# MTAT.07.003 Cryptology II

# How to Model Cryptographic Primitives and Protocols

Sven Laur University of Tartu

#### Abstraction is a key to successs

#### > Cryptographic constructions are complex

- ◊ Irrelevant techincal details obscure security proofs.
- ◊ A good abstraction clarifies what is meant by security.
- ♦ An abstraction highlights which properties are relevant for security.

#### Cryptographic constructions are not provably secure

- ♦ Security of most cryptographic constructions is based on *intractability*.
- ♦ So far provable lower bounds are *trivial* for all computational problems.
- ◊ It is also *highly* unlikely that such proofs *do* exist in a *compact* form.
- **>** Abstraction allows to escape intractability issues
  - ♦ We just assume that necessary cryptographic primitives exist.
  - ♦ The actual implementation of such primitives is out of our scope.

# Illustrative Example

# 2048-bit RSA

#### Key generation

- 1. Choose two 1024-bit prime numbers p and q.
- 2. Compute Let n = pq, choose  $e \leftarrow \mathbb{Z}^*_{\phi(n)}$  and set  $d \leftarrow e^{-1} \mod \phi(n)$ .
- 3. Public key is (n, e) and secret key is (n, e, d).

#### Encryption

- 1. Let pad :  $\{0,1\}^{128} \to \mathbb{Z}_n^*$  be a predefined embedding.
- 2. To encrypt  $m \in \{0,1\}^{128}$ , output  $c \leftarrow \mathsf{pad}(m)^e \mod n$ .

#### Decryption

- 1. To decrypt  $c \in \mathbb{Z}_n$ , compute  $x \leftarrow c^d \mod n$ .
- 2. Extract m form x and verify that pad(m) = x.
- 3. Output  $\perp$  in case of failure and m otherwise.

# The corresponding abstraction



#### To get rid of unnecessary details

- ▷ We split the system into algorithms and treat them as black boxes.
- ▷ Functionality is guaranteed by specifying additional conditions.
- ▷ Security is defined through specifications of tolerable attack scenarios.

#### Naive security requirement

**Goal:** It should be infeasible to derive a secret key from accessible data.



The *advantage* of a *key only attack* is defined as an *average* success:

$$\mathsf{Adv}(\mathcal{A}) = \Pr\left[\mathcal{G}^{\mathcal{A}} = 1\right]$$
.

**Caveat:**The attack scenario does not capture the security goal in real life.

#### Seemingly more advanced attack scenario



**Caveat:**The attack scenario is not more powerful than the previous.

- $\triangleright$  The adversary  $\mathcal A$  knows what is inside (Gen, Enc, Dec) blocks.
- $\triangleright$  As adversary knows pk, she can compute  $Enc_{pk}(m)$  by herself.
- ▷ The oracle access to  $Enc_{pk}(\cdot)$  function is redundant.

#### **Classical chosen-ciphertext attack scenario**



The difference: The attacker has an implicit access to secret key.

- Decryption operation can leak information about secret key.
- ▷ This can happen only for the messages not computed by  $Enc_{pk}(\cdot)$ .
- ▷ Such attacks are sometimes plausible in real life.

#### **Time-success profiles**

Fix the security game and the advantage function  $Adv(\cdot)$ . Then any concrete instantiation of a primitive can be broken with enough resources.



As a result, there exist a time-success profile  $\varepsilon = \varepsilon(t)$ , which captures the main security properties. Unfortunately, this profile cannot be computed nor approximated with our current knowledge.

# Examples of Low-level Primitives

#### **Discrete logarithm**

- $\triangleright~$  Let p be a prime such that p=2q+1 for another 2048-bit prime q.
- $\triangleright$  Fix a generator g such that  $g^2 \neq 1$  and define  $\mathbb{G} = \{g^i : 0 \leq i < q\}$ .
- > Then discrete logarithm defined below is considered intractable

$$\forall y \in \mathbb{G} : \log(y) = x \Leftrightarrow g^x \equiv y \pmod{p}$$
.

**Exercise.** Abstract away all details under the assumptions:

- $\triangleright$  all construction based on it use only multiplication modulo p,
- $\triangleright$  strings are mapped to  $\mathbb{G}$  and elements of  $\mathbb{G}$  are mapped to strings.

How to model the primitive if constructions also use addition modulo p?

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008

#### Discrete logarithm problem in an abstract group



**Definition.** Let  $\mathbb{G} = \langle g \rangle$  be a q-element multiplicative group generated by the element g. Then for any elements  $y, z \in \mathbb{G}$  the discrete logarithm  $\log_z y$  is defined as the smallest integer x such that  $z^x = y$  and  $\perp$  if  $y \notin \langle z \rangle$ .

Advantage. Let  $Adv_{\mathbb{G}}^{dl}(\mathcal{A}) = Pr\left[\mathcal{G}^{\mathcal{A}} = 1\right]$  be defined through the game

$$\mathcal{G}^{\mathcal{A}} \begin{bmatrix} x \leftarrow_{\overline{u}} \mathbb{Z}_{q} \\ \text{return } [x \stackrel{?}{=} \mathcal{A}(g, g^{x})] \end{bmatrix}$$

#### Discrete logarithm problem in an abstract group

**Definition.** Let  $\mathbb{G} = \langle g \rangle$  be a q-element multiplicative group generated by the element g. Then for any elements  $y, z \in \mathbb{G}$  the discrete logarithm  $\log_z y$  is defined as the smallest integer x such that  $z^x = y$  and  $\perp$  if  $y \notin \langle z \rangle$ .

Advantage. Let  $Adv_{\mathbb{G}}^{dl}(\mathcal{A}) = Pr\left[\mathcal{G}^{\mathcal{A}} = 1\right]$  be defined through the game

$$\mathcal{G}^{\mathcal{A}} \begin{bmatrix} x \leftarrow_{\overline{u}} \mathbb{Z}_{q} \\ \text{return } [x \stackrel{?}{=} \mathcal{A}(g, g^{x})] \end{bmatrix}$$

**Security.** A group  $\mathbb{G}$  is  $(t, \varepsilon)$ -secure DL-group iff for any t-time adversary  $\mathcal{A}$  the corresponding advantage  $\operatorname{Adv}_{\mathbb{G}}^{dl}(\mathcal{A}) \leq \varepsilon$ .

#### **Diffie-Hellman protocol**



**Exercise.** Formalise the security requirements for Diffie-Hellman protocol.

- 1. Eavesdropper cannot reconstruct the common secret  $g^{xy}$ .
- 2. Eavesdropper learns nothing about the common secret  $g^{xy}$ .

How to convert the common secret  $g^{xy}$  to a valid secret key sk  $\in \{0,1\}^n$ ?

# **Computational Diffie-Hellman problem**

**Security.** A group  $\mathbb{G}$  is  $(t, \varepsilon)$ -secure CDH-group iff for any t-time adversary  $\mathcal{A}$  the corresponding advantage  $\operatorname{Adv}_{\mathbb{G}}^{\operatorname{cdh}}(\mathcal{A}) \leq \varepsilon$  where the corresponding security game is defined as follows.



#### **Decisional Diffie-Hellman**

**Security.** A group  $\mathbb{G}$  is  $(t, \varepsilon)$ -secure CDH-group iff for any t-time adversary  $\mathcal{A}$  the corresponding advantage  $\operatorname{Adv}_{\mathbb{G}}^{\operatorname{ddh}}(\mathcal{A}) \leq \varepsilon$  where the corresponding security games  $\mathcal{G}_0$  and  $\mathcal{G}_1$  and the advantage are defined as follows.



 $\mathsf{Adv}^{\mathsf{ddh}}_{\mathbb{G}}(\mathcal{A}) = \left| \Pr \left[ \mathcal{G}^{\mathcal{A}}_{0} = 1 \right] - \Pr \left[ \mathcal{G}^{\mathcal{A}}_{1} = 1 \right] \right|$ 

#### Factorisation

Factorisation of n-bit composite numbers is considered difficult

- $\triangleright$  Naive factorisation takes  $\Theta(2^{\frac{n}{2}})$  division operations.
- $\triangleright$  Pollard  $\rho$  algorithm takes  $O(2^{\frac{n}{4}})$  multiplication operations on average.
- $\triangleright$  Quadratic sieve takes  $O(2^{c\sqrt{n}})$  multiplication operations on average.
- $\triangleright$  Number field sieve takes  $O(2^{c\sqrt[3]{n}})$  multiplication operations on average.

#### **Current records**

- ▷ Largest RSA challenge factored had 768 bits.
- ▷ Largest Mersenne number factored has 1024 bits.
- > Approximate running-times are in thousands of computer years.

#### Abstract distribution of RSA moduli

**Definition**. A *distribution of RSA moduli*  $\mathfrak{N}$  is defined by an efficient algorithm Gen that outputs n, p, q such that n = pq and p, q are primes.

**Security.** A distribution  $\mathfrak{N}$  is  $(t, \varepsilon)$ -secure RSA-distribution iff for any t-time adversary  $\mathcal{A}$  the corresponding advantage  $\operatorname{Adv}_{\mathbb{G}}^{\operatorname{rsa}}(\mathcal{A}) \leq \varepsilon$  where the security game is defined as follows



**Example.** Let  $\mathfrak{P}$  be an efficiently samplable set of primes. Then the distribution of products pq where  $p \leftarrow \mathfrak{P}$  and  $q \leftarrow \mathfrak{P}$  is RSA distribution.

Relations Between Problems

#### CDH group is also DH group

**Intuition:** If we can compute discrete logarithm then CDH is easy.

**Reduction.** Let  $\mathcal A$  be a DL-finder algorithm. Then the adversary  $\mathcal B$ 



is as successful as the adversary  $\mathcal{A}$ :

$$\mathsf{Adv}^{\mathsf{cdh}}_{\mathbb{G}}(\mathcal{B}) = \mathsf{Adv}^{\mathsf{dl}}_{\mathbb{G}}(\mathcal{A})$$

Hence  $(t,\varepsilon)$ -secure CDH group must be also  $(t,\varepsilon)$ -secure DL group.

#### Formal proof

The adversary  $\ensuremath{\mathcal{A}}$  sees the following chain of events



As  $z = g^{xy} \Leftrightarrow xy = \overline{x}y \Leftrightarrow x = \overline{x}$  we can further simplify



MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008

# Simple and difficult puzzles

Intuition: A good algorithm *should* work uniformly well on each instance.



Instance of discrete logarithm

#### **Random self-reducibility**

Any instance of a discrete logarithm can be reduced to a random instance.

$$\begin{array}{c} \begin{array}{c} \text{Malicious} \\ \text{Challenger} \\ \end{array} & \begin{array}{c} g \\ g^{x} \\ \overline{x} \end{array} & \begin{array}{c} \mathcal{B} \\ y \leftarrow \mathbb{Z}_{q} \\ \overline{x} \leftarrow x_{*} - y \end{array} & \begin{array}{c} g \\ g^{x} g^{y} \\ \overline{x} \\ x \end{array} & \begin{array}{c} \mathcal{A} \end{array} \end{array}$$

$$\begin{array}{c} \begin{array}{c} \mathcal{A} \\ \mathcal{A} \end{array}$$

The adversary  $\ensuremath{\mathcal{A}}$  sees the following chain of events

$$\begin{array}{c} \textbf{Challenger} & g \\ \textbf{Choose bad } x \\ y \leftarrow \mathbb{Z}_q \end{array} \begin{array}{c} g \\ g^{x+y} \\ x_* \end{array} \mathcal{A}$$

and thus the worst case advantage  $\Pr[x = \mathcal{B}(g^x)] = \mathsf{Adv}^{\mathsf{dl}}_{\mathbb{G}}(\mathcal{A}).$ 

# **Consequences of random self-reducibility**

**Consequence:** There are no hard instances but easy instances may exist.



- ▷ The average success is larger for hard instances.
- ▷ Easy instances are handled worse than by the original algorithm.
- ▷ Specialised algorithms for specific instance classes might work better.

# **Consequences of random self-reducibility**

Consequence: There are various trade-offs between time and success.
▷ By repeating the DL-computations we can increase the success.
▷ Any estimate on parameters t, ε gives a lower bound to success.

