MTAT.07.003 Cryptology II Spring 2010 / Exercise session X

Examples of Sigma Protocols

- 1. The Guillou-Quisquater identification scheme (GQ scheme) is directly based on the RSA problem. The identification scheme is a honest verifier zero-knowledge proof that the prover knows x such that $x^e = y \mod n$ where n is an RSA modulus, i.e., the public information $\mathsf{pk} = (n, e, y)$ and the secret is x. The protocol itself is following:
 - 1. \mathcal{P} chooses $r \leftarrow \mathbb{Z}_n^*$ and sends $\alpha \leftarrow r^e$ to \mathcal{V} .
 - 2. \mathcal{V} chooses $\beta \leftarrow \{0,1\}$ and sends it to \mathcal{P} .
 - 3. \mathcal{P} computes $\gamma \leftarrow rx^{\beta}$ and sends it to \mathcal{V} .
 - 4. \mathcal{V} accepts the proof if $\gamma^e = \alpha y^{\beta}$.

Prove that the Guillou-Quisquater identification scheme is sigma protocol.

- (a) The GQ identification scheme is functional.
- (b) The GQ identification scheme has the zero-knowledge property.
- (c) The GQ identification protocol is specially sound.
- (d) Amplify soundness guarantees with parallel and sequential composition and derive the corresponding knowledge bounds.
- 2. Let \mathbb{G} be a cyclic group with prime number of elements q and let g_1 and g_2 be generators of the group. Now consider a sigma protocol for proving the knowledge of x such that $g_1^x = y_1$ and $g_2^x = y_2$, i.e., the public information is (g_1, g_2, y_1, y_2) and the secret knowledge is x. The protocol is following:
 - 1. \mathcal{P} chooses $r \leftarrow \mathbb{Z}_q$ and sends $\alpha_1 \leftarrow g_1^r$ and $\alpha_2 \leftarrow g_2^r$ to \mathcal{V} .
 - 2. \mathcal{V} chooses $\beta \leftarrow_{\overline{u}} \mathbb{Z}_q$ and sends it to \mathcal{P} .
 - 3. \mathcal{P} computes $\gamma \leftarrow x\beta + r$ and sends it to the verifier \mathcal{V} .
 - 4. \mathcal{V} accepts the proof if $g_1^{\gamma} = \alpha_1 y_1^{\beta}$ and $g_2^{\gamma} = \alpha_2 y_2^{\beta}$.

Prove that the protocol is indeed a sigma protocol.

- (a) The protocol is functional and has the zero-knowledge property.
- (b) The protocol is specially sound and two colliding transcripts indeed reveal x such that $g_1^x = y_1$ and $g_2^x = y_2$.

As a concrete application of this protocol construct a proof that the El-Gamal encryption (c_1, c_2) is an encryption of $\mathsf{Enc}_{\mathsf{pk}}(1)$.

Applications of Sigma Protocols

- 3. Recall that in the first step of certified computations the prover \mathcal{P} commits bit by bit to his or inputs x_1, \ldots, x_n and uses sigma protocol to prove the validity of commitments. Use Pedersen commitments and the Schnorr protocol POK_x $[y = g^x]$ to implement this strategy.
 - (a) Construct a sigma protocol POK_{c,g} $[\exists r : c = y^x g^r]$.
 - (b) Construct a sigma protocol $POK_{c,g}$ [$\exists d : Open(c, d) \in \{0, 1\}$].
 - (c) Use homomorphic properties of the Pedersen commitment to construct a sigma protocol for proving $x_1 + \cdots + x_n = 1$ and $x_i \in \{0, 1\}$.
- 4. In the second phase of certified computations the prover reveals commitments to all intermediate values in the Boolean circuit. As in the previous exercise use Pedersen commitments and the Schnorr protocol $POK_x [y = g^x]$ to construct sigma protocols to prove the following facts
 - (a) Values c_u and c_v are the commitments of u and v such that $v = \neg u$.
 - (b) Commitments c_u , c_v c_w of u, v and w are such that $w = u \wedge v$.
 - (c) Commitment c_f of f is such that $f = x_0 \land \neg x_1 \lor \neg x_3 \land x_4$.
- 5. Many e-voting protocols use sigma protocols to prove the correctness of several crucial steps. In particular, one often needs to prove
 - (a) c is a lifted ElGamal encryption of 0 or 1;
 - (b) c is a lifted ElGamal encryption of $x \in \{0, \dots 2^{\ell}\};$
 - (c) $(c_{ij})_{i,j=1}^n$ is an Pedersen commitment to a permutation matrix.

Use the Schnorr protocol $POK_x [y = g^x]$ and properties of lifted ElGamal and Pedersen commitments to construct the corresponding sigma protocols.

- (*) Let \mathbb{G} be a cyclic group with prime number of elements q as in the previous exercise. Design a sigma proof that the prover knows x_1 and x_2 such that $y = g_1^{x_1} g_2^{x_2}$. The latter is often used together with the lifted ElGamal encryption $\overline{\mathsf{Enc}}_{\mathsf{pk}}(x) = \mathsf{Enc}(g^x)$ that is additively homomorphic. Construct sigma protocols for the following statements.
 - (a) An encryption c is $\overline{\mathsf{Enc}}_{\mathsf{pk}}(m)$ and m is known or publicly fixed.
 - (b) An encryption c_2 is computed as $c \cdot \mathsf{Enc}_{\mathsf{pk}}(1)$.
 - (c) An encryption c_2 is computed as $c_1^y \cdot \mathsf{Enc}_{\mathsf{pk}}(1)$.
 - (d) An encryption c_3 is computed as $c_1 \cdot c_2 \cdot \mathsf{Enc}_{\mathsf{pk}}(1)$.
- 6. Recall that a generic Schnorr signature $(m, \alpha, \beta, \gamma)$ is defined as follows $\alpha \leftarrow g^r$ for $r \leftarrow \mathbb{Z}_q$, $\beta \leftarrow h(m, \alpha)$ and $\gamma = x\beta + r$ where $y = g^x$ is the public key of a signer and x is the secret key. Consider the security of the

Schnorr signature scheme against existential forgeries, where the function h is replaced with a random oracle $\mathcal{O}_h(\cdot)$ that computes uniformly chosen function from $\mathcal{F}_{all} = \{h : \mathbb{G} \times \mathcal{M} \to \mathbb{Z}_q\}.$

- (a) Convert an adversary that makes at most q_h queries to random oracle $\mathcal{O}_h(\cdot)$ and succeeds with the probability ε in the key only model can be converted to an adversary \mathcal{A}_* , which queries each message only once from \mathcal{O}_h and returns only valid signatures or halts. Show that the running times of \mathcal{A} and \mathcal{A}_* are comparable and \mathcal{A}_* makes at most $q_h + 1$ queries.
- (b) Convert \mathcal{A}_* to an adversary \mathcal{B} that initiates up to $q_h + 1$ Schnorr identification protocols and then finishes successfully one these identification protocols with the same probability than \mathcal{A}_* succeeds in existential forgery.
- (c) Look at the second type of matrix games we considered in the lectures and provide the expected number of probes needed to extract the secret key from \mathcal{B} and \mathcal{A} .
- (d) It is common to consider security in the model where adversary can use signing oracle up to g_s times. Show that each of the queries $\operatorname{Sign}(m)$ can be simulated by choosing $\beta, \gamma \leftarrow \mathbb{Z}_q$ and computing $\alpha \leftarrow g^{\gamma} y^{-\beta}$ and then defining $\mathcal{O}_h(m, \alpha) = \beta$. Why and when is this assignment consistent with the definition of random oracle?