
MTAT.07.003 Cryptology II
Spring 2010 / Exercise Session III

1. Let X0 be a uniform distribution over Z16 and let X1 be a uniform distri-
bution over {0, 2, 4, 6, 8, 10, 12, 14}.

(a) What is the statistical difference between X0 and X1?

(b) Find an distinguishing strategy A that minimises the ratio of false
positives β(A) and achieves false negative rate α(A) = 0%.

(c) Find an distinguishing strategy A that minimises the ratio of false
positives β(A) and achieves false negative rate α(A) ≤ 50%.

(d) Generalise the distinguishing strategy and find minimal ratio of false
positives β(A) for all bounds α(A) ≤ α0.

2. Normally, it is impossible to compute computational distance between
two distributions directly since the number of potential distinguishing al-
gorithms is humongous. However, for really small time-bounds it can be
done. Here, we assume that all distinguishers A : Z16 → {0, 1} are im-
plemented as Boolean circuits consisting of Not, And and Or gates and
the corresponding time-complexity is just the number of logic gates. For
example, A(x3x2x1x0) = x1 has time-complexity 0 and A(x3x2x1x0) =
x1 ∨ ¬x3 ∧ x2 has time-complexity 3.

(a) Let X0 be a uniform distribution over Z16 and let X1 be a uniform
distribution over {0, 2, 4, 6, 8, 10, 12, 14}. What is cd

1
x(X0,X1)?

(b) Find a uniform distribution X2 over some 8 element set such that
cd

1
x(X0,X2) is minimal. Compute cd

2
x(X0,X2) and cd

3
x(X0,X2).

(c) Find a uniform distribution X3 over some 8 element set such that
cd

1
x(X0,X3) + cd

1
x(X0,X3) is minimal.

(d) Estimate for which value of t the distances cd
t
x(X0,X1) and sdx(X0,X1)

coincide for all distributions over Z16.

3. Let A be a t-time distinguisher and let α(A) = Pr [A = 1|H0] and β(A) =
Pr [A = 0|H1] be the ratios of false negatives and false positives. Show
that for any c there exists a t + O(1)-time adversary B such that

α(B) = (1 − c) · α(A) and β(B) = c + (1− c) · β(A) .

Are there any practical settings where such trade-offs are economically
justified? Give some real world examples.

Hint: What happens if you first throw a fair coin and run A only if you
get tail and otherwise output 0?

(⋆) Let the time-complexity of distinguishing algorithms be defined as in Ex-
ercise 2. Find disjoint distributions X0 and X1 over Z256 such that their
computational distance is minimal. Tabulate the results for time-bounds
0, 1, . . . , 16. More precisely, find the optimal distribution pair for each
time-bound and their computational distance for all time-bounds.
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4. Consider the following game, where an adversary A gets three values x1,
x2 and x3. Two of them are sampled from the efficiently samplable dis-
tribution X0 and one of them is sampled from the efficiently samplable
distribution X1. The adversary wins the game if it correctly determines
which sample is taken from X1.

(a) Find an upper bound to the success probability if distributions X0

and X1 are (t, ε)-indistinguishable.

(b) How does the bound on the success change if we modify the game in
the following manner. First, the adversary can first make its initial
guess i0. Then the challenger reveals j 6= i0 such that xj was sampled
from X0 and then the adversary can output its final guess i1.

Hint: How well the adversary can perform if the challenger gives no
samples to the adversary? How can you still simulate the game to
the adversary who expects these samples?

5. Recall that a game is a two-party protocol between the challenger G and
an adversary A and that the output of the game GA is always determined
by the challenger. Prove the following claims:

(a) Any hypothesis testing scenario H can be formalised as a game G
such that Pr [A = b|H] = Pr [GA = b] for all adversaries A.

(b) For two simple hypotheses H0 and H1, there is a game G such that

cd
t
⋆(H0,H1) = 2 · max

A is t-time

∣

∣Pr [GA = 1]− 1
2

∣

∣ .

(c) The computational distance between games defined as follows

cd⋆(G0,G1) = max
A is t-time

|Pr [GA

0 = 1]− Pr [GA

1 = 1]| .

Show that this quantity is indeed a pseudo-metric:

cd
t
⋆(G0,G1) = cd

t
⋆(G1,G0) ,

cd
t
⋆(G0,G2) ≤ cd

t
⋆(G0,G1) + cd

t
⋆(G1,G2) .

When is the computational distance a proper metric, i.e.,

cd
t
⋆(G0,G1) 6= 0 ⇔ sd⋆(G0,G1) 6= 0 ?

6. Let X0 and X1 efficiently samplable distributions that are (t, ε)-indis-
tinguishable. Show that distributions X0 and X1 remain computationally
indistinguishable even if the adversary can get n samples.

(a) First estimate computational distances between following games

GA

00






x0 ← X0

x1 ← X0

return A(x0, x1)

GA

01






x0 ← X0

x1 ← X1

return A(x0, x1)

GA

11






x0 ← X1

x1 ← X1

return A(x0, x1)
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Hint: What happens if you feed a sample x0 ← X0 together an
unknown sample x1 ← Xi to A and use the reply to guess i.

(b) Generalise the argumentation to the case, where the adversary A gets
n samples from a distribution Xi. That is, define the corresponding
sequence of games G00...0, . . . ,G11...1.

(c) Why do we need to assume that distributions X0 and X1 are efficiently
samplable?

(⋆) Usually, the statistical distance sd⋆(G0,G1) is defined as a limiting value
sd⋆(G0,G1) = limt→∞ cd

t
⋆(G0,G1). Express the statistical distance in terms

of the distributions of challenger replies

pi(yi|x1, y1, . . . , xi) = Pr

[

Gi sends y as the ith message to A given

that preceding messages were x1, y1, . . . , xi

]

where x1 be the first message sent by the challenger Gi, y1 the correspond-
ing reply from the adversary A and the last message yn corresponds to the
output of the game. Note that there are essentially two types of games. In
the interactive hypothesis testing games, the output of Gi is determined by
the last reply xn of A, i.e., yn = xn. In other more general types of games,
yn can arbitrarily depend on the previous messages x1, . . . , xn received by
the challenger Gi.

(⋆) Prove that (t, ε)-pseudorandom generators f : {0, 1}
n
→ {0, 1}

m
exist for

sufficiently big values of m and n, if we do not limit the computational
complexity of the function f . Give an interpretation to this result.

Hint: First prove that there are only finite number of t-time adversaries
and that these adversaries can perfectly distinguish only a fixed number
functions f : {0, 1}

n
→ {0, 1}

m
for any number of m, n.

(⋆) Let f : S → {0, 1}
∗

be an efficiently predictable from f(s). That is, there
exists a t-time algorithm that achieves

Adv
sem

f,f (A) = Pr [s← S : A(f(s)) = f(s)]− Pr [s← S : f(s) = f(s)] ≥ ε

for some probability distribution over S. Prove that there exist a 2t al-
gorithm B and two states s0, s1 ∈ S such that Adv

ind

f(s0),f(s1)(B) ≥ ε.
Conclude that f cannot be deterministic and Pr [f(s) = y] ≤ ε for an in-
vertible random function f . State the last result in terms of min-entropy.
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