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Motivation

Security of most cryptographic constructions is based on intractability.

⊲ So far provable lower bounds are trivial for all computational problems.

⊲ It is also highly unlikely that such proofs do exist in a compact form.

Hence, it is impossible to prove security of cryptographic constructions.

⊲ We can prove security only with respect to intractability assumptions.

⊲ All cryptographic proofs reduce a new problem to known problems.

⊲ The exact nature of security guarantees depends on a paradigm.

⊲ However, a decay in security compared to basic primitives is inevitable.

In this course, we do not question the validity of common cryptographic
assumptions nor study how to device intractable computational problems.
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Classical Reductions



Many-one reductions

Common computational problems are puzzles in the following form.

⊲ Find a solution (witness) w for a puzzle x such that (x, w) ∈ A.

If we can convert any puzzle x of a type A into a puzzle f(x) of a type B
such that solution to puzzle f(x) implies solution to puzzle x

∀x ∈ {0, 1}
∗

: (∃u : (f(x), u) ∈ B)⇒ (∃w : (x, w) ∈ A) ,

then we have a many-one reduction A ≤m B.

Now the properties of f determine the usefulness of the reduction.

⊲ The efficiency of f determines the closeness of puzzles A and B.

⊲ Correspondence between witnesses determines structural properties.
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EdgeCover and SetCover problems

EdgeCover Problem:

⊲ Given a graph G = (V,E) find a minimal set of edges C such that all
vertices are covered: ∀u ∈ V ∃v ∈ V : {u, v} ∈ C.

⊲ Given a graph G = (V,E) and a number k is there a set of edges C
such that all vertices are covered and |C| ≤ k.

SetCover Problem:

⊲ Given a universe of sets U = {S1, . . . , Sn} find a minimal set of sets
C ⊆ U such that C contains all elements of U :

⋃

S∈U

S =
⋃

S∈C

S.

⊲ Given a universe of sets U = {S1, . . . , Sn} and a number k is there set
of sets C ⊆ U such that all elements are covered and |W | ≤ k.
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EdgeCover ≤m SetCover

Reduction. Given a connected graph G = (V, E), let the universe U consist
of all edges U = E. Then the set of vertices V consists of all elements.

⊲ For obvious reasons, edge cover and set cover coincide.

⊲ A time to compile one puzzle to another is linear is the size of the graph.

⊲ A time to detect non-connected graphs is O(|E| · |V |).

Questions

⊲ Is this reduction tight?

⊲ Does the reduction preserve the structure of the problem?

⊲ Does there exist a reduction to other direction?
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Black-box reductions

Many-one reductions are quite restrictive, as they act as compilers.

⊲ They cannot be used for interactive protocols.

⊲ Sometimes it makes sense to call a solver out several times.

Let B be a solver for a puzzle of type B. Then an algorithm A that uses
B(·) as an oracle to solve a puzzle A is known as a black-box reduction.

⊲ If the algorithm A is deterministic then A
B must always output a correct

answer in reasonable time for all valid inputs x.

⊲ If the algorithm A is randomised then the success of A
B must be

reasonably large for all reasonable solvers B and all valid inputs x.

The exact meaning and security implications of a black-box reduction
depends on what is considered reasonable in the security analysis.
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Deterministic reductions

Most deterministic reductions are just code wrappers, which adjust inputs
so that a solver B can process them without problems.

Discrete Logarithm. Let G = 〈g〉 be a multiplicative group generated by
the element g. Then for any elements y, z ∈ G the discrete logarithm logz y
is defined as the smallest integer x such that zx = y and ⊥ if y /∈ 〈z〉.

An example. If there exists an algorithm B that can compute logg y for
all y ∈ G, then there exists an algorithm A that can compute logz y and
the running time of A is roughly twice as long as the running time of B.

Proof. Consider the following construction:

A
B(y, z)

[

return B(y) ·B(z)−1
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Randomised reductions

Not all algorithms are equally successful for all inputs. Hence, it makes
sense to define advantage over a subset of all puzzles X ⊆ {0, 1}∗:

Advsucc
X (A) = Pr [x← X,w ← A(x) : (x,w) ∈ A] .

Similarly, we can talk about average time-complexity of the algorithm A.

Most randomised reductions provide following type of closeness guarantees

Advsucc
Y (B) ≥ ε =⇒ Advsucc

X (AB) ≥ ρ(ε)

provided that ε is not negligible (cannot be ignored).
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Random self-reducibility

A puzzle is randomly self-reducible if we can efficiently reduce any problem
instance to a uniformly chosen instance. As a result, the worst-case running
time and average-case running time are tightly connected.

Theorem. Discrete logarithm problem is randomly self-reducible.

Proof. Let B be an algorithm for computing discrete logarithm and q the
size of the group |G|. Then the following randomised algorithm

A
B(y)

[

x←u Zq

return B(y · gx)− x

behaves identically for all inputs and the expected running time is roughly
the average-case complexity of the algorithm B.
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White-box reductions

Oracle calls to a sub-routine B might lead to sub-optimal solution, as it
might be possible to optimise the code AB further by analysing B.

More formally, a white-box reduction is a mapping B 7→ AB such that AB

is reasonably efficient and successful for all reasonable solvers B.

⊲ The correspondence does not have to be efficiently computable.

Let A∗ be an optimal solver. Then the white-box reduction AB ≡ A∗ is the
best reduction we can propose. However, it is nearly useless, since it does
not connect the puzzles A and B in any way.

⊲ Useful white-box reductions are strictly constructive.

⊲ Not many white-box reductions are known.

⊲ White-box reductions are not allowed by some paradigms.
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Models of Computation



Algorithms and strategies

A randomised function also known as randomised strategy is a mapping

f : {0, 1}
∗
× Ω→ {0, 1}

∗

where Ω is a randomness space, i.e., the output f(x) = f(x; ω) depends on
a non-deterministic choice ω ∈ Ω.

A randomised algorithm A : {0, 1}
∗
×Ω→ {0, 1}

∗
is a randomised function

that has a finite, precise and complete description:

⊲ a Boolean circuit or a circuit family (hardware design),

⊲ a program for an ordinary computer (finite automaton),

⊲ a program for an idealised computing device:
⋄ a program for universal Turing Machine,

⋄ a program for universal Random Access Machine.
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Universal Turing Machine

Universal Turing Machine is a Turing Machine that takes in

⋄ a program code φ,

⋄ arguments x1, . . . , xn,

⋄ randomness ω ∈ {0, 1}∗

and outputs either a single value or vector.

The cells of a random tape ω are filled by tossing a fair coin: ωi ←u {0, 1}.

Universal Turing Machine may also read dedicated network tapes:

⋄ a single read only tape for incoming messages,

⋄ a single write only tape for outgoing messages.
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Universal Random Access Machine

Universal Random Access Machine is an idealised computing device:

⊲ It has infinite number of data registers R[0],R[1], R[2], . . ..

⊲ It has infinite number of code registers C[0],C[1],C[2], . . ..

⊲ It has a program counter PC

⊲ It has a stack pointer SP

At the beginning a program is loaded form the tape to the code registers
and PC and SP is set to zero. Next the following loop is executed:

⊲ Read and interpret command at location C[PC]

⊲ Halt if C[PC] is zero.

Interpreted commands form a simple assembly-like language.
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Time-complexity

Let A be a randomised algorithm and let t(x, ω) denote the number of
elementary steps that are needed to obtain A(x, ω).

Then for each input we can define:

⊲ average running time E [t(x)],

⊲ maximal running time maxω∈Ω t(x, ω).

Similarly, for all k-bit inputs we can define:

⊲ average running time E [t] if we fix distribution over inputs x ∈ {0, 1}

k

,

⊲ maximal running time max
x∈{0,1}k maxω∈Ω t(x, ω).

Finally, we can consider a t-time algorithm A that is halted after t elementary
steps. The corresponding invalid output is denoted by ⊥.
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