
MTAT.07.003 Cryptology II

How to Model Cryptographic

Primitives and Protocols

Sven Laur

University of Tartu



Abstraction is a key to successs

⊲ Cryptographic constructions are complex

⋄ Irrelevant techincal details obscure security proofs.

⋄ A good abstraction clarifies what is meant by security.

⋄ An abstraction highlights which properties are relevant for security.

⊲ Cryptographic constructions are not provably secure

⋄ Security of most cryptographic constructions is based on intractability.

⋄ So far provable lower bounds are trivial for all computational problems.

⋄ It is also highly unlikely that such proofs do exist in a compact form.

⊲ Abstraction allows to escape intractability issues

⋄ We just assume that necessary cryptographic primitives exist.

⋄ The actual implementation of such primitives is out of our scope.

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 1



Illustrative Example



2048-bit RSA

Key generation

1. Choose two 1024-bit prime numbers p and q.

2. Compute Let n = pq, choose e←u Z∗
φ(n) and set d← e−1 mod φ(n).

3. Public key is (n, e) and secret key is (n, e, d).

Encryption

1. Let pad : {0, 1}128→ Z∗n be a predefined embedding.

2. To encrypt m ∈ {0, 1}
128

, output c← pad(m)e mod n.

Decryption

1. To decrypt c ∈ Zn, compute x← cd mod n.

2. Extract m form x and verify that pad(m) = x.

3. Output ⊥ in case of failure and m otherwise.

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 2



The corresponding abstraction

Key generation

1. Choose two 1024-bit prime numbers p and q.

2. Compute Let n = pq, choose e ← Z
∗

φ(n) and set d ← e−1 mod φ(n).

3. Public key is (n, e) and secret key is (n, e, d).

Encryption

1. Let pad : {0, 1}
128

→ Z
∗

n
be a predefined embedding.

2. To encrypt m ∈ {0, 1}
128

, output c ← pad(m)e mod n.

Decryption

1. To decrypt c ∈ Zn, compute x ← c
d mod n.

2. Extract m form x and verify that pad(m) = x.

3. Output ⊥ in case of failure and m otherwise.

∀(sk, pk) ← Gen : Decsk(Encpk(m)) ≡ m

Gen

Enc Dec

skpk

m mc

RSA-2048 Public Key Cryptosystem

To get rid of unnecessary details

⊲ We split the system into algorithms and treat them as black boxes.

⊲ Functionality is guaranteed by specifying additional conditions.

⊲ Security is defined through specifications of tolerable attack scenarios.

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 3



Naive security requirement

Goal: It should be infeasible to derive a secret key from accessible data.

Gen A

Challenger G

sk

pk

sk∗

G
A







(sk, pk) ← Gen

sk∗ ← A(pk)

return [sk
?
= sk∗]

The advantage of a key only attack is defined as an average success:

Adv(A) = Pr
[

GA = 1
]

.

Caveat:The attack scenario does not capture the security goal in real life.

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 4



Seemingly more advanced attack scenario

Enc

Gen A

Challenger G

sk

pk

sk∗

G
A









(sk, pk) ← Gen

sk∗ ← A
Encpk(·)(pk)

return [sk
?
= sk∗]

mi
ci

pk

Caveat:The attack scenario is not more powerful than the previous.

⊲ The adversary A knows what is inside (Gen, Enc, Dec) blocks.

⊲ As adversary knows pk, she can compute Encpk(m) by herself.

⊲ The oracle access to Encpk(·) function is redundant.

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 5



Classical chosen-ciphertext attack scenario

G
A









(sk, pk) ← Gen

sk∗ ← A
Encpk(·),Decsk(·)(pk)

return [sk
?
= sk∗]

Dec

EncGen A

Challenger G

sk

pk

sk∗

mici

mi

ci

sk pk

The difference: The attacker has an implicit access to secret key.

⊲ Decryption operation can leak information about secret key.

⊲ This can happen only for the messages not computed by Encpk(·).

⊲ Such attacks are sometimes plausible in real life.

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 6



Time-success profiles

Fix the security game and the advantage function Adv(·). Then any

concrete instantiation of a primitive can be broken with enough resources.

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

A
d
v
a
n
ta
g
e

Secure regime

Total break

Partial break

Cryptographers

consider insecure

As a result, there exist a time-success profile ε = ε(t), which captures the

main security properties. Unfortunately, this profile cannot be computed

nor approximated with our current knowledge.

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 7



Examples of Low-level Primitives



Discrete logarithm

⊲ Let p be a prime such that p = 2q + 1 for another 2048-bit prime q.

⊲ Fix a generator g such that g2 6= 1 and define G =
{

gi : 0 ≤ i < q
}

.

⊲ Then discrete logarithm defined below is considered intractable

∀y ∈ G : log(y) = x⇔ gx ≡ y (mod p) .

Exercise. Abstract away all details under the assumptions:

⊲ all construction based on it use only multiplication modulo p,

⊲ strings are mapped to G and elements of G are mapped to strings.

How to model the primitive if constructions also use addition modulo p?

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 8



Discrete logarithm problem in an abstract group

(G; ·)Emb H{0, 1}
k {0, 1}

n

Definition. Let G = 〈g〉 be a q-element multiplicative group generated by

the element g. Then for any elements y, z ∈ G the discrete logarithm logz y
is defined as the smallest integer x such that zx = y and ⊥ if y /∈ 〈z〉.

Advantage. Let Advdl
G(A) = Pr

[

GA = 1
]

be defined through the game

GA

2

4

x←u Zq

return [x
?
= A(g, g

x)]

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 9



Discrete logarithm problem in an abstract group

Definition. Let G = 〈g〉 be a q-element multiplicative group generated by

the element g. Then for any elements y, z ∈ G the discrete logarithm logz y
is defined as the smallest integer x such that zx = y and ⊥ if y /∈ 〈z〉.

Advantage. Let Advdl
G(A) = Pr

[

GA = 1
]

be defined through the game

GA

2

4

x←u Zq

return [x
?
= A(g, g

x)]

Security. A group G is (t, ε)-secure DL-group iff for any t-time adversary

A the corresponding advantage Advdl
G(A) ≤ ε.

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 10



Diffie-Hellman protocol

g
x

g
y

x ← Zq

g
xy

← (gy)x

y ← Zq

g
xy

← (gx)y

g
xy?

g
x

g
y

Exercise. Formalise the security requirements for Diffie-Hellman protocol.

1. Eavesdropper cannot reconstruct the common secret gxy.

2. Eavesdropper learns nothing about the common secret gxy.

How to convert the common secret gxy to a valid secret key sk ∈ {0, 1}n?

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 11



Computational Diffie-Hellman problem

Security. A group G is (t, ε)-secure CDH-group iff for any t-time adversary

A the corresponding advantage Advcdh
G (A) ≤ ε where the corresponding

security game is defined as follows.

Challenger G

x ← Zq

y ← Zq

A
g

x
, g

y

g

z
z

?
= g

xy

G
A













x ← Zq

y ← Zq

z ← A(g, g
x
, g

y)

return [gxy ?
= z]

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 12



Decisional Diffie-Hellman

Security. A group G is (t, ε)-secure CDH-group iff for any t-time adversary

A the corresponding advantage Advddh
G (A) ≤ ε where the corresponding

security games G0 and G1 and the advantage are defined as follows.

Challenger G0

x ← Zq

y ← Zq

A

g
x
, g

y

g

z ← Zq

b

g
z

x ← Zq

y ← Zq

A

g
x
, g

y

g

b

g
z

z ← xy

Challenger G1

Advddh
G (A) =

∣

∣Pr
[

GA

0 = 1
]

− Pr
[

GA

1 = 1
]
∣

∣

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 13



Factorisation

Factorisation of n-bit composite numbers is considered difficult

⊲ Naive factorisation takes Θ(2
n
2 ) division operations.

⊲ Pollard ρ algorithm takes O(2
n
4 ) multiplication operations on average.

⊲ Quadratic sieve takes O(2c
√

n) multiplication operations on average.

⊲ Number field sieve takes O(2c 3√n) multiplication operations on average.

Current records

⊲ Largest RSA challenge factored had 768 bits.

⊲ Largest Mersenne number factored has 1024 bits.

⊲ Approximate running-times are in thousands of computer years.

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 14



Abstract distribution of RSA moduli

Definition. A distribution of RSA moduli N is defined by an efficient

algorithm Gen that outputs n, p, q such that n = pq and p, q are primes.

Security. A distribution N is (t, ε)-secure RSA-distribution iff for any t-time

adversary A the corresponding advantage Advrsa
G (A) ≤ ε where the security

game is defined as follows

G
A







(n, p, q) ← Gen

p∗, q∗ ← A(n)

return [p
?
= p∗] ∨ [p

?
= q∗]

Gen A

Challenger G

n

p q p∗ q∗

Example. Let P be an efficiently samplable set of primes. Then the

distribution of products pq where p← P and q ← P is RSA distribution.

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 15



Relations Between

Problems



CDH group is also DH group

Intuition: If we can compute discrete logarithm then CDH is easy.

Reduction. Let A be a DL-finder algorithm. Then the adversary B

A

Challenger G

x ← Zq

y ← Zq

g
x
, g

y

g

z
z

?
= g

xy

B
g

g
x

x

z ← (gy)x

is as successful as the adversary A:

Advcdh
G (B) = Advdl

G(A) .

Hence (t, ε)-secure CDH group must be also (t, ε)-secure DL group.

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 16



Formal proof

The adversary A sees the following chain of events

A

Challenger G

x ← Zq

y ← Zq

z
?
= g

xy

B

g

g
x

x

z ← (gy)x

As z = gxy ⇔ xy = xy ⇔ x = x we can further simplify

A

Challenger G

x ← Zq

g

g
x

x

x
?
= x

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 17



Simple and difficult puzzles

Intuition: A good algorithm should work uniformly well on each instance.

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Instance of discrete logarithm

S
u
c
c
e
s
s

Hard instances

Easy instances

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 18



Random self-reducibility

Any instance of a discrete logarithm can be reduced to a random instance.

A
y ← Zq

gMalicious

Challenger

Choose bad x

g

g
x

B

x

g
x
g

y

x ← x∗ − y x∗

The adversary A sees the following chain of events

Challenger

Choose bad x A

y ← Zq

x∗

g

g
x+y

and thus the worst case advantage Pr [x = B(gx)] = Advdl
G(A).

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 19



Consequences of random self-reducibility

Consequence: There are no hard instances but easy instances may exist.

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Instance of discrete logarithm

S
u
c
c
e
s
s

Hard instances

Easy instances

Average success

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Instance of discrete logarithm

S
u
c
c
e
s
s

Hard instances

Easy instances

Average success

Reduction

⊲ The average success is larger for hard instances.

⊲ Easy instances are handled worse than by the original algorithm.

⊲ Specialised algorithms for specific instance classes might work better.

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 20



Consequences of random self-reducibility

Consequence: There are various trade-offs between time and success.

⊲ By repeating the DL-computations we can increase the success.

⊲ Any estimate on parameters t, ε gives a lower bound to success.

500 5 10 15 20 25 30 35 40 45

1

0

0

0

0

0

0

0

0

0

0

N
ea

r-
lin

ea
r
b
eh

av
io
ur

70 1 2 3 4 5 6

0.6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

In
du

ce
d

lo
w
er

bo
un

ds

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 21


