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Coin flipping by telephone

Gen

pk pkb1 ←u {0, 1} b2 ←u {0, 1}

(c, d)← Compk(b1)
c

b2

d
b1 ← Openpk(c, d)

return b1 ⊕ b2return b1 ⊕ b2

The protocol above assures that participants output a uniformly distributed
bit even if one of the participants is malicious.

⊲ If the commitment scheme is perfectly binding, then Lucy can also
generate public parameters for the commitment scheme.

⊲ If the commitment scheme is perfectly hiding, then Charlie can also
generate public parameters for the commitment scheme.
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Weak security guarantee

Theorem. If we consider only such adversarial strategies that do not cause
premature halting and additionally assume that the commitment scheme is
(t, ε1)-hiding and (t, ε2)-binding, then

1

2
−max {ε1, ε2} ≤ Pr [b1 ⊕ b2 = 1] ≤

1

2
+ max {ε1, ε2}

provided that at least one participant is honest.

Proof

⊲ Lucy cannot cheat unless it double opens the commitment.

⊲ As commitment is hiding the Charlie cannot guess b1.
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Real and Ideal World



Real versus ideal world approach

P1 P2Gen

pk pkb1 ←u {0, 1} b2 ←u {0, 1}

(c, d)← Compk(b1)
c

b2

d
b1 ← Openpk(c, d)

return b1 ⊕ b2return b1 ⊕ b2

P1 P2y ←u {0, 1}
hello hello
y

proceed y

return yreturn y
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Formal definition

Let φ = (φ1, φ2, φa) be the set of input states of protocol participants P1

and P2, and the adversary A before the protocol. Let ψ = (ψ1, ψ2, ψa) be
the set of output states after the execution of the protocol.

Similarly, let φ◦ = (φ◦1, φ
◦
2, φ
◦
a) and ψ◦ = (ψ◦1, ψ

◦
2, ψ

◦
a) denote the input and

output states in the ideal world. Normally, one assumes that φ◦ ≡ φ.

A protocol is (tre, tid, ε)-secure if for any tre-time real world adversary A

there exists a tid-time ideal world adversary A◦ such that for any input
distribution D the output distributions ψ and ψ◦ are statistically ε-close.

The exact nature of the definition depends on the details

⊲ What kind of malicious behaviour is allowed...

⊲ What kind of ideal world model we use...

⊲ In which contexts the protocol is executed...
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Canonical constructive correspondence

y ←u {0, 1}
hello hello
y

proceed y

φ1 φ2

S

φa

ψ1 ψ2 ψa

The desired mapping A 7→ A◦ is defined through a code wrapper S.

⊲ The simulator S controls corrupted parties:
⋄ it submits their inputs to the trusted party T,

⋄ it learns the response of T.

⊲ The simulator S controls the adversary A:
⋄ it must mimic the real protocol execution,

⋄ it can rewind adversary if something goes wrong.
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Simulator for the second party

S
P
∗
2

2 (y)






































ω2← Ω2, pk← Gen

For i = 1, . . . k do


















b1 ←u {0, 1}

(c, d)← Compk(b1)

b2 ← P
∗
2(pk, c;ω2)

if b1 ⊕ b2 = y then
[

Send d to P
∗
2 and output whatever P

∗
2 outputs.

return Failure
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Failure probability

S
P
∗
2

2 (y)








































ω2← Ω2, pk← Gen

For i = 1, . . . k do






















b1←u {0, 1}

(c, d)← Compk(b1)

b2← P
∗
2(pk, c;ω2)

if b1 ⊕ b2 = y then
[

return Success

return Failure

S
P
∗
2

4 (y)








































ω2 ← Ω2, pk← Gen

For i = 1, . . . k do






















b1←u {0, 1}

(c, d)← Compk(0)

b2← P
∗
2(pk, c;ω2)

if b1 ⊕ b2 = y then
[

return Success

return Failure

S
P
∗
2

6 (y)




































ω2 ← Ω2, pk← Gen

For i = 1, . . . k do


















(c, d)← Compk(0)

b2← P
∗
2(pk, c;ω2)

b1←u {0, 1}

if b1 ⊕ b2 = y then
[

return Success

return Failure

If commitment scheme is (k · t, ε1)-hiding, then for any t-time adversary P∗2

the failure probability

Pr [Failure] ≤ Pr [S
P
∗
2

6 (y) = Failure] + k · ε1 ≤ 2−k + k · ε1 .
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The corresponding security guarantee

If the output y is chosen uniformly over {0, 1}, then the last effective value
of b1 has also an almost uniform distribution:

∣

∣Pr [b1 = 1|¬Failure]− 1
2

∣

∣ ≤
k · ε1. Hence, the outputs of games

G
S

P
∗
2

2
ideal

2

6

6

6

6

6

6

6

6

6

4

(φ1, φ2)← D

y ←u {0, 1}

ψ1 ← (φ1, y)

ψ2 ← S
P
∗
2(φ2)

2

return (ψ1, ψ2)

G
P
∗
2

real
2

6

6

6

6

6

6

6

6

4

(φ1, φ2)← D

P1 and P
∗
2 run the protocol.

ψ1 ← P1

ψ2 ← P
∗
2

return (ψ1, ψ2)

are at most k · ε2 apart if the run of S
P
∗
2

2 is successful. Consequently, the
statistical distance between output distributions is at most 2−k + 2k · ε1.
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Simulator for the first party
S

P
∗
1

1 (y)




































































ω1 ←u Ω1, pk← Gen , c← P
∗
1(pk;ω1)

d0← P
∗
1(0;ω1), d1← P

∗
1(1;ω1)

b01← Openpk(c, d0), b
1
1← Openpk(c, d1)

if ⊥ 6= b01 6= b11 6= ⊥ then Failure

if b01 = ⊥ = b11 then








Send the Halt command to T.

Choose b2←u {0, 1} and re-run the protocol with ω1 and b2.

Return whatever P
∗
1 returns.

if b01 = ⊥ then b1← b11 else b1← b01

b2← b1 ⊕ y

Re-run the protocol with ω1 and b2

if bb21 = ⊥ then Send the Halt command to T.

Return whatever P
∗
1 returns.
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Further analysis

If the commitment scheme is (t, ε2)-binding, then the failure probability is
less than ε2. If the output y is chosen uniformly over {0, 1}, then the value
of b2 seen by P∗1 is uniformly distributed.

Consequently, the output distributions of S
P
∗
1

1 and P2 in the ideal world
coincide with the real world outputs if S1 does not fail.
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Strong security guarantee

Theorem. If a commitment scheme is (k · t, ε1)-hiding and (t, ε2)-binding,
then for any plausible t-time real world adversary there exists O(k · t)-time
ideal world adversary such that the output distributions in the real and ideal
world are max

{

2−k + 2k · ε1, ε2
}

-close.

Corollary. (Weak security guarantee) If we consider only such adversarial
strategies that do not cause premature halting and additionally assume that
the commitment scheme is (k · t, ε1)-hiding and (t, ε2)-binding, then

1

2
−max

{

2−k + 2k · ε1, ε2
}

≤ Pr [b1 ⊕ b2 = 1] ≤
1

2
+ max

{

2−k + 2k · ε1, ε2
}

provided that at least one participant is honest.
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Sequential composition

If we execute the Blum protocol π sequentially ℓ times, then we can also
stack simulators sequentially to get the ideal world adversary.

G
P
∗
1

real
























(φ1, φ2)← D

Run π to get (ψ1, ψ2)

(φ1, φ2)← (ψ1, ψ2)

Run π to get (ψ1, ψ2)

· · ·

return (ψ1, ψ2)

G
(S∗1)P

∗
1

ideal
























(φ1, φ2)← D

Use S1 to get (ψ1, ψ2)

(φ1, φ2)← (ψ1, ψ2)

Use S1 to get (ψ1, ψ2)

· · ·

return (ψ1, ψ2)

The final difference is a sum of individual differences.
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Parallel composition

P1 P2Gen

pk pkb11, . . . , b
ℓ
1 ←u {0, 1} b12, . . . b

ℓ
2←u {0, 1}

(ci, di)← Compk(b
i
1)

c1, . . . , cℓ

b12, . . . , b
ℓ
2

d1, . . . , dℓ
bi1 ← Openpk(c1, di)

return b1 ⊕ b2return b1 ⊕ b2

The simulation of this protocol is significantly more complex

⊲ The number of potential replies b12, . . . b
ℓ
2 grows exponentially wrt ℓ.

⊲ We cannot sequentially alter values c1, . . . , cℓ to get the correct output.

Classical simulation strategies have exponential time-complexity wrt ℓ.
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Non-rewinding simulators

⊲ If the commitment scheme is extractable, then the simulator S1 can
create (pk, sk)← Gen and choose b2 according to Extrsk(c).

⊲ If the commitment scheme is equivocable, then the simulator S2 can
create (pk, sk)← Gen and then send a fake commitment to P∗2 and later
open it with Equivsk according to the reply b2 to get the desired output.

⊲ If the commitment scheme is both extractable and equivocable, then
simulators S1 and S2 are non-rewinding and it is easy to construct
simulators also for the parallel composition of several protocols.
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