
MTAT.07.003 Cryptology II
Spring 2010 / Exercise Session II

1. Let G be a finite group such that all elements y ∈ G can be expressed
as powers of g ∈ G. Then the discrete logarithm problem is following.
Given y ∈ G, find a smallest integer x such that gx = y in finite group
G. Discrete logarithm problem is known to be hard in general, i.e., all
universal algorithms for computing logarithm run in time Ω(

√

|G|).

(a) Show that for a fixed group G, there exists a Turing machine that
finds the discrete logarithm for every y ∈ G in O(log2 |G|) steps.

(b) Show that for a fixed group G, there exists an analogous Random
Access Machine that achieves the same efficiency.

(c) Generalise the previous construction and show that for every fixed
function f : {0, 1}n → {0, 1}m there exists a Turing machine and
a Random Access Machine such that they compute f(x) for every
input x ∈ {0, 1}

n
in O(n+m) steps.

(d) Are these constructions also valid in practise? Explain why these
inconsistencies disappear when we formalise algorithms through uni-
versal computing devices.

Hint: What is the time-complexity of binary search algorithms?

2. Consider a classical Turing machine without internal working tapes, i.e.,
the Turning machine has a single one-sided (input) tape that initially
contains inputs and must contain the desired output after the execution.

(a) Show that all sorting algorithms take at least Ω(n2) steps where n is
the total length of inputs x1, . . . , xk. What is the time-complexity of
best sorting algorithms? Explain this contradiction.

(b) Does the minimal time-complexity change if the Turing machine has
internal working tapes?

(c) Sketch how one can simulate execution of Random Access Machines
on a Turing machine. What is the corresponding overhead?

(⋆) Construct a set of tasks that can be implemented significantly more
efficiently on Turing machines with ℓ+1 working tapes than on Turing
machines with ℓ tapes.

Hint: It is well-known fact that reversing n-bit string takes Ω(n2) steps
on a Turing machine without working tapes.

3. Let A1,A2,A3,A5 be algorithms for finding discrete logarithm such that
the success probability Pr [x← Ai(y) : y = gx] ≥ 7 ·Advdl

G(Ai) if π(y) = 1.
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Find the advantage Advdl

G(A) of the following adversary B

B(y)
2
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i←u {1, 2, 3} , x← Ai(y)

if πi(y) = 1 then
"

if g
x 6= y ∧ π4(y) = 1 then return A4(y)

else return x

else if π5(y) = 1 then return A5(y)

else return A1(y)

provided that Pr [y ←
u

G : πi(y) = 1] = 1

42+i
and Advdl

G(Ai) = i2 · ε.

4. Let G be a finite q-element group such that all elements y ∈ G can be
expressed as powers of g ∈ G.

(a) Let A be an algorithm that always finds a discrete logarithm with
the expected running-time τ . Construct a t-time algorithm B that
fails with probability 2−80 and its running-time t is linear in τ .

(b) Let A be an algorithm for finding the highest bit of discrete loga-
rithm such that Pr [A(y) guesses correctly] ≥ ε > 1

2
for any y ∈ G.

Construct an algorithm that fails with probability 2−80.

(c) Let A be a discrete logarithm finder that uses algorithm A five times
to get inputs for the aggregating algorithm C

B(y)
[

x1 ← A1(y), . . . , x5 ← A(y)

return C1(x1, . . . , x5)

The construction guarantees that C succeeds in finding the discrete
logarithm of y if all xi are correct. Find the Advdl

G(B) if

Pr [y ← G : the output of A(y) is correct] = ε .

Hints: Use Chebyshev’s, Jensen’s and Markov’s inequalities.

5. A cryptosystem is a triple of algorithms (K, E ,D) such that the equality
D(E(m, k), k) = m holds for all messages m ∈ M and keys k ← K. Cryp-
tosystem is perfectly secure if a ciphertext c reveals nothing about the
corresponding message m, i.e., Pr [m|c] = Pr [m].

(a) Prove that cryptosystem is perfectly secure only if H(m|c) = H(m).
What about the implication to the other direction?

(b) Show that H(k,m, c) ≥ H(m|c) +H(c). For which enciphering algo-
rithms does the equality H(k,m, c) = H(m|c) +H(c) hold?

(c) Show that H(k,m, c) = H(k)+H(c|k). Conclude that cryptosystem
is perfectly secure only if H(k) ≥ H(m).
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(d) Show that H(k|c) = H(m) +H(k) +H(c|m, k) −H(c). What does
the result mean in practise?

6. Estimate how much time is needed to break the following three file en-
cryption methods without using cipher-specific attacks.

(a) The file is encrypted with 128-bit AES cipher and the key is stored
in a special file that is protected with a password. Namely, the key
is encrypted with another key that is derived form the password.

(b) The file is encrypted with old 56-bit DES cipher and the key is stored
in the special file that is encrypted with a public key. The correspond-
ing secret key is stored in the ID card.

(c) The file is encrypted with 80-bit IDEA cipher and the key is stored in
the special file that is encrypted with a public key. The corresponding
secret key is stored in the TPM chip.

7. There are many ways how to attack a standard e-banking system. First, an
attacker can distribute malware that logs all kinds of passwords. Secondly,
an attacker can send out forged e-mails that instruct bank customers to
send passwords to a certain mail account. Thirdly, an attacker can attack
the underlying cryptographic protection mechanism. When the attacker
has a control over the account, he or she has to withdraw the money
through an auxiliary account belonging to a mule. This poses a risk as
mules do not always deliver the money to attacker’s account.

Compute a success probabilities of all attack scenarios and find the one
with highest expected gain, given only some estimates of conditional prob-
abilities. Namely, let Malware, Phishing and CryptoBreak denote success
in the first attack step. Let Detect denote the event that an unauthorised
bank transfer or the attack itself is detected. Finally, let Cheat denote the
event that mule cheats and the attacker does not get the money. Then

Pr [Malware] = 10−3

Pr [Phishing] = 10−2

Pr [CryptoBreak] = 10−27

Pr [Detect|Draw 100] = 10−2

Pr [Detect|Draw 1000] = 10−1

Pr [Detect|Draw 10000] = 1

Pr [Detect|Malware] = 10−4

Pr [Detect|Phishing] = 1

Pr [Detect|CryptoBreak] = 0

Pr [Cheat|Draw 100] = 0

Pr [Cheat|Draw 1000] = 10−1

Pr [Cheat|Draw 1000] = 10−2

What is probability that the corresponding attacks remain unnoticed?

(⋆) Let A be a solver for the Computational Diffie-Hellman problem with the
advantage Advcdh

G (A) = ε > 1

2
. Now consider a success amplification by
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majority voting

B
A(x, y)













For i ∈ {1, . . . , n}do
[

a←
u

Zq, b←u Zq

zi ← A(xga, ygb) · x−by−ag−ab

Output the most frequent value among z1, . . . zn.

Find a better lower bound of the advantage Advcdh

G (B) than was given in
the lecture. Show that your bound is asymptotically tight.

(⋆) Let G be a finite q-element group such that all elements y ∈ G can be
expressed as powers of g ∈ G. Let ψ : Zq → {0, 1} be a non-trivial linear
predicate, i.e., ψ(x + y) = ψ(x) ⊕ ψ(y) and ψ(x) 6= 0 for some x. Show
that if there exists an efficient procedure A with the advantage

Adv
ψ
G
(A) = Pr [y ← G : A(y) = ψ(log y)] > 1

2
,

then it possible to compute discrete logarithm efficiently, i.e., the running-
time of the construction depends linearly on the running-time of A for fixed
advantage Adv

ψ
G
(A). How does the running-time depend on Adv

ψ
G
(A)?

(⋆) Let G be a finite q-element group such that all elements y ∈ G can be
expressed as powers of g ∈ G. Show that if there exists an efficient proce-
dure A that can always compute the highest bit of log y then the discrete
logarithm problem is easy. Extend the proof to the case where the ad-
vantage Adv(A) = Pr [y ← G : A(y) guesses correctly] > 1

2
. How does the

running-time depend on Adv(A)?
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