MTAT.07.003 Cryptology II Spring 2010 / Exercise session III / Example solution

Problem. Consider the following game, where an adversary \mathcal{A} gets three values x_1 , x_2 and x_3 . Two of them are sampled from the efficiently samplable distribution \mathcal{X}_0 and one of them is sampled from the efficiently samplable distribution \mathcal{X}_1 . The adversary wins the game if it correctly determines which sample is taken from \mathcal{X}_1 . Find an upper bound to the success probability if distributions \mathcal{X}_0 and \mathcal{X}_1 are (t, ε) -indistinguishable.

Solution. Any such problem can be split into three conceptual parts: formalisation of the attack scenario, game manipulation, and final probability computations. One possible formalisation of the attack scenario is given below

$$\mathcal{G}_{0}^{\mathcal{A}} \begin{bmatrix} x_{1} \leftarrow \mathcal{X}_{0} \\ x_{2} \leftarrow \mathcal{X}_{0} \\ x_{3} \leftarrow \mathcal{X}_{1} \\ \pi \leftarrow \mathsf{Perm}(\{1, 2, 3\}) \\ i \leftarrow \mathcal{A}(x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)}) \\ \mathbf{return} \ [\pi(i) \stackrel{?}{=} 3] \end{bmatrix}$$

The fourth line in the game models random shuffling of the values x_1, x_2, x_3 . If we choose uniformly a permutation π over $\{1, 2, 3\}$, the elements $x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)}$ are in a random order. Obviously, the guess of \mathcal{A} is correct if and only if $\pi(i) = 3$. As a second step, we modify the game in the following way

$\mathcal{G}_0^\mathcal{A}$		$\mathcal{G}_1^\mathcal{A}$
$\int x_1 \leftarrow \mathcal{X}_0$		$\int x_1 \leftarrow \mathcal{X}_0$
$x_2 \leftarrow \mathcal{X}_0$		$x_2 \leftarrow \mathcal{X}_0$
$x_3 \leftarrow \mathcal{X}_1$	\xrightarrow{IND}	$x_3 \leftarrow \mathcal{X}_0$
$\pi \leftarrow_{\!$		$\pi \leftarrow_{\!$
$i \leftarrow \mathcal{A}(x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)})$		$i \leftarrow \mathcal{A}(x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)})$
return $[\pi(i) \stackrel{?}{=} 3]$		return $[\pi(i) \stackrel{?}{=} 3]$

Note that the games differ only in a single line: x_3 is chosen either from \mathcal{X}_0 or from \mathcal{X}_1 depending on the game. The latter allows us to use the entire game as

a distinguisher for \mathcal{X}_0 and \mathcal{X}_1 . Namely, let us define a new adversary

$$\mathcal{B}(x) \begin{cases} x_1 \leftarrow \mathcal{X}_0 \\ x_2 \leftarrow \mathcal{X}_0 \\ x_3 \leftarrow x \\ \pi \leftarrow \text{Perm}(\{1, 2, 3\}) \\ i \leftarrow \mathcal{A}(x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)}) \\ \text{return } [\pi(i) \stackrel{?}{=} 3] \end{cases}$$

against the indistinguishability games

$$\begin{array}{l} \mathcal{Q}_0^{\mathcal{B}} & \mathcal{Q}_1^{\mathcal{B}} \\ \begin{bmatrix} x \leftarrow \mathcal{X}_0 & & \\ \mathbf{return} \ \mathcal{B}(x) & & \\ \end{bmatrix} \begin{array}{l} x \leftarrow \mathcal{X}_1 \\ \mathbf{return} \ \mathcal{B}(x) \end{array}$$

By the (t, ε) -indistinguishability assumptions

$$\mathsf{Adv}_{\mathcal{X}_0,\mathcal{X}_1}^{\mathsf{ind}}(\mathcal{B}) = \left| \Pr\left[\mathcal{Q}_0^{\mathcal{B}} = 1 \right] - \Pr\left[\mathcal{Q}_1^{\mathcal{B}} = 1 \right] \right| \le \varepsilon$$

for any *t*-time adversary \mathcal{B} . Let us estimate the behaviour of our concrete adversary by inserting its definition into the games \mathcal{Q}_0 and \mathcal{Q}_1 :

$\mathcal{Q}_0^{\mathcal{B}}$	$\mathcal{Q}_1^{\mathcal{B}}$
$\int x \leftarrow \mathcal{X}_0$	$\int x \leftarrow \mathcal{X}_1$
$x_1 \leftarrow \mathcal{X}_0$	$x_1 \leftarrow \mathcal{X}_0$
$x_2 \leftarrow \mathcal{X}_0$	$x_2 \leftarrow \mathcal{X}_0$
$x_3 \leftarrow x$	$x_3 \leftarrow x$
$\pi \leftarrow \operatorname{Perm}(\{1,2,3\})$	$\pi \leftarrow_{\!$
$i \leftarrow \mathcal{A}(x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)})$	$i \leftarrow \mathcal{A}(x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)})$
return $[\pi(i) \stackrel{?}{=} 3]$	return $[\pi(i) \stackrel{?}{=} 3]$

By doing simple syntactic changes that do not alter the behaviour of games, we can convert $\mathcal{Q}_0^{\mathcal{B}}$ to $\mathcal{G}_1^{\mathcal{A}}$ and $\mathcal{Q}_1^{\mathcal{B}}$ to $\mathcal{G}_0^{\mathcal{A}}$. Hence, we have established that

$$\left|\Pr\left[\mathcal{G}_{0}^{\mathcal{A}}=1\right]-\Pr\left[\mathcal{G}_{1}^{\mathcal{A}}=1\right]\right|=\left|\Pr\left[\mathcal{Q}_{1}^{\mathcal{B}}=1\right]-\Pr\left[\mathcal{G}_{0}^{\mathcal{B}}=1\right]\right|\leq\varepsilon$$

provided that the running-time of \mathcal{B} is less than t. Let $t_{\mathcal{A}}$ be the running-time of \mathcal{A} and $t_{\rm s}$ time needed to get a sample from \mathcal{X}_0 or \mathcal{X}_1 . Then the running time of \mathcal{B} is $2t_{\rm s} + t_{\mathcal{A}} + O(1)$. Hence, for all $t - 2t_{\rm s} - O(1)$ time adversaries

$$\left|\Pr\left[\mathcal{G}_{0}^{\mathcal{A}}=1\right]-\Pr\left[\mathcal{G}_{1}^{\mathcal{A}}=1\right]\right| \leq \varepsilon \quad . \tag{1}$$

By doing syntactic changes that do not alter the behaviour of the game, we can rewrite the game \mathcal{G}_1 even further

 $\begin{array}{lll} \mathcal{G}_{1}^{\mathcal{A}} & & \mathcal{G}_{2}^{\mathcal{A}} \\ x_{1} \leftarrow \mathcal{X}_{0} & & & \\ x_{2} \leftarrow \mathcal{X}_{0} & & & \\ x_{3} \leftarrow \mathcal{X}_{0} & \xrightarrow{syntax} & & \\ \pi \xleftarrow{u} \operatorname{Perm}(\{1, 2, 3\}) & & & \\ i \leftarrow \mathcal{A}(x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)}) & & & \\ \mathbf{return} \ [\pi(i) \stackrel{?}{=} 3] & & & \\ \end{array} \right.$

Note that the behaviour of the game does not change since \mathcal{A} gets the same input distribution $\mathcal{X}_0 \times \mathcal{X}_0 \times \mathcal{X}_0$ in both games. As the output of \mathcal{A} is fixed before the permutation is chosen, we get

$$\Pr\left[\mathcal{G}_{2}^{\mathcal{A}}=1\right] = \frac{1}{3} \quad . \tag{2}$$

By combing (1) and (2) we obtain

$$\Pr\left[\mathcal{G}_0^{\mathcal{A}} = 1\right] \le \frac{1}{3} + \varepsilon$$

provided that the running-time of \mathcal{A} is $t - 2t_s - O(1)$.

Comments. if distributions \mathcal{X}_0 and \mathcal{X}_1 are (t, ε) -indistinguishable, it is always possible to change the game by replacing a line $x \leftarrow \mathcal{X}_0$ with a line $x \leftarrow \mathcal{X}_1$. The total time-complexity of the game sets limitations on the overall running time of the adversary, as the corresponding distinguisher \mathcal{B} must simulate the game inside its code. By applying such rewriting rules long enough, we can prove computational closeness of many complex games.