
MTAT.07.003 Cryptology II

Reduction Types

Sven Laur
University of Tartu

Motivation

Security of most cryptographic constructions is based on intractability.

⊲ So far provable lower bounds are trivial for all computational problems.

⊲ It is also highly unlikely that such proofs do exist in a compact form.

Hence, it is impossible to prove security of cryptographic constructions.

⊲ We can prove security only with respect to intractability assumptions.

⊲ All cryptographic proofs reduce a new problem to known problems.

⊲ The exact nature of security guarantees depends on a paradigm.

⊲ However, a decay in security compared to basic primitives is inevitable.

In this course, we do not question the validity of common cryptographic
assumptions nor study how to device intractable computational problems.

MTAT.07.003 Cryptology II, Reduction Types, 9 February, 2008 1

Classical Reductions

Many-one reductions

Common computational problems are puzzles in the following form.

⊲ Find a solution (witness) w for a puzzle x such that (x, w) ∈ A.

If we can convert any puzzle x of a type A into a puzzle f(x) of a type B
such that solution to puzzle f(x) implies solution to puzzle x

∀x ∈ {0, 1}
∗

: (∃u : (f(x), u) ∈ B)⇒ (∃w : (x, w) ∈ A) ,

then we have a many-one reduction A ≤m B.

Now the properties of f determine the usefulness of the reduction.

⊲ The efficiency of f determines the closeness of puzzles A and B.

⊲ Correspondence between witnesses determines structural properties.

MTAT.07.003 Cryptology II, Reduction Types, 9 February, 2008 2

EdgeCover and SetCover problems

EdgeCover Problem:

⊲ Given a graph G = (V,E) find a minimal set of edges C such that all
vertices are covered: ∀u ∈ V ∃v ∈ V : {u, v} ∈ C.

⊲ Given a graph G = (V,E) and a number k is there a set of edges C
such that all vertices are covered and |C| ≤ k.

SetCover Problem:

⊲ Given a universe of sets U = {S1, . . . , Sn} find a minimal set of sets
C ⊆ U such that C contains all elements of U :

⋃

S∈U

S =
⋃

S∈C

S.

⊲ Given a universe of sets U = {S1, . . . , Sn} and a number k is there set
of sets C ⊆ U such that all elements are covered and |W | ≤ k.

MTAT.07.003 Cryptology II, Reduction Types, 9 February, 2008 3

EdgeCover ≤m SetCover

Reduction. Given a connected graph G = (V, E), let the universe U consist
of all edges U = E. Then the set of vertices V consists of all elements.

⊲ For obvious reasons, edge cover and set cover coincide.

⊲ A time to compile one puzzle to another is linear is the size of the graph.

⊲ A time to detect non-connected graphs is O(|E| · |V |).

Questions

⊲ Is this reduction tight?

⊲ Does the reduction preserve the structure of the problem?

⊲ Does there exist a reduction to other direction?

MTAT.07.003 Cryptology II, Reduction Types, 9 February, 2008 4

Black-box reductions

Many-one reductions are quite restrictive, as they act as compilers.

⊲ They cannot be used for interactive protocols.

⊲ Sometimes it makes sense to call a solver out several times.

Let B be a solver for a puzzle of type B. Then an algorithm A that uses
B(·) as an oracle to solve a puzzle A is known as a black-box reduction.

⊲ If the algorithm A is deterministic then A
B must always output a correct

answer in reasonable time for all valid inputs x.

⊲ If the algorithm A is randomised then the success of A
B must be

reasonably large for all reasonable solvers B and all valid inputs x.

The exact meaning and security implications of a black-box reduction
depends on what is considered reasonable in the security analysis.

MTAT.07.003 Cryptology II, Reduction Types, 9 February, 2008 5

Deterministic reductions

Most deterministic reductions are just code wrappers, which adjust inputs
so that a solver B can process them without problems.

Discrete Logarithm. Let G = 〈g〉 be a multiplicative group generated by
the element g. Then for any elements y, z ∈ G the discrete logarithm logz y
is defined as the smallest integer x such that zx = y and ⊥ if y /∈ 〈z〉.

An example. If there exists an algorithm B that can compute logg y for
all y ∈ G, then there exists an algorithm A that can compute logz y and
the running time of A is roughly twice as long as the running time of B.

Proof. Consider the following construction:

A
B(y, z)

[

return B(y) ·B(z)−1

MTAT.07.003 Cryptology II, Reduction Types, 9 February, 2008 6

Randomised reductions

Not all algorithms are equally successful for all inputs. Hence, it makes
sense to define advantage over a subset of all puzzles X ⊆ {0, 1}∗:

Advsucc
X (A) = Pr [x← X,w ← A(x) : (x,w) ∈ A] .

Similarly, we can talk about average time-complexity of the algorithm A.

Most randomised reductions provide following type of closeness guarantees

Advsucc
Y (B) ≥ ε =⇒ Advsucc

X (AB) ≥ ρ(ε)

provided that ε is not negligible (cannot be ignored).

MTAT.07.003 Cryptology II, Reduction Types, 9 February, 2008 7

Random self-reducibility

A puzzle is randomly self-reducible if we can efficiently reduce any problem
instance to a uniformly chosen instance. As a result, the worst-case running
time and average-case running time are tightly connected.

Theorem. Discrete logarithm problem is randomly self-reducible.

Proof. Let B be an algorithm for computing discrete logarithm and q the
size of the group |G|. Then the following randomised algorithm

A
B(y)

[

x←u Zq

return B(y · gx)− x

behaves identically for all inputs and the expected running time is roughly
the average-case complexity of the algorithm B.

MTAT.07.003 Cryptology II, Reduction Types, 9 February, 2008 8

White-box reductions

Oracle calls to a sub-routine B might lead to sub-optimal solution, as it
might be possible to optimise the code AB further by analysing B.

More formally, a white-box reduction is a mapping B 7→ AB such that AB

is reasonably efficient and successful for all reasonable solvers B.

⊲ The correspondence does not have to be efficiently computable.

Let A∗ be an optimal solver. Then the white-box reduction AB ≡ A∗ is the
best reduction we can propose. However, it is nearly useless, since it does
not connect the puzzles A and B in any way.

⊲ Useful white-box reductions are strictly constructive.

⊲ Not many white-box reductions are known.

⊲ White-box reductions are not allowed by some paradigms.

MTAT.07.003 Cryptology II, Reduction Types, 9 February, 2008 9

Models of Computation

Algorithms and strategies

A randomised function also known as randomised strategy is a mapping

f : {0, 1}
∗
× Ω→ {0, 1}

∗

where Ω is a randomness space, i.e., the output f(x) = f(x; ω) depends on
a non-deterministic choice ω ∈ Ω.

A randomised algorithm A : {0, 1}
∗
×Ω→ {0, 1}

∗
is a randomised function

that has a finite, precise and complete description:

⊲ a Boolean circuit or a circuit family (hardware design),

⊲ a program for an ordinary computer (finite automaton),

⊲ a program for an idealised computing device:
⋄ a program for universal Turing Machine,

⋄ a program for universal Random Access Machine.

MTAT.07.003 Cryptology II, Reduction Types, 9 February, 2008 10

Universal Turing Machine

Universal Turing Machine is a Turing Machine that takes in

⋄ a program code φ,

⋄ arguments x1, . . . , xn,

⋄ randomness ω ∈ {0, 1}∗

and outputs either a single value or vector.

The cells of a random tape ω are filled by tossing a fair coin: ωi ←u {0, 1}.

Universal Turing Machine may also read dedicated network tapes:

⋄ a single read only tape for incoming messages,

⋄ a single write only tape for outgoing messages.

MTAT.07.003 Cryptology II, Reduction Types, 9 February, 2008 11

Universal Random Access Machine

Universal Random Access Machine is an idealised computing device:

⊲ It has infinite number of data registers R[0],R[1], R[2],

⊲ It has infinite number of code registers C[0],C[1],C[2],

⊲ It has a program counter PC

⊲ It has a stack pointer SP

At the beginning a program is loaded form the tape to the code registers
and PC and SP is set to zero. Next the following loop is executed:

⊲ Read and interpret command at location C[PC]

⊲ Halt if C[PC] is zero.

Interpreted commands form a simple assembly-like language.

MTAT.07.003 Cryptology II, Reduction Types, 9 February, 2008 12

Time-complexity

Let A be a randomised algorithm and let t(x, ω) denote the number of
elementary steps that are needed to obtain A(x, ω).

Then for each input we can define:

⊲ average running time E [t(x)],

⊲ maximal running time maxω∈Ω t(x, ω).

Similarly, for all k-bit inputs we can define:

⊲ average running time E [t] if we fix distribution over inputs x ∈ {0, 1}

k

,

⊲ maximal running time max
x∈{0,1}k maxω∈Ω t(x, ω).

Finally, we can consider a t-time algorithm A that is halted after t elementary
steps. The corresponding invalid output is denoted by ⊥.

MTAT.07.003 Cryptology II, Reduction Types, 9 February, 2008 13

