MTAT.07.003 CRYPTOLOGY II

Reduction Types

Sven LaurUniversity of Tartu

Motivation

Security of most cryptographic constructions is based on *intractability*. ⊳ So far provable lower bounds are *trivial* for all computational problems. \triangleright It is also *highly* unlikely that such proofs do exist in a $compact$ form.

Hence, it is *impossible* to prove security of cryptographic constructions.

- ⊳ We can prove security only with respect to *intractability assumptions*.
- ⊳ All cryptographic proofs reduce a new problem to *known* problems.
- ⊳ The exact nature of security guarantees depends on a *paradigm*.
- \triangleright $\,$ However, a $decay$ in security compared to $basic$ $primitive$ is inevitable.

In this course, we do not question the *validity* of common cryptographic assumptions nor study how to device *intractable* computational problems.

Classical Reductions

Many-one reductions

Common computational problems are puzzles in the following form.

 \triangleright Find a solution (*witness*) w for a ${\sf puzzle}~x$ such that $(x,w) \in A.$

If we can convert any puzzle x of a type A into a puzzle $f(x)$ of a type B such that solution to puzzle $f(x)$ implies solution to puzzle x

$$
\forall x \in \{0,1\}^* : (\exists u : (f(x), u) \in B) \Rightarrow (\exists w : (x, w) \in A) ,
$$

then we have a *many-one reduction* $A \leq_m B$.

Now the properties of f determine the usefulness of the $\boldsymbol{reduction}$

- \triangleright The efficiency of f determines the closeness of puzzles A and $B.$
- \triangleright $\,$ Correspondence between witnesses determines structural properties.

EDGECOVER and SETCOVER problems

EDGECOVER PROBLEM:

- ⊳ Given a graph $G = (V, E)$ find a minimal set of edges C such that all vertices are covered: $\forall u \in V \; \exists v \in V : \{u,v\} \in C.$
- ⊳ Given a graph $G = (V, E)$ and a number k is there a set of edges C such that all vertices are covered and $|C| \leq k.$

SETCOVER PROBLEM:

- ⊳ Given a universe of sets $\mathcal{U} = \{S_1, \ldots, S_n\}$ find a minimal set of sets $\mathcal{C} \subseteq \mathcal{U}$ such that $\mathcal C$ contains all elements of $\mathcal{U} \colon \bigcup\limits_{S \in \mathcal{U}} S = \bigcup\limits_{S \in \mathcal{C}} S.$ S ∈U $S \in \mathcal{C}$
- ⊳ Given a universe of sets $\mathcal{U} = \{S_1, \ldots, S_n\}$ and a number k is there set of sets $\mathcal{C} \subseteq \mathcal{U}$ such that all elements are covered and $|W| \leq k.$

$\text{Ed} \text{EECover } \leq_m \text{SETCover }$

Reduction. Given a connected graph $G = (V, E)$, let the universe $\mathcal U$ consist
of all educe $\mathcal U$. E . Then the set of vertices V consiste of all elements of all edges $\mathcal{U}=E.$ Then the set of vertices V consists of all elements.

- \triangleright For obvious reasons, edge cover and set cover coincide.
- \triangleright $\,$ A time to compile one puzzle to another is linear is the size of the graph.
- \triangleright $\,$ A time to detect non-connected graphs is $\mathrm{O}(|E|\cdot|V|).$

Questions

- \triangleright Is this reduction tight?
- \triangleright Does the reduction preserve the structure of the problem?
- \triangleright Does there exist a reduction to other direction?

Black-box reductions

Many-one reductions are quite restrictive, as they act as *compilers*.

- \triangleright They cannot be used for interactive protocols.
- ⊳ Sometimes it makes sense to call a solver out several times.

Let $\mathcal B$ be a solver for a puzzle of type B . Then an algorithm $\mathcal A$ that uses
 $\mathcal B$ () as an availate salve a number $\mathcal A$ is ly sure as a black have valuation. $\mathcal{B}(\cdot)$ as an *oracle* to solve a puzzle A is known as a *black-box reduction*.

- \triangleright If the algorithm $\mathcal A$ is deterministic then $\mathcal A^{\mathcal B}$ must always output a correct answer in $\emph{reasonable}$ time for all valid inputs $x.$
- \triangleright If the algorithm $\mathcal A$ is randomised then the success of $\mathcal A^{\mathcal B}$ must be
were such began for all masses the scheme $\mathcal B$ and all unlid invents $\mathcal B$ *reasonably* large for all *reasonable* solvers $\mathcal B$ and all valid inputs $x.$

The exact meaning and security implications of ^a black-box reductiondepends on what is considered reasonable in the security analysis.

Deterministic reductions

Most deterministic reductions are just *code wrappers*, which adjust inputs so that a solver $\mathcal B$ can process them without problems.

 $\mathsf{\textbf{Discrete}}\, \mathsf{\textbf{Logarithm}}.\,$ Let $\mathbb{G}=\langle g \rangle$ be a multiplicative group generated by the element g. Then for any elements $y, z \in \mathbb{G}$ the discrete logarithm $\log_z z$ is defined as the smallest integer x such that z^x $_{z}$ y $x = y$ and \bot if $y \notin \langle z \rangle$.

An example. If there exists an algorithm $\mathcal B$ that can compute $\log_g y$ for all $y\in\mathbb{G}$, then there exists an algorithm $\mathcal A$ that can compute \log_z the running time of ${\mathcal A}$ is roughly twice as long as the running time of ${\mathcal B}.$ $_{z}$ y and

PROOF. Consider the following construction:

 $\mathcal{A}^{\mathcal{B}}$ $^{\prime\scriptscriptstyle B}(y,z)$ |
| \int return $\mathcal{B}(y) \cdot \mathcal{B}(z)^{-1}$

Randomised reductions

Not all algorithms are equally successful for all inputs. Hence, it makessense to define *advantage* over a subset of all puzzles $X \subseteq \{0,1\}^*$:

$$
\mathsf{Adv}_{X}^{\mathsf{succ}}(\mathcal{A}) = \Pr\left[x \leftarrow X, w \leftarrow \mathcal{A}(x): (x, w) \in \mathcal{A}\right] .
$$

Similarly, we can talk about average time-complexity of the algorithm ${\mathcal A}.$

Most randomised reductions provide following type of closeness guarantees

$$
Adv_Y^{\text{succ}}(\mathcal{B}) \ge \varepsilon \qquad \Longrightarrow \qquad \text{Adv}_X^{\text{succ}}(\mathcal{A}^{\mathcal{B}}) \ge \rho(\varepsilon)
$$

provided that ε is not $\textit{negligible}$ (cannot be ignored).

Random self-reducibility

A puzzle is *randomly self-reducible* if we can efficiently reduce any problem instance to ^a uniformly chosen instance. As ^a result, the worst-case runningtime and average-case running time are tightly connected.

Theorem. Discrete logarithm problem is randomly self-reducible.

 $\rm{PROOF.}$ Let $\mathcal B$ be an algorithm for computing discrete logarithm and q the size of the group $|\mathbb{G}|$. Then the following randomised algorithm

$$
\mathcal{A}^{\mathcal{B}}(y)
$$

$$
\begin{bmatrix} x \stackrel{\leftarrow}{\sim} \mathbb{Z}_q \\ \text{return } \mathcal{B}(y \cdot g^x) - x \end{bmatrix}
$$

behaves identically for all inputs and the expected running time is roughly the average-case complexity of the algorithm ^B.

White-box reductions

Oracle calls to a sub-routine $\mathcal B$ might lead to sub-optimal solution, as it $\mathcal B$ is the section of $\mathcal B$ might be possible to optimise the code $\mathcal{A}^{\mathcal{B}}$ further by analysing $\mathcal{B}.$

More formally, a *white-box* reduction is a mapping $\mathcal{B} \mapsto \mathcal{A}_{\mathcal{B}}$ such that $\mathcal{A}_{\mathcal{B}}$
is reasonably efficient and successful for all reasonable solvers \mathcal{B} is *reasonably* efficient and successful for all *reasonable* solvers $\mathcal B$.

 \triangleright The correspondence $does$ not have to be efficiently computable.

Let \mathcal{A}_* be an optimal solver. Then the white-box reduction $\mathcal{A}_\mathcal{B} \equiv \mathcal{A}_*$ is the best reduction we can propose. However, it is *nearly useless*, since it does not *connect* the puzzles A and B in any way.

- \triangleright Useful white-box reductions are strictly constructive.
- \triangleright Not many white-box reductions are known.
- ⊳ White-box reductions are not allowed by *some paradigms*.

Models of Computation

Algorithms and strategies

A *randomised function* also known as *randomised strategy* is a mapping

$$
f: \{0,1\}^* \times \Omega \to \{0,1\}^*
$$

where Ω is a *randomness space*, i.e., the output $f(x) = f(x; \omega)$ depends on a non-deterministic choice $\omega \in \Omega$.

A randomised algorithm $A: \left\{0,1\right\}^*$ that has ^a finite, precise and complete description: $\mathbb{R}^* \times \Omega \to \{0,1\}^*$ is a randomised function

- ⊳ a Boolean circuit or a circuit family (*hardware design*),
- ⊳ a program for an ordinary computer (*finite automaton*),
- \triangleright a program for an idealised computing device:
	- \diamond a program for universal Turing Machine,
	- \diamond a program for universal Random Access Machine.

Universal Turing Machine

Universal Turing Machine is ^a Turing Machine that takes in

- \diamond a program code ϕ ,
- \diamond arguments $x_1,\ldots,x_n,$
- \diamond randomness $\omega \in \{0,1\}^*$

and outputs either ^a single value or vector.

The cells of a random tape ω are filled by tossing a fair coin: $\omega_i \leftarrow\hspace{-3pt}\{ 0, 1 \}.$

Universal Turing Machine may also read dedicated network tapes:

- \diamond a single read only tape for incoming messages,
- \diamond a single write only tape for outgoing messages.

Universal Random Access Machine

Universal Random Access Machine is an idealised computing device:

- \triangleright It has infinite number of data registers $\mathsf{R}[0], \mathsf{R}[1], \mathsf{R}[2], \ldots$.
- \triangleright It has infinite number of code registers $\mathsf{C}[0], \mathsf{C}[1], \mathsf{C}[2], \ldots$
- \triangleright It has a program counter PC
- \triangleright It has a stack pointer SP

At the beginning ^a program is loaded form the tape to the code registersand PC and SP is set to zero. Next the following loop is executed:

- \triangleright Read and interpret command at location C[PC]
- \triangleright Halt if C $[\mathsf{PC}]$ is zero.

Interpreted commands form ^a simple assembly-like language.

Time-complexity

Let ${\mathcal A}$ be a randomised algorithm and let $t(x,\omega)$ denote the number of elementary steps that are needed to obtain $\mathcal{A} (x, \omega).$

Then for each input we can define:

- \triangleright average running time $\mathbf{E}\left[t(x)\right]$,
- \triangleright maximal running time $\max_{\omega \in \Omega} t(x,\omega)$.

Similarly, for all ^k-bit inputs we can define:

 \triangleright average running time $\mathbf{E}\left[t\right]$ if we fix distribution over inputs $x\in\left\{ 0,1\right\} ^{\Bbbk}$, \triangleright maximal running time $\max_{x\in\{0,1\}^{\mathsf{k}}} \max_{\omega\in\Omega} t(x,\omega).$

Finally, we can consider a t -time algorithm ${\mathcal{A}}$ that is halted after t elementary
stars. The convergenting involid output is denoted by \bot steps. The corresponding invalid output is denoted by $\bot.$