
MTAT.07.003 Cryptology II
Spring 2010 / Exercise Session VIII

1. Entity authentication protocols are often used to prove liveness of a device
or a person. For instance, ATM machines normally ask PIN codes several
times during long transactions to assure that the person is still present.
Such liveness proofs can be implemented with one-way functions.

(a) Let f : X → Y be a one-way function and let n be the maximal
number of protocol invocations. Then a secret key sk can be chosen
as a tuple of random values x1, . . . xn ←u X and the corresponding
public key pk as a tuple of hash values f(x1), . . . , f(xn).

Each time when a party wants to prove liveness he or she will release

non-published sub-key xi. The proof is successful if f(xi)
?
= yi where

yi is the ith component of the public key pk.

Prove that if f is (t, ε1)-secure one-way function and protocols are
executed sequentially, then the probability that a t-time adversary
succeeds in the ith authentication without seeing xi is at most ε.

(b) Consider a modification of the scheme described above, where f :
X → X is a permutation and in the setup phase the party computes
an hash chain xn ←u X , xi ← f(xi+1) for i ∈ {1, . . . , n− 1} and
publishes x0 ← f(x1) as a public key. In liveness proofs, sub-keys xi

are released one-by-one as before. The proof is valid if xi−1 = f(xi).

Prove that (t, ε)-secure one-way permutation protocols are executed
sequentially, then the probability that a t-time adversary succeeds in
the ith authentication without seeing xi is at most ε.

How large can be the success probability of a t-time adversary that can
attack any of these liveness proofs?

2. The sizes of the public and private of the liveness proofs described in (a)
part of the previous exercise grow linearly wrt to the maximal number of
invocations. The solution (b) requires a linear amount of work wrt n if we
do not store the intermediate states xi or some liveness proofs are missing.

(a) Show that we can use a (t, ε2)-collision resistant hash function family
to compact the public key. Describe the corresponding compaction
procedure and the resulting proof. Estimate the size of proofs and
the amount of time needed to compute them.

Hint: Binary trees provide an optimal hashing scheme.

(b) Show that we can use (t, ε3)-pseudorandom function family F to
compact also the private key sk. Describe the corresponding scheme
and recompute the security guarantees.

Hint: How to stretch randomness in a most optimal way?

1



3. Consider the following entity authentication protocol proposed by Bellare
and Rogaway. In the Map-1 protocol, parties P1 and P2 share the secret
key k ←u K of a (t, ε)-pseudorandom function f : {0, 1}∗ × K → T . More
formally, the induced function family F

.
= {fk} is (t, ε)-pseudorandom.

1. P1 sends a random nonce r1 ←u R to P2.

2. P2 generates a random nonce r2 ←u R and sends the identities id1, id2,
nonces r1, r2 and the authentication tag f(id1‖id2‖r1‖r2, k) to P1.

3. P1 replies id1, r2 and the authentication tag f(id1‖r2, k) to P2.

Parties P1 and P2 halt if the received messages are not in correct form.
Otherwise, both parties are convinced that they are indeed talking with
each other. Analyse the security of Map-1 protocol in the standalone
setting, where P1 and P2 run a single instance of the protocol by sending
messages through the adversary A who can alter, drop or insert messages
into the conversation. The adversary A succeeds in deception if both
parties reach accepting state but the adversary has altered some messages.

(a) Formalise the execution of Map-1 protocol as a game that ends with
1 iff A succeeds in deception. Note that A does not have o respect
the temporal order. For example, A can transfer r̂1 to P1 before P1

has released r1. Estimate the probability that the adversary A sends
r̂1 6= ri to P2 and still succeeds in deception.

(b) Estimate the probability that the adversary A sends (îd1, îd2, r̂1, r̂2) 6=
(id1, id2, r1, r2) to P1 and still succeeds in deception.

(c) Estimate the probability that A sends (îd1, r̂2) 6= (id1, r2) to P1 and
still succeeds in deception.

(d) Summarise the results and give the final bound on deception.

4. The Kerberos protocol is uses a trusted key generation server T to set
up shared keys between participants P1, . . . , Pn. Let (Gen, Enc, Dec) be a
IND-CCA2 secure symmetric cryptosystem. Then in a setup phase, each
party Pi shares a secret key ski ← Gen with the trusted server T. To set
up a new session key skij ← Gen between Pi and Pj , the parties P1, P2

and T execute the following protocol.

1. Pi sends idi, idj and a random nonce r1 ←u R to the server T.

2. T generates a new session key skij ← Gen and sends back:

ticket← Encskj
(skij , idi, expiration time) ,

enc-info← Encski
(skij , r1, expiration time, idj) .

3. Pi decrypts enc-info creates another nonce r2 ←u R and sends ticket

and Encskij
(idi, r2) to Pj, who replies Encskij

(r2).

2



Participants halt if some messages are not in expected form. An adversary
A succeeds in deception if either P1 or P2 reach the accepting state but
one of them has a fraudulent output.

(a) Estimate the probability that Pi accepts altered enc-info.

(b) Estimate the probability that Pj accepts altered ticket.

(c) Estimate the probability that Pj halts but Pi accepts.

(d) Give the final bound on the deception probability.

5. Let (Gen, Enc, Dec) be (t, ε)-IND-CCA2 secure cryptosystem such that the
message space M is an additive group. Then the classical challenge-
response protocol for proving the possession of sk is following:

1. The verifier V chooses m←u M and sends Encpk(m) to the prover P.

2. Given a challenge c, the prover P replies m← Decsk(c).

3. The verifier V accepts if m = m to V.

However, sometimes one needs to prove that he or she possesses two differ-
ent secret keys or only one of them. The corresponding proofs are known
as conjunctive and disjunctive proofs.

Conjunctive proof for secret keys sk0 and sk1:

1. The verifier V chooses m0, m1 ←u M and sends challenge Encpk
0
(m0)

and Encpk
1
(m1) to the prover P.

2. Given challenge ciphertexts c0, c1, the prover P uses both secret keys
sk0 and sk1 and replies m0 ← Decsk0

(c0) and m1 ← Decsk1
(c1) to V.

3. The verifier V accepts if m0 = m0 and m1 = m1.

Disjunctive proof for secret keys sk0 and sk1:

1. The verifier V chooses m←u M and sends the corresponding challenge
Encsk0

(m; r0) for r0 ←R, and Encsk1
(m; r1) for r1 ←R together with

encryptions of random nonces Encsk0
(r1) and Encsk1

(r0) to P.

2. Given challenge ciphertexts c1, c2, c3, c4, the prover P uses one of the
secret keys ski to decrypt a challenge m and the nonce r¬i used to
randomise the other encryption c¬i. If c¬i = Encpk

¬i
(m; r¬i), the

prover P sends m to V, otherwise P can halt as V cheats.

3. The verifier V accepts if m = m.

Consider a simple standalone setting, where a prover and a verifier execute
a protocol to be analysed only once in isolation and prove the following
facts about conjunctive and disjunctive proofs.

(a) A prover can succeed in conjunctive proof only if he or she knows
both secret keys and a prover fails in disjunctive proof if he or she
does not know neither of the secret keys.

3



(b) Even a malicious verifier cannot reliably detect which secret key is
known by the honest prover.

6. Conjunctive and disjunctive proofs of possession can be used as a building-
blocks for more complex relations.

(a) Construct a proof of possession, where the prover has to have at least
two secret keys out of three.

(b) Generalise this construction and show that for any monotone formula
φ : {0, 1}n → {0, 1}. More precisely, let the ith bit of x ∈ {0, 1}n

denote whether a prover has a secret key ski. Show that there exists
a proof of possession, where a prover succeeds only if φ(x) = 1.

4


