^A Crash Course to Coin Flipping

Sven Laurswen@math.ut.ee

University of Tartu

Coin flipping by telephone

The protocol above assures that participants output ^a uniformly distributedbit even if one of the participants is malicious.

- \triangleright If the commitment scheme is perfectly binding, then Lucy can also generate public parameters for the commitment scheme.
- \triangleright If the commitment scheme is perfectly hiding, then Charlie can also generate public parameters for the commitment scheme.

Weak security guarantee

Theorem. If we consider only such adversarial strategies that do not cause premature halting and additionally assume that the commitment scheme is (t,ε_1) -hiding and (t,ε_2) -binding, then

$$
\frac{1}{2} - \max\left\{\varepsilon_1, \varepsilon_2\right\} \le \Pr\left[b_1 \oplus b_2 = 1\right] \le \frac{1}{2} + \max\left\{\varepsilon_1, \varepsilon_2\right\}
$$

provided that at least one participant is honest.

Proof

- \triangleright <code>Lucy</code> cannot cheat unless it double opens the commitment.
- \triangleright As commitment is hiding the Charlie cannot guess $b_1.$

Real and Ideal World

Real versus ideal world approach

Formal definition

Let $\boldsymbol{\phi}=(\phi_1,\phi_2,\phi_{\rm a})$ be the set of input states of protocol participants \mathcal{P}_1 and \mathcal{P}_2 , and the adversary $\mathcal A$ before the protocol. Let $\boldsymbol \psi = (\psi_1, \psi_2, \psi_{\rm a})$ be the set of output states after the execution of the protocol.

Similarly, let $\bm{\phi}^\circ=(\phi^\circ_1,\phi^\circ_2,\phi^\circ_a)$ and $\bm{\psi}^\circ=(\psi^\circ_1,\psi^\circ_2,\psi^\circ_a)$ denote the input and output states in the ideal world. Normally, one assumes that $\phi^\circ \equiv \phi$.

A protocol is $(t_{\rm re}, t_{\rm id}, \varepsilon)$ -secure if for any $t_{\rm re}$ -time real world adversary ${\cal A}$ there exists a t_{id} -time ideal world adversary \mathcal{A}° such that for any input distribution $\mathfrak D$ the output distributions ψ and ψ° are statistically ε -close.

The exact nature of the definition depends on the details

- \triangleright What kind of malicious behaviour is allowed...
- \triangleright What kind of ideal world model we use...
- \triangleright In which contexts the protocol is executed...

Canonical constructive correspondence

The desired mapping $\mathcal{A}\mapsto\mathcal{A}^{\circ}$ is defined through a code wrapper $\mathcal{S}.$

- \triangleright The simulator $\mathcal S$ controls corrupted parties:
	- \diamond it submits their inputs to the trusted party $\mathfrak T,$
	- \diamond it learns the response of $\mathfrak T$.
- \rhd The simulator ${\cal S}$ controls the adversary ${\cal A}$:
	- \diamond it must mimic the real protocol execution,
	- \diamond it can rewind adversary if something goes wrong.

Simulator for the second party

$$
\mathcal{S}_2^{\mathcal{P}_2^*}(y)
$$
\n
$$
\begin{bmatrix}\n\omega_2 \leftarrow \Omega_2, & \mathbf{pk} \leftarrow \mathbf{Gen} \\
\text{For } i = 1, \dots k \text{ do} \\
\begin{bmatrix}\nb_1 \leftarrow \{0, 1\} \\
(c, d) \leftarrow \mathbf{Com}_{\mathsf{pk}}(b_1) \\
b_2 \leftarrow \mathcal{P}_2^*(\mathsf{pk}, c; \omega_2) \\
\text{if } b_1 \oplus b_2 = y \text{ then} \\
\begin{bmatrix}\n\text{Send } d \text{ to } \mathcal{P}_2^* \text{ and output whatever } \mathcal{P}_2^* \text{ outputs.} \\
\text{return Failure}\n\end{bmatrix}\n\end{bmatrix}
$$

Failure probability

If commitment scheme is $(k\cdot t, \varepsilon_1)$ -hiding, then for any t -time adversary \mathcal{P}^*_2 the failure probability

$$
\Pr\left[\mathsf{Failure}\right] \leq \Pr\left[\mathcal{S}_{6}^{\mathcal{P}_{2}^{*}}(y) = \mathsf{Failure}\right] + k \cdot \varepsilon_{1} \leq 2^{-k} + k \cdot \varepsilon_{1}.
$$

The corresponding security guarantee

If the output y is chosen uniformly over $\{0,1\}$, then the last effective value of b_1 has also an almost uniform distribution: $|\Pr\left[b_1=1|\neg \mathsf{F}\text{ailure}\right]-\frac{1}{2}| \leq 1$ $k \cdot \varepsilon_1$. Hence, the outputs of games 1 has also an almost uniform distribution: $\Pr[b_1$ $_{1} = 1|\neg \mathsf{F}$ ailure $]-\frac{1}{2}$ 2 $\vert \leq$

$$
\mathcal{G}_{\text{ideal}}^{\mathcal{S}_{2}^{\phi_{2}^{\ast}}}
$$
\n
$$
\mathcal{G}_{\text{real}}^{\left(\phi_{1},\phi_{2}\right)} \leftarrow \mathfrak{D}
$$
\n
$$
\left\{\n\begin{array}{l}\n\phi_{1},\phi_{2}\rangle \leftarrow \mathfrak{D} \\
y \leftarrow_{\overline{u}} \{0,1\}\n\end{array}\n\right.\n\right\}\n\left\{\n\begin{array}{l}\n\phi_{1},\phi_{2}\rangle \leftarrow \mathfrak{D} \\
\mathfrak{P}_{1} \text{ and } \mathfrak{P}_{2}^{\ast} \text{ run the protocol.} \\
\psi_{1} \leftarrow (\phi_{1}, y)\n\end{array}\n\right.\n\right\}
$$
\n
$$
\left\{\n\begin{array}{l}\n\psi_{1} \leftarrow \mathfrak{P}_{1} \\
\psi_{2} \leftarrow \mathfrak{S}_{2}^{\mathfrak{P}_{2}^{\ast}(\phi_{2})}\n\end{array}\n\right.\n\right.\n\left\{\n\begin{array}{l}\n\psi_{1} \leftarrow \mathfrak{P}_{1} \\
\psi_{2} \leftarrow \mathfrak{P}_{2}^{\ast} \\
\text{return } (\psi_{1}, \psi_{2})\n\end{array}\n\right.\n\right.
$$

are at most $k \cdot \varepsilon_2$ statistical distance between output distributions is at most $2^{-k} + 2k \cdot \varepsilon_1.$ $_2$ apart if the run of $\mathcal{S}_2^\mathcal{P}$ ∗ $\frac{^J}{2}$ $\frac{1}{2}$ is successful. Consequently, the

Simulator for the first party

 $\overline{\mathcal{S}}^\mathcal{P}_1$ $\stackrel{\mathfrak{P}_1^*}{\scriptscriptstyle{1}}(y)$ $\int \omega_1 \leftarrow \Omega_1$, pk l l $\begin{array}{c} \end{array}$ \leftarrow Gen $,c \leftarrow$ $\mathcal P$ $_{1}^{*}(\mathsf{pk};\omega_{1})$ d μ_0 ← $\mathcal P$ $u_1^*(0;\omega_1), d_1 \leftarrow$ $\mathcal P$ $_{1}^{*}(1;\omega_{1})$ b $\mathbf{0}_1^0 \leftarrow \mathsf{Open}_{\mathsf{pk}}(c, d_0), \,\, \mathbb{b}_1^1$ $\frac{1}{1} \leftarrow \mathsf{Open}_{\mathsf{pk}}(c, d_1)$ if $\bot \neq b_1^0 \neq b_1^1 \neq \bot$ then Failure if $b_1^0 = \bot = b_1^1$ then \int Send the Halt command to $\mathcal{T}.$ $\left\lfloor \right.$ Return whatever \mathcal{P}^*_1 returns. Choose $b_2 \leftarrow \{0, 1\}$ and re-run the protocol with ω_1 and b_2 . if $b_1^0 = \perp$ then $b_1 \leftarrow$ $b_1^0 = \perp$ then $b_1 \leftarrow b$ $b_2 \leftarrow b_1 \oplus y$ $\frac{1}{1}$ else $b_1 \leftarrow b$ 0 1Re-run the protocol with ω_1 and b_2 if $b_1^{b_2} = \bot$ then Send the Halt command to T. Return whatever \mathcal{P}^*_1 returns.

Further analysis

If the commitment scheme is (t,ε_2) -binding, then the failure probability is less than $\varepsilon_2.$ If the output y is chosen uniformly over $\{0,1\}$, then the value of b_2 seen by \mathcal{P}^{\ast}_1 is uniformly distributed.

Consequently, the output distributions of $\mathcal{S}_{1}^{\mathcal{P}^{\ast}_{1}}$ and \mathcal{P}_{2} in the ideal world coincide with the real world outputs if \mathcal{S}_1 does not fail.

Strong security guarantee

Theorem. If a commitment scheme is $(k \cdot t, \varepsilon_1)$ -hiding and (t, ε_2) -binding, then for any plausible t -time real world adversary there exists $\mathrm{O}(k\cdot t)$ -time ideal world adversary such that the output distributions in the real and ideal world are $\max\left\{2^{-k}+2k\cdot\varepsilon_1,\varepsilon_2\right\}$ -close.

 $\textsf{Corollary.}$ $\,$ (Weak security guarantee) If we consider only such adversarial strategies that do not cause premature halting and additionally assume thatthe commitment scheme is $(k \cdot t, \varepsilon_1)$ -hiding and (t, ε_2) -binding, then

$$
\frac{1}{2} - \max\left\{2^{-k} + 2k \cdot \varepsilon_1, \varepsilon_2\right\} \le \Pr\left[b_1 \oplus b_2 = 1\right] \le \frac{1}{2} + \max\left\{2^{-k} + 2k \cdot \varepsilon_1, \varepsilon_2\right\}
$$

provided that at least one participant is honest.

Sequential composition

If we execute the Blum protocol π sequentially ℓ times, then we can also stack simulators sequentially to get the ideal world adversary.

$$
\mathcal{G}_{\text{real}}^{\mathcal{P}_{1}^{\ast}}
$$
\n
$$
\left[\begin{array}{l}\n(\phi_{1}, \phi_{2}) \leftarrow \mathfrak{D} \\
(\phi_{1}, \phi_{2}) \leftarrow \mathfrak{D} \\
(\phi_{1}, \phi_{2}) \leftarrow (\psi_{1}, \psi_{2})\n\end{array}\right]\n\right]\n\left[\begin{array}{l}\n(\phi_{1}, \phi_{2}) \leftarrow \mathfrak{D} \\
(\phi_{1}, \phi_{2}) \leftarrow (\psi_{1}, \psi_{2})\n\end{array}\right]\n\right]\n\left[\begin{array}{l}\n(\phi_{1}, \phi_{2}) \leftarrow \mathfrak{D} \\
(\phi_{1}, \phi_{2}) \leftarrow (\psi_{1}, \psi_{2})\n\end{array}\right]\n\right]\n\left[\begin{array}{l}\n(\phi_{1}, \phi_{2}) \leftarrow \mathfrak{D} \\
(\phi_{1}, \phi_{2}) \leftarrow (\psi_{1}, \psi_{2})\n\end{array}\right]\n\right]\n\left[\begin{array}{l}\n(\phi_{1}, \phi_{2}) \leftarrow (\psi_{1}, \psi_{2})\n\end{array}\right]\n\right]\n\left[\begin{array}{l}\n\text{use } \mathcal{S}_{1} \text{ to get } (\psi_{1}, \psi_{2})\n\end{array}\right]\n\left[\begin{array}{l}\n\text{use } \mathcal{S}_{1} \text{ to get } (\psi_{1}, \psi_{2})\n\end{array}\right]\n\left[\begin{array}{l}\n\text{return } (\psi_{1}, \psi_{2})\n\end{array}\right]
$$

The final difference is ^a sum of individual differences.

Parallel composition

The simulation of this protocol is significantly more complex

 \triangleright The number of potential replies $b_2^1,\ldots b_2^\ell$ grows exponentially wrt $\ell.$ \triangleright We cannot sequentially alter values c_1,\ldots, c_ℓ to get the correct output. Classical simulation strategies have exponential time-complexity wrt ℓ .

Non-rewinding simulators

- \triangleright If the commitment scheme is extractable, then the simulator \mathcal{S}_1 can create $(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}$ and choose b_2 according to $\mathsf{Extr}_{\mathsf{sk}}(c).$
- \triangleright If the commitment scheme is equivocable, then the simulator \mathcal{S}_2 can create $(\mathsf{pk},\mathsf{sk}) \leftarrow \mathsf{Gen}$ and then send a fake commitment to \mathcal{P}_2^* are non-it with Equive according to the reply h_2 to get the desired α open it with Equiv_{sk} according to the reply b_{2} to get the desired output. 2 $_2^{*}$ and later
- \triangleright If the commitment scheme is both extractable and equivocable, then simulators \mathcal{S}_1 and \mathcal{S}_2 are non-rewinding and it is easy to construct simulators also for the parallel composition of several protocols.