IND⇒SEM Proof Explained

Sven Laurswen@math.ut.ee

University of Tartu

Theoretical Background

Semantic security

Formal definition

Consider the following games:

 $\mathcal{G}_0^{\mathcal{A}}$ $\sqrt{2}$ $\begin{array}{c} \end{array}$ $s \leftarrow \mathcal{S}_0$ \boldsymbol{g} $\prime \leftarrow \mathcal{A}(f(s))$ returnn $[g^{'} \stackrel{?}{=} g(s)]$ $\mathcal{G}_1^{\mathcal{A}}$ $\sqrt{2}$ $\overline{\mathsf{L}}$ $s \leftarrow \mathcal{S}_0$ \boldsymbol{g} $^\prime$ \leftarrow $\leftarrow \argmax_{g'} \Pr[g(s) = g']$ returnn $[g^{'} \stackrel{?}{=} g(s)]$

Then we can define ^a true guessing advantage

$$
\begin{aligned} \mathsf{Adv}_{f,g}^{\mathsf{sem}}(\mathcal{A}) &= \Pr\left[\mathcal{G}_0^{\mathcal{A}} = 1\right] - \Pr\left[\mathcal{G}_1^{\mathcal{A}} = 1\right] \\ &= \Pr\left[s \leftarrow \mathcal{S}_0 : \mathcal{A}(f(s)) = g(s)\right] - \max_{g'} \Pr\left[g(s) = g'\right] \end{aligned}.
$$

$\mathsf{IND}\Longrightarrow \mathsf{SEM}$

Theorem. If for all $s_i, s_j \in \text{supp}(\mathcal{S}_0)$ distributions $f(s_i)$ and $f(s_j)$ are (t,ε) -indistinguishable, then for all t -time adversaries \mathcal{A} :

 $\mathsf{Adv}^{\mathsf{sem}}_{f,g}(\mathcal{A}) \leq \varepsilon$.

Note that

 \triangleright function g might be randomised,

- ⊳ function $g: \mathcal{S}_0 \to \left\{0,1\right\}^*$ may extremely difficult to compute,
- \triangleright it might be even infeasible to get samples from the distribution $\mathcal{S}_0.$

Proof in Small Steps

Mixture of distributions

Consider ^a following sampling algorithm

GetSample() $\begin{bmatrix} i \leftarrow \mathcal{D} \ s \leftarrow \mathcal{S}_i \ \textsf{return } s \end{bmatrix}$

where $\mathcal D$ is a distribition over the set $\{0, 1, \ldots, t\}$ and $\mathcal S_0, \ldots, \mathcal S_t$ are just some distributions. Then

$$
\Pr\left[\mathsf{GetSample}() = s_0\right] = \sum_{i_0 = 0}^{t} \Pr\left[i \leftarrow \mathcal{D}: i = i_0\right] \cdot \Pr\left[s \leftarrow \mathcal{S}_{i_0}: s = s_0\right]
$$

Classical sampling idiom (1/2)

We can reverse the process. Assume that s is sampled from the distribution S and let $g: S \rightarrow \{0, 1, \ldots, t\}$ be a deterministic function. Then

$$
\Pr\left[s \leftarrow \mathcal{S}: s = s_0\right] = \sum_{i_0=1}^t \Pr\left[s \leftarrow \mathcal{S}: g(s) = i_0\right] \cdot \Pr\left[s_0 | g(s) = i_0\right]
$$

where by definition

$$
\Pr\left[s_0|g(s) = i_0\right] = \frac{\Pr\left[s \leftarrow S : s = s_0 \land g(s) = i_0\right]}{\Pr\left[s \leftarrow S : g(s) = i_0\right]}
$$

Classical sampling idiom (2/2)

Let now $\mathcal D$ be the distribution over $\{0,1,\ldots,t\}$ such that

$$
Pr[i \leftarrow \mathcal{D} : i = i_0] = Pr[s \leftarrow \mathcal{S} : g(s) = i]
$$

and let \mathcal{S}_{i_0} be defined so that

$$
Pr[s \leftarrow S_i : s = s_0] = Pr[s_0|g(s) = i_0].
$$

Then the the output od the sampling procedure $\mathsf{GetSample}()$ coincides with the distribution $\mathcal{S}.$

Slightly modified security game

Let $\mathcal D$ and $\mathcal S_0,\ldots,\mathcal S_t$ be the distributions defined in the previous slide. Then
we san rewrite the same $\mathcal G$, without changing its meaning: we can rewrite the game \mathcal{G}_0 without changing its meaning:

$$
\mathcal{G}_0^{\mathcal{A}}
$$
\n
$$
\begin{bmatrix}\ni & \leftarrow & \mathcal{D} \\
s & \leftarrow & \mathcal{S}_i \\
g' & \leftarrow & \mathcal{A}(f(s)) \\
\text{return } [g' \stackrel{?}{=} i]\n\end{bmatrix}
$$

In other words ${\mathcal{A}}$ must distinguish between following hypotheses

$$
\mathcal{H}_0 = [i \stackrel{?}{=} 0], \mathcal{H}_1 = [i \stackrel{?}{=} 1], \ldots, \mathcal{H}_t = [i \stackrel{?}{=} t].
$$

It is ^a guessing game between many hypotheses.

Computational distance between hypotheses

Let ${\mathcal A}$ be a t -time algorithm that must distinguish hypotheses ${\mathcal H}_i$ and ${\mathcal H}_j$.
Then the convergence Then the corresponding security games are following

$$
\overline{\mathcal{G}}_{i}^{\mathcal{A}} \qquad \qquad \overline{\mathcal{G}}_{j}^{\mathcal{A}}
$$
\n
$$
\begin{bmatrix}\ns \leftarrow \mathcal{S}_{i} & \text{and} \\
\text{return } \mathcal{A}(f(s)) & \qquad \begin{bmatrix}\ns \leftarrow \mathcal{S}_{j} \\
\text{return } \mathcal{A}(f(s))\n\end{bmatrix}\n\end{bmatrix}
$$

In other words

$$
\Pr\left[\overline{\mathcal{G}}_i^{\mathcal{A}}=0\right]=\sum_{s_0\in \text{supp}(\mathcal{S}_i)} \Pr\left[s\leftarrow \mathcal{S}_i : s=s_0\right] \cdot \Pr\left[\mathcal{A}(f(s_0))=0\right]
$$

Double summation trick

For obvious reasons

$$
\sum_{s_0 \in \text{supp}(\mathcal{S}_i)} \Pr\left[s \leftarrow \mathcal{S}_i : s = s_0\right] = 1 = \sum_{s_1 \in \text{supp}(\mathcal{S}_j)} \Pr\left[s \leftarrow \mathcal{S}_j : s = s_1\right]
$$

Consequently

$$
|\Pr[\overline{\mathcal{G}}_i^{\mathcal{A}} = 0] - \Pr[\overline{\mathcal{G}}_j^{\mathcal{A}} = 0]|
$$

\n
$$
\leq \sum_{\substack{s_0 \in \text{supp}(\mathcal{S}_i) \\ s_1 \in \text{supp}(\mathcal{S}_j)}} \Pr[s \leftarrow \mathcal{S}_i : s = s_0] \cdot \Pr[s \leftarrow \mathcal{S}_j : s = s_1] \underbrace{|\Pr[\mathcal{A}(f(s_0)) = 0] - \Pr[\mathcal{A}(f(s_1)) = 0]|}_{\leq \varepsilon}
$$

\n
$$
\leq \varepsilon
$$

and thus cd $_{x}^{t}(\mathcal{H}_{i},\mathcal{H}_{j})\leq\varepsilon.$

Summary

Since modified \mathcal{G}_0 is nothing more than guessing game between many hypotheses $\mathcal{H}_0,\ldots,\mathcal{H}_t$ that are (t,ε) -indistinguishable, we have proven the claim for deterministic functions $g.$

$\mathsf{Average\text{-}case} \leq \mathsf{worst\text{-}case}(1/2)$

For the final proof step, assume $\mathsf{Adv}_{f,g}^{\mathsf{sem}}(\mathcal{A})\,>\,\varepsilon$ for some randomised function

$$
g: \mathcal{S}_0 \times \Omega \to \{0,\ldots,t\} .
$$

Now by definition

$$
\mathsf{Adv}_{f,g}^{\mathsf{sem}}(\mathcal{A}) = \Pr\left[s \leftarrow \mathcal{S}_0, \omega \leftarrow \Omega : \mathcal{A}(f(s)) = g(s, \omega)\right] - \max_{g'} \Pr\left[g(s) = g'\right] \right].
$$

Now

$$
\Pr\left[s \leftarrow S_0, \omega \leftarrow \Omega : \mathcal{A}(f(s)) = g(s, \omega)\right]
$$
\n
$$
= \sum_{\omega_0 \in \Omega} \Pr\left[\omega \leftarrow \Omega : \omega = \omega_0\right] \cdot \Pr\left[s \leftarrow S_0 : \mathcal{A}(f(s)) = g(s, \omega_0)\right]\right]
$$
\n
$$
\leq \max_{\omega_0 \in \Omega} \Pr\left[s \leftarrow S_0 : \mathcal{A}(f(s)) = g(s, \omega_0)\right]
$$

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, ²⁰⁰⁸

$\mathsf{Average\text{-}case} \leq \mathsf{worst\text{-}case}(2/2)$

Let $g_0: \mathcal{S}_0 \to \mathbb{Z}$ be a deterministic function $g_0(s) = g(s, \omega_0)$ where

$$
\omega_0 = \operatorname*{argmax}_{\omega_0 \in \Omega} \Pr[s \leftarrow S_0 : \mathcal{A}(f(s)) = g(s, \omega_0)] \enspace .
$$

Then by construction

$$
\mathsf{Adv}_{f,g}^{\mathsf{sem}}(\mathcal{A}) \leq \mathsf{Adv}_{f,g_0}^{\mathsf{sem}}(\mathcal{A})
$$

and thus we can indeed observe only deterministic functions.

QED