathcal{G}_1)$. Give an alternative interpretation in terms of output distributions.
- 2. Let A be a t-time distinguisher and let $\alpha(\mathcal{A}) = \Pr[\mathcal{A} = 1|\mathcal{H}_0]$ and $\beta(\mathcal{A}) =$ $Pr[\mathcal{A} = 0|\mathcal{H}_1]$ be the ratios of false negatives and false positives. Show that for any c there exists a $t + O(1)$ -time adversary B such that

$$
\alpha(\mathcal{B}) = (1 - c) \cdot \alpha(\mathcal{A})
$$
 and $\beta(\mathcal{B}) = c + (1 - c) \cdot \beta(\mathcal{A})$.

Are there any practical settings where such trade-offs are economically justified? Give some real world examples.

Hint: What happens if you first throw a fair coin and run A only if you get tail and otherwise output 0?

3. Let \mathcal{X}_0 and \mathcal{X}_1 efficiently samplable distributions that are (t, ε) -indistinguishable. Show that distributions \mathcal{X}_0 and \mathcal{X}_1 remain computationally indistinguishable even if the adversary can get n samples.

(a) First estimate computational distances between following games

Hint: What happens if you feed a sample $x_0 \leftarrow \mathcal{X}_0$ together an unknown sample $x_1 \leftarrow \mathcal{X}_i$ to A and use the reply to guess i.

- (b) Generalise the argumentation to the case, where the adversary A gets n samples from a distribution \mathcal{X}_i . That is, define the corresponding sequence of games $\mathcal{G}_{00...0}, \ldots, \mathcal{G}_{11...1}.$
- (c) Why do we need to assume that distributions \mathcal{X}_0 and \mathcal{X}_1 are efficiently samplable?
- 4. Consider the following game, where an adversary A gets three values x_1 , x_2 and x_3 . Two of them are sampled from the efficiently samplable distribution \mathcal{X}_0 and one of them is sampled from the efficiently samplable distribution X_1 . The adversary wins the game if it correctly determines which sample is taken from \mathcal{X}_1 .
	- (a) Find an upper bound to the success probability if distributions \mathcal{X}_0 and \mathcal{X}_1 are (t, ε) -indistinguishable.
	- (b) How does the bound on the success change if we modify the game in the following manner. First, the adversary can first make its initial guess i_0 . Then the challenger reveals $j \neq i_0$ such that x_j was sampled from \mathcal{X}_0 and then the adversary can output its final guess i_1 .

Hint: How well the adversary can perform if the challenger gives no samples to the adversary? How can you still simulate the game to the adversary who expects these samples?

5. A predicate $\pi : \{0,1\}^n \to \{0,1\}$ is said to be a ε -regular if the output distribution for uniform input distribution is nearly uniform:

$$
|\Pr[s \leftarrow \{0,1\}^n : \pi(s) = 0] - \Pr[s \leftarrow \{0,1\}^n : \pi(s) = 1]| \le \varepsilon
$$
.

A predicate π is a (t, ε) -unpredictable also known as (t, ε) -hardcore predi*cate* for a function $f: \{0,1\}^n \to \{0,1\}^{n+\ell}$ if for any *t*-time adversary

$$
\mathsf{Adv}^{\mathsf{hc-pred}}_f(\mathcal{A}) = 2 \cdot \left| \Pr\left[s \leftarrow \{0,1\}^n : \mathcal{A}(f(s)) = \pi(s)\right] - \frac{1}{2} \right| \leq \varepsilon.
$$

Prove the following statements.

- (a) Any (t, ε) -hardcore predicate is 2 ε -regular.
- (b) For a function $f: \{0,1\}^n \to \{0,1\}^{n+\ell}$, let $\pi_k(s)$ denote the kth bit of $f(s)$ and $f_k(s)$ denote the output of $f(s)$ without the kth bit. Show that if f is a (t, ε) -secure pseudorandom generator, then π_k is (t, ε) -hadcore predicate for f_k .
- (*) If a function $f: \{0,1\}^n \to \{0,1\}^{n+\ell}$ is (t,ε_1) -pseudorandom generator and $\pi : \{0,1\}^n \to \{0,1\}$ is efficiently computable predicate (t, ε_1) -hadcore, then a concatenation $f_*(s) = f(s)||\pi(s)$ is $(t, \varepsilon_1 + \varepsilon_2)$ pseudorandom generator.
- 6. Let F be a (t, q, ε) -pseudorandom function family that maps a domain M to the range C. Let $g : \mathcal{M} \to \{0,1\}$ be an arbitrary predicate. What is the success probability of a t -time adversary A in the following games?

$$
g_0^{\mathcal{A}} \n\begin{bmatrix}\nm \leftarrow \mathcal{M} \\
f \leftarrow \mathcal{F} \\
c \leftarrow f(m)\n\end{bmatrix}\n\begin{bmatrix}\nm \leftarrow \mathcal{M} \\
f \leftarrow \mathcal{F} \\
c \leftarrow f(m)\n\end{bmatrix}\n\begin{bmatrix}\nm \leftarrow \mathcal{M} \\
f \leftarrow \mathcal{F} \\
c \leftarrow f(m)\n\end{bmatrix}\n\begin{bmatrix}\neq 0 \\
e \leftarrow f(m)\neq 0 \\
\text{return } [\mathcal{A}(c) \stackrel{?}{=} g(m)]\n\end{bmatrix}
$$

Establish the same result by using the IND=⇒SEM theorem. More precisely, show that the hypothesis testing games

$$
\begin{array}{ll}\n\mathcal{G}_{m_0}^{\mathcal{A}} & \mathcal{G}_{m_1}^{\mathcal{A}} \\
\left[\begin{array}{l} f \leftarrow & \mathcal{F} \\
 c \leftarrow & f(m_0) \\
 \text{return } \mathcal{A}(c) \end{array}\right] & \left[\begin{array}{l} f \leftarrow & \mathcal{F} \\
 c \leftarrow & f(m_1) \\
 \text{return } \mathcal{A}(c) \end{array}\right]\n\end{array}\right.
$$

are $(t, 2\varepsilon)$ -indistinguishable for all $m_0, m_1 \in \mathcal{M}$.