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Abstraction is a key to successs

⊲ Cryptographic constructions are complex

⋄ Irrelevant techincal details obscure security proofs.

⋄ A good abstraction clarifies what is meant by security.

⋄ An abstraction highlights which properties are relevant for security.

⊲ Cryptographic constructions are not provably secure

⋄ Security of most cryptographic constructions is based on intractability.

⋄ So far provable lower bounds are trivial for all computational problems.

⋄ It is also highly unlikely that such proofs do exist in a compact form.

⊲ Abstraction allows to escape intractability issues

⋄ We just assume that necessary cryptographic primitives exist.

⋄ The actual implementation of such primitives is out of our scope.
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Illustrative Example



2048-bit RSA

Key generation

1. Choose two 1024-bit prime numbers p and q.

2. Compute Let n = pq, choose e←u Z∗
φ(n) and set d← e−1 mod φ(n).

3. Public key is (n, e) and secret key is (n, e, d).

Encryption

1. Let pad : {0, 1}128→ Z∗n be a predefined embedding.

2. To encrypt m ∈ {0, 1}
128

, output c← pad(m)e mod n.

Decryption

1. To decrypt c ∈ Zn, compute x← cd mod n.

2. Extract m form x and verify that pad(m) = x.

3. Output ⊥ in case of failure and m otherwise.
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The corresponding abstraction

Key generation

1. Choose two 1024-bit prime numbers p and q.

2. Compute Let n = pq, choose e ← Z
∗

φ(n) and set d ← e−1 mod φ(n).

3. Public key is (n, e) and secret key is (n, e, d).

Encryption

1. Let pad : {0, 1}
128

→ Z
∗

n
be a predefined embedding.

2. To encrypt m ∈ {0, 1}
128

, output c ← pad(m)e mod n.

Decryption

1. To decrypt c ∈ Zn, compute x ← c
d mod n.

2. Extract m form x and verify that pad(m) = x.

3. Output ⊥ in case of failure and m otherwise.

∀(sk, pk) ← Gen : Decsk(Encpk(m)) ≡ m

Gen

Enc Dec

skpk

m mc

RSA-2048 Public Key Cryptosystem

To get rid of unnecessary details

⊲ We split the system into algorithms and treat them as black boxes.

⊲ Functionality is guaranteed by specifying additional conditions.

⊲ Security is defined through specifications of tolerable attack scenarios.
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Naive security requirement

Goal: It should be infeasible to derive a secret key from accessible data.

Gen A

Challenger G

sk

pk

sk∗

G
A







(sk, pk) ← Gen

sk∗ ← A(pk)

return [sk
?
= sk∗]

The advantage of a key only attack is defined as an average success:

Adv(A) = Pr
[

GA = 1
]

.

Caveat:The attack scenario does not capture the security goal in real life.
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Seemingly more advanced attack scenario

Enc

Gen A

Challenger G

sk

pk

sk∗

G
A









(sk, pk) ← Gen

sk∗ ← A
Encpk(·)(pk)

return [sk
?
= sk∗]

mi
ci

pk

Caveat:The attack scenario is not more powerful than the previous.

⊲ The adversary A knows what is inside (Gen, Enc, Dec) blocks.

⊲ As adversary knows pk, she can compute Encpk(m) by herself.

⊲ The oracle access to Encpk(·) function is redundant.
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Classical chosen-ciphertext attack scenario

G
A









(sk, pk) ← Gen

sk∗ ← A
Encpk(·),Decsk(·)(pk)

return [sk
?
= sk∗]

Dec

EncGen A

Challenger G

sk

pk

sk∗

mici

mi

ci

sk pk

The difference: The attacker has an implicit access to secret key.

⊲ Decryption operation can leak information about secret key.

⊲ This can happen only for the messages not computed by Encpk(·).

⊲ Such attacks are sometimes plausible in real life.
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Time-success profiles

Fix the security game and the advantage function Adv(·). Then any

concrete instantiation of a primitive can be broken with enough resources.
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As a result, there exist a time-success profile ε = ε(t), which captures the

main security properties. Unfortunately, this profile cannot be computed

nor approximated with our current knowledge.
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Examples of Low-level Primitives



Discrete logarithm

⊲ Let p be a prime such that p = 2q + 1 for another 2048-bit prime q.

⊲ Fix a generator g such that g2 6= 1 and define G =
{

gi : 0 ≤ i < q
}

.

⊲ Then discrete logarithm defined below is considered intractable

∀y ∈ G : log(y) = x⇔ gx ≡ y (mod p) .

Exercise. Abstract away all details under the assumptions:

⊲ all construction based on it use only multiplication modulo p,

⊲ strings are mapped to G and elements of G are mapped to strings.

How to model the primitive if constructions also use addition modulo p?
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Discrete logarithm problem in an abstract group

(G; ·)Emb H{0, 1}
k {0, 1}

n

Definition. Let G = 〈g〉 be a q-element multiplicative group generated by

the element g. Then for any elements y, z ∈ G the discrete logarithm logz y
is defined as the smallest integer x such that zx = y and ⊥ if y /∈ 〈z〉.

Advantage. Let Advdl
G(A) = Pr

[

GA = 1
]

be defined through the game

GA

2

4

x←u Zq

return [x
?
= A(g, g

x)]
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Discrete logarithm problem in an abstract group

Definition. Let G = 〈g〉 be a q-element multiplicative group generated by

the element g. Then for any elements y, z ∈ G the discrete logarithm logz y
is defined as the smallest integer x such that zx = y and ⊥ if y /∈ 〈z〉.

Advantage. Let Advdl
G(A) = Pr

[

GA = 1
]

be defined through the game

GA

2

4

x←u Zq

return [x
?
= A(g, g

x)]

Security. A group G is (t, ε)-secure DL-group iff for any t-time adversary

A the corresponding advantage Advdl
G(A) ≤ ε.
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Diffie-Hellman protocol

g
x

g
y

x ← Zq

g
xy

← (gy)x

y ← Zq

g
xy

← (gx)y

g
xy?

g
x

g
y

Exercise. Formalise the security requirements for Diffie-Hellman protocol.

1. Eavesdropper cannot reconstruct the common secret gxy.

2. Eavesdropper learns nothing about the common secret gxy.

How to convert the common secret gxy to a valid secret key sk ∈ {0, 1}n?
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Computational Diffie-Hellman problem

Security. A group G is (t, ε)-secure CDH-group iff for any t-time adversary

A the corresponding advantage Advcdh
G (A) ≤ ε where the corresponding

security game is defined as follows.

Challenger G

x ← Zq

y ← Zq

A
g

x
, g

y

g

z
z

?
= g

xy

G
A













x ← Zq

y ← Zq

z ← A(g, g
x
, g

y)

return [gxy ?
= z]

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 12



Decisional Diffie-Hellman

Security. A group G is (t, ε)-secure CDH-group iff for any t-time adversary

A the corresponding advantage Advddh
G (A) ≤ ε where the corresponding

security games G0 and G1 and the advantage are defined as follows.

Challenger G0

x ← Zq

y ← Zq

A

g
x
, g

y

g

z ← Zq

b

g
z

x ← Zq

y ← Zq

A

g
x
, g

y

g

b

g
z

z ← xy

Challenger G1

Advddh
G (A) =

∣

∣Pr
[

GA

0 = 1
]

− Pr
[

GA

1 = 1
]
∣

∣
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Factorisation

Factorisation of n-bit composite numbers is considered difficult

⊲ Naive factorisation takes Θ(2
n
2 ) division operations.

⊲ Pollard ρ algorithm takes O(2
n
4 ) multiplication operations on average.

⊲ Quadratic sieve takes O(2c
√

n) multiplication operations on average.

⊲ Number field sieve takes O(2c 3√n) multiplication operations on average.

Current records

⊲ Largest RSA challenge factored had 768 bits.

⊲ Largest Mersenne number factored has 1024 bits.

⊲ Approximate running-times are in thousands of computer years.
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Abstract distribution of RSA moduli

Definition. A distribution of RSA moduli N is defined by an efficient

algorithm Gen that outputs n, p, q such that n = pq and p, q are primes.

Security. A distribution N is (t, ε)-secure RSA-distribution iff for any t-time

adversary A the corresponding advantage Advrsa
G (A) ≤ ε where the security

game is defined as follows

G
A







(n, p, q) ← Gen

p∗, q∗ ← A(n)

return [p
?
= p∗] ∨ [p

?
= q∗]

Gen A

Challenger G

n

p q p∗ q∗

Example. Let P be an efficiently samplable set of primes. Then the

distribution of products pq where p← P and q ← P is RSA distribution.

MTAT.07.003 Cryptology II, How to Model Cryptographic Primitives and Protocols, 10 February, 2008 15



Relations Between

Problems



CDH group is also DH group

Intuition: If we can compute discrete logarithm then CDH is easy.

Reduction. Let A be a DL-finder algorithm. Then the adversary B

A

Challenger G

x ← Zq

y ← Zq

g
x
, g

y

g

z
z

?
= g

xy

B
g

g
x

x

z ← (gy)x

is as successful as the adversary A:

Advcdh
G (B) = Advdl

G(A) .

Hence (t, ε)-secure CDH group must be also (t, ε)-secure DL group.
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Formal proof

The adversary A sees the following chain of events

A

Challenger G

x ← Zq

y ← Zq

z
?
= g

xy

B

g

g
x

x

z ← (gy)x

As z = gxy ⇔ xy = xy ⇔ x = x we can further simplify

A

Challenger G

x ← Zq

g

g
x

x

x
?
= x
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Simple and difficult puzzles

Intuition: A good algorithm should work uniformly well on each instance.
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Random self-reducibility

Any instance of a discrete logarithm can be reduced to a random instance.

A
y ← Zq

gMalicious

Challenger

Choose bad x

g

g
x

B

x

g
x
g

y

x ← x∗ − y x∗

The adversary A sees the following chain of events

Challenger

Choose bad x A

y ← Zq

x∗

g

g
x+y

and thus the worst case advantage Pr [x = B(gx)] = Advdl
G(A).
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Consequences of random self-reducibility

Consequence: There are no hard instances but easy instances may exist.
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Reduction

⊲ The average success is larger for hard instances.

⊲ Easy instances are handled worse than by the original algorithm.

⊲ Specialised algorithms for specific instance classes might work better.
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Consequences of random self-reducibility

Consequence: There are various trade-offs between time and success.

⊲ By repeating the DL-computations we can increase the success.

⊲ Any estimate on parameters t, ε gives a lower bound to success.
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