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Abstract: Over the last decades, cloud computing leverages the capability of IoT-based applications by 
providing computational power as a form of a container or virtual machines (VMs). Most of the existing 
scheduling strategies deploy the VM instances for each task which require maximum start-up time and 
consumes maximum energy for processing the tasks.  However, containers are a lightweight process and 

start in less than a second. In this paper, we develop a new energy-efficient container-based scheduling 

(EECS) strategy for processing various types of IoT and non-IoT based tasks with quick succession. The 
proposed method use accelerated particle swarm optimization (APSO) technique for finding a suitable 
container for each task with minimum delay. Resource scheduling is another important objective in a cloud 
environment for better utilization of the resources in the cloud servers. The EECS strategy can deploy the 
containers on an optimal cloud server with an optimal scheduling strategy. The main objectives of EECS are 
to minimize the overall energy consumptions and computational time of the tasks with efficient resource 
utilization. The effect of the control parameters of the APSO technique is investigated thoroughly. Through 
comparisons, we show that the proposed method performs better than the existing ones in terms of various 
performance metrics including computational time, energy consumption, CO2 emission, Temperature 
emission, and resource utilization.        
 

Keywords— Internet-of-Things, Cloud computing; Containers; APSO technique; Computational time; 
Energy consumption. 
 

1. Introduction 
 

A diverse set of resources connected through a high-speed network offer a new computing paradigm in a 
distributed environment, called cloud computing [1]. The cloud providers provide three types of services 
including Platform-as-a-Service (PaaS), Software-as-a-Service (SaaS) and Infrastructure-as-a-Service (IaaS) 
[2]. PaaS model offers a computing platform to the users including operating system, database, web server, 



programming language, etc. The users can easily create and deploy a new application in that environment 
without managing the underlying software and hardware layers [3]. In the SaaS model, the users request for 
the application software without managing the infrastructure and platform to run the applications [4]. The 
IaaS cloud model consists of thousands of computing servers with sufficient resources in a cloud data center 
(CDC) and each of them can run multiple virtual machine (VM) instances simultaneously [5]. Cloud 
provides various types of computing resources such as CPU, memory, storage as an on-demand basis to the 
users as a form of VM. VM instances are becoming a popular technology in a cloud environment for 
deploying and executing large-scale distributed applications [6]. Each VM instance requires a separate 
operating system image, which adds overhead in the memory and storage footprint. This approach also has 
limited portability of applications between various cloud service providers.  
 

Nowadays, in contrary to the traditional monolithic applications, the computing devices generate a 
composition of various types of small and specialized processes as a form of micro-service applications [7]. 
Instead of monolithic architecture, in micro-service architecture, each service is self-contained and 
implements a single application at a time instance. Container technologies such as Docker, Kubernets or 
Linux Containers, have such ability to deploy and execute micro-service applications efficiently and 
effectively in CDC [8-9]. Containers are stand-alone and self-contained units that enable users to handle a 
customized execution environment instead of bulky VM instances. Similar to the VM instances, the 
containers enable the resources of a single computing server and enable the resources to execute the micro-
services or Internet-of-Things (IoT) applications [10-12]. Containers use the similar properties of a modern 
Linux operating system kernel such as lib containers, cgroups, and Linux containers. The main advantages 
of the containers are- (i) They can initiate quickly and launch within a second in a computing server based 
on the requirements of the tasks, and (ii) Containers require very small memory to store the information and 
consume a minimum amount of resources to run an application. Unlike VM instances, containers improve 
the utilization and performance of the resources and increase the parallelism among the tasks [13-14]. 
Moreover, the researchers and developers prefer to deploy the containers in the private cloud environment 
instead of the public and hybrid cloud environment due to security and privacy.            
 

Containerized applications deploy the micro-services on a cluster of heterogeneous servers in a CDC, rather 
than a single server with a set of VM instances. This property may create a lightweight environment for the 
applications and utilizes the computing resources efficiently. Over the years, most of the Industries and 
educational organizations are relying on this technology for deploying multiple modern-day applications 
such as IoT and event-driven applications, web services, Big-data, etc. Such types of applications need faster 
completion and response time with minimum system overhead [15]. However, most of the recent scheduling 
strategies are based on VM instances for executing such modern-day applications in CDC which consumes 
the maximum amount of storage and processing power due to its own operating system. Using VM instances 
also consume maximum energy of the CDC and impose a large performance penalty as a form of various 
Quality-of-Service (QoS) parameters. Another important issue in the cloud environment is resource 
scheduling as a form of VM scheduling or container scheduling. The main purpose of an optimal scheduling 
strategy is to find an optimal loaded active server for the selected VM instances or containers which may 
maximize the resource utilization efficiency in the CDC. Moreover, most of the existing scheduling 
strategies have more than one conflict objectives while executing the applications in the CDC. These 
problems are referred to as multi-objective optimization problems (MOPs).   
 

In past two decades, two types of multi-objective evolutionary algorithms have been developed to solve 
MOPs- (i) finding a set of Pareto optimal solutions in a single run and (ii) non-Pareto-based algorithm based 
on decomposition method [16]. Here, the algorithm decomposes a MOP into a number of single-objective 
optimization problems (called sub-problems). There are still many recent optimization algorithms whose 
effectiveness is yet to be explored in the context of a multi-objective scheduling problem [17]. The 
optimization algorithms are the high-level problem-independent algorithms which have a set of rules to find 
an optimal solution to a given problem. The convergence speed of the optimization algorithms is the global 



(or nearly global) optimal which is better than the traditional techniques [18]. Therefore, the meta-heuristic 
algorithms have also been increasingly used to solve the multi-objective optimization based scheduling 
strategy in a cloud environment. One such algorithm is the accelerated particle swarm optimization (APSO) 
technique [19-20]. In the twentieth century, the PSO technique was introduced by Eberhart and Kennedy. 
The standard PSO uses both the current global best and the individual best of the particles to find an optimal 
solution. Due to the limitations of convergence speed and accuracy, the PSO algorithm is modified based on 
its velocity and displacement and called as APSO technique. APSO technique uses the global best of the 
individuals for convergence of the algorithm and reduces the randomness as iteration proceeds.      
 

Here, we propose a new multi-objective aware energy-efficient container-based scheduling (EECS) strategy 
using APSO technique. The contribution of the proposed method is two folded. The first contribution is to 
find an optimal container for each requested task based on multi-objective aware APSO technique. In this 
phase, we design a fitness function based on bi-objective optimization parameters including energy 
consumption and computation time of the executing devices using the weighted-sum method. This method 
linearly aggregates all the individual objective function of a MOP into one objective by using a weight 
vector. During finding an optimal executing device each objective of the particle is normalized based on the 
maximum and minimum values of the corresponding objective function. Such normalized objective function 
helps to eliminate the impact of various amplitudes on multi-objective. The existing APSO technique helps 
to find an optimal executing device for each task as a form of containers, local IoT devices or VM instances 
in a 2-D plane based on the bi-objective optimization parameters. The main objective of the first contribution 
is to minimize the total energy consumption and computation time of the CDC. The second contribution is 
to schedule the tasks on an optimal loaded server with a rule-based strategy. This may maximize the 
utilization of the resources and minimizes the resource wastage of the computing servers and the CDC. For 
simulation, we deploy the Docker image in the private cloud servers for each task based on the bi-objective 
optimization parameters and the resource requirements by the tasks. The proposed EECS strategy is 
compared with the existing ones in terms of various performance metrics including computational time, 
energy consumption, CO2 emission, Temperature emission, and resource utilization. The results of the 
performance metrics are further evaluated based on various statistical parameters including maximum, 
minimum, mean and standard deviation. The major contributions of this work are summarized as follow. 
 

A. Discuss the merits of containers for executing micro-service applications such as IoT and Event-driven 
applications, web services, Big-data over VM instances with a comparative analysis. 

B. Design a multi-objective optimization problem considering two major scheduling objectives, namely, 
energy consumption and computational time. The multi-objective aspects are dealt with a weighted sum 
approach based fitness function to evaluate the quality of the solution. 

C. APSO technique has been incorporated to address the container-based scheduling strategy, which selects 
a suitable container for each task. 

D. Devise an effective rule-based strategy for selecting an optimal loaded server in the CDC for the selected 
containers for further execution. 

E. Finally, the effect of the control parameters of the APSO technique is investigated thoroughly. We also 
evaluate the performance of the proposed algorithm over synthetic datasets using various performance 
metrics.     

 

The rest of the paper is organized as follows. The merits and demerits of various existing VM-based and 
container-based scheduling strategies in a cloud environment are discussed in Section 2. The overview of 
the multi-objective optimization strategy and APSO technique are presented in Section 3. The overview of 
the containers and their effectiveness over VM instances for micro-service applications are presented in 
Section 4. The system model and problem formulation of the proposed method is discussed in Section 5. 
The proposed EECS strategy is discussed in Section 6. The performance analyses of the proposed algorithm 
are discussed in Section 7. Finally, the conclusion and future work are given in Section 8. 
 

2. Related Work  



  

Over the times, there have been numerous research initiative tailored in task scheduling for solving various 
types of multi-objective optimization problems (MOPs) in a cloud environment. Nowadays, most of the 
researchers are used different types of meta-heuristic strategies such as particle swarm optimization (PSO), 
Genetic algorithm (GA), Honey-bee algorithm (HBA), ant-colony optimization (ACO), Fuzzy strategy, etc. 
to solve MOPs due to their accuracy and convergence speed. Here, we discuss few currently published MOP-
based task scheduling strategies in the cloud [20-22]. Kaur et al. have proposed a task scheduling strategy 
for solving MOP problem using bacteria foraging optimization technique [20]. The algorithm solves three 
objectives of the scheduling strategy such as flow time, makespan and resource usage cost. This algorithm 
found the suitable VM instances for assigning the independent jobs which meet the scheduling objectives 
and deployed on a server for further processing. Kumar et al. have proposed an energy-efficient task 
scheduling strategy in the cloud [21]. This algorithm met three scheduling objectives of the server such as 
Execution cost and time and the total energy of the server. The authors have applied the PSO technique for 
finding an energy efficient VM instance for each task that met the total execution cost and time. Ramezani 
et al. designed a PSO based load balancing strategy in the cloud [22]. The authors have applied the PSO 
technique for finding an optimal server of a CDC to migrate the VM instance from a heavily loaded server 
to the minimum loaded server. The main objectives of this algorithm are to balance the loads among the 
servers and minimize the total execution time of the tasks. 
 

The above-mentioned task scheduling algorithms meet multiple scheduling objectives using various meta-
heuristic strategies; however, the algorithms fail to design an efficient task scheduling strategies to minimize 
the total computation time and energy consumptions of the tasks, especially IoT-based tasks. Most of the 
real-time tasks such as IoT, event-driven applications, etc want the result with quick succession. However, 
the VM instances take too much time (nearly a minute) to deploy in a CDC for processing a task and consume 
more energy due to the consumption of an excessive amount of resources. This may maximize the total 
computational time and the energy consumption of the tasks. To overcome the above-mentioned challenges, 
a new technique is initiated in a cloud environment, called container-based scheduling. Containers require 
minimum time to deploy and consume a minimum amount of resources for executing a task. Due to the 
advantages of the containers, in recent years, the researchers have developed different types of container-
based scheduling in a cloud environment [23-37]. Bernstein et al. have proposed a container-based 
scheduling strategy in a PaaS cloud environment [23]. The author discussed the overview of the containers 
over VM instances and the importance of this technology for executing various types of applications. This 
paper deployed a Docker container over Linux container and Kubernetes. This paper only presented the 
architectural view of the containers in a cloud environment. Kaewkasi et al. have proposed a container-based 
scheduling strategy based on ACO technique [24]. The authors have developed an optimal scheduler over 
the Docker container which can efficiently schedule the tasks with minimum execution time. The main 
objective of this algorithm is to utilize computing resources efficiently and improves the performance of the 
system. 
 

Li et al. have proposed a container-based scheduling schema in the cloud to achieve high availability of the 
computing resources [25]. This scheduling strategy found a suitable host to deploy the containers and 
monitor the hosts for further deployment strategy and container migration purpose. The containers are 
migrated to another host due to the failure of the host or balancing the loads among the available hosts in the 
CDC. Yi et al. have proposed a container-based strategy in a Fog-cloud environment [26]. The main 
objective of this strategy is to minimize the delay of the tasks while minimizing the execution time. This 
method tried to deploy most of the tasks to the Fog nodes, however, due to lack of resources, few tasks need 
to deploy to the CDC for further computation purpose. Perez et al. have designed a container-based task 
deployment strategy in a serverless environment [27]. This algorithm deployed the Docker container over 
AWS Lambda platform and presented the performance improvement of this strategy over existing ones. The 
authors stated that this environment is most suitable for bursty workloads of short stateless jobs. Tang et al. 
have developed a container-based auto-scaling strategy in an elastic cloud environment [28]. The authors 



have developed a container-based auto-scalar model in a cloud environment. This paper developed a 
mathematical model for auto-scaling strategy and discussed the necessity of auto-scaling strategy in a 
container-based cloud environment.  
 

Zhou et al. have designed two online and offline container-based scheduling strategies in cloud environment 
[29]. The proposed strategies select an optimal container for each task which meets the deadline while 
maintaining an efficient inter-container dependency. The objectives of the paper are two folded. First, the 
authors use a compact-exponential technique for handling non-conventional scheduling objectives. 
Secondly, the authors design an optimal framework for generating a primal solution based on the existing 
constraints and produced a near-optimal solution. Zhang et al have developed a cost-effective container-
based scheduling strategy in cloud environment [30]. The authors have developed an adaptive and effective 
scheduler based on integer linear programming technique which can easily integrate to the container 
orchestration framework. The main objective of the work is to minimize the overall cost of the tasks 
including computational and transmission cost. Tao et al. have developed a global container-based resource 
allocation strategy based on fuzzy inference system flexible deployment and high availability of the 
resources [31]. The authors applied their algorithm over various use-cases to prove the effectiveness and 
efficiency of the proposed method. Guerrero et al. have designed an optimal container allocation strategy 
using a genetic algorithm with Non-dominated Sorting Genetic Algorithm-II [32]. The proposed strategy 
minimizes the network overhead and system failure while maximizing system performance and resource 
utilization of the server. The authors are mainly considered the micro-services for processing in containers 
as a form of Kubernetes with an efficient container allocation strategy including resource elasticity. Li et al. 
have developed a container-based scheduling strategy in a cloud environment using artificial fish swarm 
algorithm [33]. The main objectives of the algorithm are to improve the load balancing among the cloud 
servers and utilize the computing resources efficiently.  
 

Mao et al designed a container-based scheduling strategy in a cloud environment for minimizing the 
drawback of the VM instances [34]. The proposed strategy deployed the containers as a form of Docker 
image for processing the tasks with minimum delay and computation time. The authors classified the tasks 
into two categories- CPU-intensive and memory-intensive and deployed the containers for the tasks on the 
suitable node in the cluster. Havet et al. have introduced container-based scheduling in the CDC that 
leverages the principals from the generation of garbage collection [35]. The proposed framework 
investigated the current status and resource usage of the active containers and deployed the containers on the 
physical machines based on the requirements of the containers. The main objective of the strategy is to 
minimize the overall energy consumption of the cloud servers. Fazio et al. have designed a container-based 
strategy for processing micro-services in cloud environment [36]. This strategy maximizes the reliability and 
scalability of the CDC with efficient resource utilization. Wan et al. have developed a container-based 
strategy for processing micro-services [37]. The authors have designed a communication-efficient container-
based framework which deployed the containers on the cloud servers as a form of Docker images. The main 
objectives of the work are to minimize the overall cost while utilizing the resources efficiently. In our 
previous paper [38], we have developed a scheduling and resource provisioning strategy in an IaaS cloud 
environment using K-means and Bat algorithm. This algorithm helped to find a set of the optimal loaded 
server for assigning the VM instances for further execution. This strategy also derived a rule-based strategy 
for finding a suitable VM instance for each task. The superiority of this method over existing ones is also 
shown using various simulation runs.             
 

Most of the existing container-based scheduling strategies try to optimize a single objective of the QoS 
parameters. However, single objective optimization may reduce the performance and efficiency of the CDC. 
Nowadays, most of the applications or tasks are generated from real-time devices IoT devices. So, to run 
such types of applications or tasks with minimum computational time and energy consumption is one of the 
challenging issues in a cloud environment, which have not discussed yet in the existing literature. To 
overcome the short comes of the existing strategies, we have developed an energy efficient container-based 



scheduling strategy for solving multiple objectives of the task scheduling. Here, the IoT-based task may 
execute locally or offload the resource-intensive or event-driven tasks to the CDC. The task scheduler of the 
CDC finds a suitable container for each task based on the APSO technique using two QoS parameters 
including energy consumption and computational time of the computing devices. This may minimize the 
total computational time and the energy consumption of the servers. The proposed strategy also finds an 
optimal server based on a rule-based strategy for assigning the selected containers. This may maximize the 
resource utilization of the computing devices efficiently.      
 
 
 
 
 
 

3. Preliminaries  
 

Here, we first discuss the multi-objective optimization strategy followed by the overview of the APSO 
technique. 
  

3.1 Multi-objective Optimization 
 

Definition 1. Global Minimum: Given a function �: � ⊆ �� → �, � ≠ ∅, for � ∈ �, the global minimum 
of function f is �∗ ≜ ���∗� >  −∝, if and only if 

∀� ∈ �:  ���� ≤ ���∗� (1) 
 

Here, y* represents the global minimum solution, F is the objective function and the set of � is the feasible 
region � ∈ �, where S represents the whole search space [16].   
 

Definition 2. Multi-objective Optimization (MOO): MOO problems (MOPs) at time t is defined as follows 
[16].  
 

Minimize F(y, t) = {f1(y, t), f2(y, t), f3(y, t), f4(y, t), ..., fm(y, t)} T 

 

Subject to: � ∈ � 
 

where, y = (y1, y2, y3, y4, ..., ym)T, is the m dimensional decision vector, � is the decision space and  �: � →
�� ∶ � = �1, 2, 3, … , #�, consists of n real-valued objective functions and Rn is called the objective space. In 
other word, y = (y1, y2, y3, y4, ..., ym)T which will satisfy the n inequality constraints which is defined as 
 

ℎ���� ≥ 0: � = 1, 2, 3, … . , # (2) 
 

The p equality constraints are represented are 
  

(���� = 0: � = 1, 2, 3, … . , ) (3) 
This will optimize the vector function as 
 

F(y, t) = {f1(y, t), f2(y, t), f3(y, t), f4(y, t), ..., fn(y, t)} T 

 
(4) 

where, y = (y1, y2, y3, y4, ..., ym)T represents the m dimensional decision vector. 
 

Definition 3. Decision Vector Domination: A decision vector y1 Pareto dominates another vector y2 at time 
t, denoted by �*�+� ≻ �-�+�, if and only is, 

.∀� = 1, … . , /, 0���*, +� ≼ 0���-, +�
∃� = 1, … . , /, 0���*, +� ≺ 0���-, +�4 (5) 

Definition 4. Pareto Optimal Set: Let y and y* are decision vectors, and if the decision vector y* is said to be 
non-dominated at time t if and only if there is no other decision vector y such that y�+� ≻ �∗�+�. The Pareto-
Optimal Set (POS) is the set of all Pareto optimal solutions [16], i.e.: 

56� = {�∗�+�| ∄��+�, y�+� ≻ �∗�+�} (6) 
 

Definition 5. Pareto-optimal Front: Pareto-optimal Front (POF) is the corresponding objective vectors of the 
POS at time t.  
 

56� = �{�∗�+�|�∗< 56� (7) 



 

An ideal multi-objective optimization strategy must have the ability to find a set of optimal solutions and at 
the same time, the solutions must be as diverse as possible. Here, we solve a bi-objective optimization 
strategy in a container-based cloud environment. The main objective of this work is to find an optimal 
executing device as a form of local IoT device, container or VM instances based on energy consumption and 
computational time of the tasks.  
 

3.2 Accelerated Particle Swarm Optimization (APSO) Technique 
 

Particle swarm optimization (PSO) is a population-based stochastic optimization technique developed by 
Eberhart and Kennedy in 1995. The method was inspired by social behavior of bird flocking and fish 
schooling that does not have any leader in the group. A flock of animals achieves their best condition 
simultaneously by communicating among the members who already have a better position.  Animals who 
are in a better position will inform the others to their flocks and others will follow them simultaneously. This 
would happen repeatedly until the best condition of the food source is discovered. The PSO algorithm finds 
the optimal value of a population using the working principle of the animal society. PSO consists of a swarm 
of particles which represents a potential value. A particle represents an individual (either fish or bird) from 
a population. It has the ability to move to the defined problem space and represents a candidate solution 
based on an optimization technique. Each particle is represented by its position and velocity. Each Particle i 
keeps track of its best position by Pbest (Y*

i) = {Y*
1, Y*

1, Y*
1,..., Y*

n}. The best of all Pbest is denoted as the 
global best position Gbest (G*). Values of each particle are determined based on the fitness function. The 
movement of the particles is defined by their velocity. The velocity is represented by a vector and it has a 
magnitude and direction which is defined as follow.  
 

))()(.(.))(.(..)()1( *
2

*
1 lYlYrlYGrlVlV iiiii −+−+=+ βα  

   (8) 

 

where Yi and Vi are the position vector and velocity of the ith particle respectively and r1 and r2 are two 
random numbers uniformly distributed in the interval [0,1]. The velocity is determined by the best position 
of the particle so far and the best position in which any of the particles has been so far. Based on this, it is 
imperative to be able to measure how good or bad a particle position is. At each step, the algorithm changes 
the velocity of the particle towards the Pbest and Gbest location. The updated position of each particle is 
represented as 

 )1()()1( ++=+
→→→

lVlYlY iii  
 

(9) 
 

To increase the diversity of quality solution for each individual, the normal PSO technique uses both the 
current Pbest and Gbest position of the individuals. Though, the diversity can be simulated using some 
randomness. A modified version of PSO algorithm is called as APSO algorithm [20] which is used to 
accelerate the convergence of the algorithm based on global best location. The velocity vector of the APSO 
algorithm is formulated in Eq. (10) [39-40]. The illustration of the velocity calculation of APSO technique 
is shown in Fig. 1.   
 

))(()()1( * lYYlVlV iii −++=+ βαε     (10) 

where ɛ is a random vector uniformly distributed in the range [0, 1]. The updated location of a single particle 
to increase the convergence even further using one step is formulated in Eq. (11).   

 l
ii GlYlY αεββ ++−=+ *)()1()1(  

 
(11) 

 



 
Fig. 1. Illustration of velocity calculation of APSO technique 

The APSO technique is used to find optimal executing devices based on two QoS parameters including 
energy consumption and the computation time of the tasks. Due to the faster convergence speed and accuracy 
from the existing optimization technique, i.e. genetic algorithm, ant-colony optimization, honey-bee 
algorithm, PSO, simulated annealing, we select the APSO technique for solving the bi-objective optimization 
strategy for container-based scheduling strategy.    
 

4. Overview of containers and their effectiveness 
 

Cloud computing is a computing paradigm, where all computing resources are available to process various 
types of tasks and applications as a pay-per-use basis. The cloud providers receive various types of 
applications or tasks to execute based on their requirements. We broadly classify the tasks and applications 
into two categories- IoT based task/applications and Non-IoT-based tasks/applications. The IoT-based 
devices generate various real-time applications which may execute locally in the micro-services or 
microprocessor or may offload the tasks to the CDC for effective and faster processing. The Non-IoT devices 
generate various types of batch mode tasks or applications which require maximum resources for processing 
and storage. Moreover, the Non-IoT devices may generate few event-driven applications for further 
processing. The Non-IoT devices directly offload the tasks or applications to the CDC, which may be CPU-
intensive or memory-intensive applications. The IoT-based applications are either event-driven or request-
based applications. The event-driven applications are generated by the users or the systems based on some 
specific events such as keystrokes, fraud detection, real-time warehouse management, receiving HTML 
based messages, etc. The users also request for some specific resources for executing or storing their tasks, 
which types of applications are called request based applications. Request-based applications are either CPU-
intensive (require more CPU) or memory-intensive (require more storage) applications. The classification 
of various types of user-driven applications/tasks is shown in Fig. 2.        
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Fig. 2. Types of user-based Tasks/ Applications 

 
The underlying technology that makes the cloud environment important in a distributed environment is 
virtualization. Virtualization technology allows the providers to assign multiple numbers of VM instances 
for the tasks or applications without the knowledge of the users. The maturity of the cloud environment 
mostly depends on the virtualization technology which improves the utilization of the resources and 
minimizes the energy consumption of the tasks. In past decades, cloud providers provide the resources to the 
users as a form of VM instances. The VM instances virtualize the computing resource in hardware level 
where each VM instance has its own underlying Operating System (OS) and shares the computing resources 
of a host server based on “Bear-Metal” or “Hypervisor”. The hypervisor or virtual machine monitor of each 
server is a software or firmware that helps to deploy and run the VM instances. The main advantage of the 
VM instances is that they help to virtualize the resources of the servers and increases the parallelism of the 
tasks while improving the utilization of the computing resources. However, the VM instances not only run 
the full version of the OSs but also a virtualized copy of the hardware needs to run by the OS of each VM 
instance. This may quickly add a lot of storage of the memory and increase the CPU cycle. The VM instances 
also take more than a minute time to deploy and maximize the overall energy consumption and cost of the 
tasks.      
 

However, to overcome the drawbacks of the VM instances, a new type of virtualization technology is used, 
known as containers. Containers provide a lightweight environment for the tasks and applications which use 
the process-level virtualization technique for sharing and utilizing the computing resources efficiently. 
Containers are stand-alone and self-contained units that enable users to handle a customized execution 
environment in the form of Docker, Linux Containers or Kubernetes images instead of bulky VM instances. 

Containers sit on the top of the server with their own OS. Each container shares the OS kernel (e.g. libraries, 
binaries) of the hosted server. This may reduce the needs to reproduce the OS code and server may run a 
number of tasks or application with a single OS. The structure of the VM instances and containers are shown 
in Fig. 3. Thus the containers require only a few megabytes to store and start-up within a few milliseconds. 
This technology may increase the parallelism among the tasks and utilize the resources more efficiently than 
VM instances. Container technology is better for the cloud providers that want to run a maximum number 
of applications or tasks on a minimum number of servers. This may minimize the overall energy consumption 
and the exceptional cost of the applications or tasks. The differences between the two different virtualization 
technologies in a cloud environment are shown in Table 1.     

 

Table 1. Difference between Containers and VM instances 
 

Properties Containers Virtual Machines (VMs) 
Process Type Lightweight. Heavyweight. 

User-driven Tasks/ Applications 

IoT-based Tasks/ Applications Non-IoT-based Tasks/ Applications 

Event-driven Tasks/ 
Applications 

Request-based Tasks/ 
Applications 

Event-driven Tasks/ 
Applications 

Request-based Tasks/ 
Applications 

CPU-intensive 
Tasks/ 

Applications 

Memory-
intensive Tasks/ 

Applications 

CPU-intensive 
Tasks/ 

Applications 

Memory-
intensive Tasks/ 

Applications 



Type of OS All containers share the OS of the host 
server. 

Each VM has its own OS. 

Performance Native Performance Limited Performance 
Portability Easily portable from one server to 

another server. 
Complex process to migrate VMs from 
one server to another server. 

Auto-scaling Process Easily scale-in or scale-out the 
resources as per requirements. 

Complex process for scale-in and scale-
out. 

Type of virtualization OS-level virtualization. Hardware level virtualization. 
Start-up Time Start-up time in seconds. Start-up times in minutes. 
Required Memory 
space 

Require less memory space to run an 
application or task.  

Require more memory space to run an 
application or task due to the overhead of 
OS. 

Cost Minimization Effective use of resources and less 
consumption of resources may reduce 
the overall cost. 

Require more cost due to the 
consumption of more amounts of 
resources.  

Energy Efficient Less resource consumption may reduce 
overall energy consumption. 

Maximize energy consumption due to the 
maximum amount of resource usage. 

Parallelism Maximize the parallelism among the 
tasks and applications. 

Reduce the parallelism among the tasks 
and applications. 

Security Less secure due to process-level 
virtualization. 

More secure due to full isolated and 
maintain hardware-level virtualization. 

 

For experimental purpose, we have deployed Docker containers in four heterogeneous private cloud servers 
and assigned the 1000 tasks to the Docker images as per their requirements. During processing the tasks on 
the Docker images we have investigated that the Docker images contain very minimum time to compute the 
tasks with minimum energy consumption and also increases the parallelism among the tasks. This may also 
increase the resource utilization of the cloud servers. The same strategy we have also applied over VM 
instances and assigned the tasks to the suitable VM instances as per the resource requirements by the tasks. 
However, due to maximum resource consumption by the VM instances and maximum deployment time, the 
performances of the cloud servers are going down which increases the computation time and energy 
consumption of the tasks. This virtualization technique also minimized the parallelism among the task and 
the resources utilization of the cloud servers. The performance analysis between containers and VM 
instances in terms of start-up time, memory usage and energy consumption is shown in Fig. 4. 

 
Fig. 3. Difference between VM instances and containers based on their structure 

 

The container technologies have widely used by the academicians and researcher due to the advantages of 
Docker and Kubernetes. Docker is an open platform tool which makes it easier to create, deploy and to 
execute the tasks or applications as a form of containers. Docker Containers allows the system to spread the 
tasks among the resources which can execute them in a faster way. The main components of a Docker are 



Docker Swarm, Docker Compose, Docker Images, Docker Daemon, and Docker Engine. Docker can 
manage its own infrastructure in the same ways as an application is being managed. Docker uses Linux 
kernel control groups and namespace to run independent containers in a server. The control groups provide 
the various types of resources to run a task or an application and namespace provide the details about the 
running application of the operating environment such as process tree, User Id, network usage rate, etc. The 
main advantage of the Docker platform is to ship, test, and deploy application quicker which may reduce the 
computational time and cost of the tasks or applications. 
 

 
(a)                                                                                       (b) 

 
(c) 

Fig. 4. Performance analysis between VM instances and containers: (a) Start-up Time; (b) Memory Usage; (c) 
Energy consumption 

 

Kubernetes is an alternative of Docker container which provides a scalable, loosely coupled environment to 
run an application. A Kubernetes form a master-slave architecture where the cluster consists of a master 
node and multiple slave nodes. The master node schedules the tasks in order and deploys them to the slave 
nodes in the cluster. The slave nodes execute the tasks and return back the result to the master node. The 
master node works as a controller in the Kubernetes cluster. The Kubernetes architecture incorporates the 
concept of a pod which can host a set of containers with some shared resources at the same server. It plays 
an important role to maximize the performance of the Kubernetes. Kubernetes supports two types of pods- 
(i) Service pods- This can run permanently and helps to see the background workload of the cluster. (ii) 
Job/Batch pod- This helps to execute the tasks and terminate from the server on task completion. While 
launching a pod of a Kubernetes, it requests a set of resources. The Kubernetes scheduler is responsible to 
select the best-fit resources for the tasks. Docker and Kubernetes run on a different level of a server. 
Kubernetes can integrate the Docker engine for monitoring the scheduling and execution of the tasks. 
However, Docker can create its own container image to run an application using the docker build command.  
 



5. Problem Formulation 
 

The proposed EECS strategy requires addressing several research challenges for enabling effective and 
efficient operations. In this section, we discuss the system model followed by the problem statement to 
address the proposed method.   
 

5.1 System Model 
 

Here, we consider a container-based CDC model with a set of computing servers that can accommodate 
multiple numbers of containers and VM instances as per the requirements of the tasks. The container-based 
CDC model is shown in Fig. 5. Here, we consider two types of users such as IoT based and Non-IoT based 
who can transmit the various types of applications or tasks (e.g. event-driven tasks, request-based tasks, 
CPU-intensive tasks or memory-intensive tasks) to the CDC for further processing. However, most of the 
IoT devices have some processing capability (e.g. microprocessors, microcontrollers, FPGAs, SOCs) and 
storage for executing some micro-services applications or tasks. Otherwise, the IoT devices and all non-IoT 
devices can upload the applications or tasks to the CDC. The admission controller receives the tasks from 
the users and decides whether the tasks can be admitted or not. This decision is based on the availability of 
the computing resources of the servers. Another activity of the admission controller is to assign the control 
of the tasks either to the Container scheduler or VM manager for further processing. Based on our strategy, 
by default, the controls of the tasks come to the Container scheduler due to the benefits of the container 
deployment policy than the VM instances. The admission controller assigns the control of the tasks to the 
VM manager based on the requests of the users for executing the tasks on the VM instances. 
 

The main responsibility of the Container scheduler is to create various types of containers based on the 
requirements of the tasks. However, the main activity of the VM manager is to select a VM instance from 
the pool of VMs for each task based on its resource requirements and characteristics. The tasks scheduler is 
responsible for holding detail information of the active servers in the CDC and receives the information 
about the availability of the resources in the servers in each time interval. This may help to find an optimal 
server with a minimum load for deploying the selected containers or the VM instances. The task scheduler 
is also responsible for auto-scaling the servers or the containers based on the overall resource availability 
and the tasks or applications arrival rate in the CDC. The symbols of the variables along with their 
descriptions are given in Table 2.   
 



     
Fig. 5. Container-based cloud data center 

 

Table 2. Computational elements of IoT 
 

Symbols Descriptions 
CPj

CN CPU capacity of the container j 
|CRj| Number of CPU cores 
sizeof(CR) Size of each CPU core 
CMj

CN Memory capacity of the container j 
|Mj| Number of blocks in the memory 
sizeof(M) Size of each memory block 
Ti

t Total tasks are arrival rate at each server i 
Pk

t Rate of a Poisson process for task generation in each time 
slot 

TTaj Transmission time between the user a and CDC j 

APP APP APP 

CN1 CN2 CN3 

Host OS 

Container Manager 

CPU Memor
y 

Disk 

APP APP APP 

Host OS 

Container Manager 

CPU Memor
y 

Disk 

APP APP APP 

Hypervisor 

CPU Memor
y 

Disk 

CN4 CN5 CN6 
OS OS OS 

Computing Server Computing Server Computing Server 

. . . 

Admission Container 

VM Manager Container Scheduler 

Healthcare Transportation Smart Home 

Agriculture Vehicles Shopping 
Complex 

IoT Devices (May execute locally) Non-IoT Devices (Offload toCDC) 

Industry Educational 

Task 
Offloading 

Task 
Scheduling 

Optimal 
Container 
Selection 

VM1 VM2 VM3 

Task Scheduler 



SDaj Serialization delay between the user a and CDC j 
PDaj Propagation delay between the user a and CDC j 
SZka Sizes of a task k emitted from a device a 
TRaj Transmission rate between the user a and CDC j 
Pj Transmission power 
TTja

d Total time requires to transmit the downlink traffic from 
CDC j to user a 

TTja
u Total time requires to transmit the uplink traffic from 

CDC j to user a 
ETkc

a Execution time of a task k emitted from a device a in a 
computational device c 

CTkc
a Computation time of a task k emitted from a device a in 

a computational device c 
Cc(t) CPU usage of a computational device c at time t 
Mc(t) Memory usage of a computational device c at time t 
Lc(C, M) Current load of a computational device c 
RCc(C, M) Reaming load of a computational device c 
TLk(C, M) Required load by a task k 
RUc Resource utilization of the device c 
Lc

max(C, M) Maximum resource capacity of the device c 
TPc

C Total power consumption of CPU by a computational 
device c 

TPc
M Total power consumption of memory by a computational 

device c 
DPc

C Dynamic power consumption of CPU by a computational 
device c 

SPc
C Static power consumption of CPU by a computational 

device c 
DPc

MR Dynamic power consumption of memory during read by a 
computational device c 

DPc
MW Dynamic power consumption of memory during write by a 

computational device c 
TPc Total power consumed by the device c 
TCEk Total computational energy by a task Tk, executing in a 

computing device c 
TECkj Total energy consumes by a task while Tk executing in a 

container in a CDC j 
CEc

C(t) The CO2 emission rate of the CPU 
CEc

M(t) The CO2 emission rate of the memory 
TCEc Total CO2 emission rate of a device c 
Tc

C(t) The temperature emission rate of the CPU 
Tc

M(t) The temperature emission rate of the memory 
TMc Total temperature emission rate of a device c 

 

A. Network Model  
 

We consider N computational servers, denoted by the set S = {S1, S2, S3, ..., SN}, deploying in a CDC and 
connected by the same Local Area Network. Each server can host U number of heterogeneous containers 
and H number of VM instances as per the requirements of the tasks and the resource availability of servers, 
represented as CN = {CN1, CN2, CN3, ..., CNU}, VM = {VM1, VM2, VM3, ..., VMH} respectively. Let consider 
that there are M IoT users denoted by the set I = {I1, I2, I3, ..., IM} and X Non-IoT users denoted by the set NI 
= {NI1, NI2, NI3, ..., NIX}. Here, we consider each IoT device has a processing unit (i.e. microprocessors, 
FPGAs, SOCs, microcontrollers) and software applications which has some computational ability. The 
processing units and the software of the IoT devices are shown in Table 3 [41].   

 

Table 3. Computational elements of IoT 



 

Computational Elements of 
IoT devices 

Samples 

Hardware Arduino, Raspberry Pi, Smart 
Things, Gadgeteer, Smart Phones, 

Phidgets, Intel Galileo, 
BeagleBone, Cubieboard. 

Software Operating System (TinyOS, 
Contiki, Riot OS, LiteOS, Android) 

Cloud (Hadoop, Nimbits, etc). 
 

Due to the processing ability, each IoT user AB ∈ A can execute the tasks Tk
IoT locally. However, due to 

limited processing capability, the IoT users can offload the tasks to the CDC for processing via wireless 
communications. The Non-IoT users CAD ∈ CA must not have any processing ability and offload the task 
Tk

NI to the CDC for processing or storage purpose using wireless networks. The servers of each CDC have 
heterogeneous computational resources (e.g. CPU, memory) with fixed capacities. Hence, the computational 
capabilities of the server i is characterized by its computational service rate Ci (CPU capacity), and the 

computational service rate of the servers available in a CDC, EFGF = ∑ E�I�J* . Each server can deploy 
multiple containers based on the requirements of the tasks. Here we consider two types of resources such as 
CPU and memory for deploying the containers. The CPU capacity of the container j (CPj

CN) is defined as 
follows. 
 

)(|| CRsizeofCRCP j
CN
j ×=       (12) 

where (|CRj|) is the number of cores and the size of each core, denoted as sizeof(CR). The memory capacity 
of the container j (CMj

CN) is defined as follows. 
 

)(|| MsizeofMCM j
CN
j ×=       (13) 

where (|M|) is the number of blocks in the memory and the size of each block, denoted as sizeof(M). Note 
that our proposed CBSS algorithm is compatible with other network structure until unless the IoT/Non-IoT 
to CDC association is unchanged in one peer offloading decision cycle. 
 

B. Task Arrival Model 
 

The computational tasks are categorized in two different way- (i) real-time tasks (also known as IoT tasks) 
which are generated by the IoT devices and (ii) batch tasks (also known as non-IoT tasks), which are 
generated by the non-IoT devices. IoT devices may execute the tasks locally or immediately offload the tasks 
to the CDC for faster processing. However, the non-IoT tasks offload the tasks to the CDC as a batch mode. 
The operational timeline is decentralized for making peer offloading for non-IoT based tasks. In each time 
slot t, a batch of non-IoT tasks k is generated from non-IoT devices (e.g Users own Laptop, Desktop, mobile, 
etc) according to the Poisson process. This is a common assumption on the batch tasks arrival in a 
computational server [42]. Let Pk

t denotes the rate of a Poisson process for task generation in each time slot. 

At time t, Pk
t is randomly drawn from 5KL ∈ [0, 5BND] to generate the temporal variation in task arrival pattern. 

Let 5L = {5KL} K∈PQR, denotes the non-IoT based task arrival at time slot t. Here, we assume that the size of 
the IoT and Non-IoT based tasks are measured by Million Instructions (MI) and the required CPU and 
memory capacity for the tasks is represented as Million Instructions Per Second (MIPS) and MB 
respectively. The total tasks are arrival rate at each server i, denoted by Ti

t, is S�L = ∑ 5KLK∈PR,K∈PQR . The task 

arrival rate of all N servers in a CDC is denoted as SFGF = {S�L}�∈I.     
 

C. Transmission Model 
 

The transmission time is incurred during IoT and Non-IoT based devices offloading the tasks to the CDC 
for further computation or storage through an uplink channel or CDC transmit the computation result to the 
requesting devices through a downlink channel. In a noise-free channel, the transmission time between users 



and CDC depends on the distance and the bandwidth of the network. The transmission time between the user 
a and CDC j (TTaj) is defined as follows. 

XaMaSDPDTT ajajaj ∈∈+= ,:  (14) 

where PDaj and SDaj represent the propagation delay and serialization delay. The propagation delay (DSaj) 
is defined as the ratio between the distance among the user a and CDC j and the bandwidth of the network 

(BWaj), i.e. 5TNU = GVWX
YZWX

, where 22 )()( jajaaj YYXXDS −+−= in a two-dimensional space (X, Y). The 

serialization delay is the ratio between the sizes of a task k emitted from a device a, �[KN ∈ [0, �[BND] to 

the transmission rate of the network (TRaj), i.e. �TNU = V\]W
P^WX

. However, during data transmission, some noise 

may be added with the actual data, which may change our assumption. So, we can consider that each CDC j 
consumes a fixed transmission power (Pj), and the data are transmitted over an orthogonal channel, and the 
achievable transmission rate TRaj between user a and CDC j is given by Shannon Capacity, 

S�NU = _ ǸU@a(-�1 + 5UcNUL

d- � (15) 

where Haj
t is the channel gain between user a and CDC j  and d- represents the noise power. Then, the 

amount of time required to uplink the data from the user a to CDC j (TTaj
u) is SSNUe = fXV\]W

P^WX
. However, the 

downlink traffic, from CDC j to user a, consists of the computational result �[UK ∈ [0, �[BND] and a few 

communication data a ETNU ∈ [0, ETBND]. Then, total time requires to transmit the downlink traffic from 

CDC j to user a is SSUNg = fX�V\]XhFGWX�
P^XW

 , where TRja is the transmission rate of the downlink channel from 

CDC j to user a and SZkj is the size of the task k, emitted from CDC j. So, the total transmission time is the 
combination of uplink time to transmit data from users to CDC and users and the downlink time to forward 
the data from CDC to users, which is formulated as-         

SSNK = SSNUe + SSUNg = fXV\W
P^WX

+ fX�V\XhFGWX�
P^XW

  (16) 

 

D. Computational Model 
 

The computational time of an IoT or Non-IoT based task depends on the capacity of the computational device 
and total transmission time required for transmitting the tasks and receiving the tasks from CDC which is 
defined as follow.  

},{},,{: NIIaICNcTTETCT ak
a

kc
a

kc ∈∈+=  (17) 

Here, ETkc
a represents the execution time of a task k emitted from a device a in a computational device c, 

which is defined as iSKjN = V\]W
Ffk

, where CPc is the CPU capacity of a computational device c. Here, the 

computational device for IoT based tasks is either the IoT device itself or the containers @ ∈ l of a server 
� ∈ C. IoT devices have some limited processing and storage capacity to execute the small task, also referred 
to as local computing; otherwise they can offload the tasks to the server � ∈ C of a CDC for further 
processing, also denoted as remote computing. However, the Non-IoT based devices must offload the tasks 
to the server � ∈ C for remote computing and assigned the tasks to a suitable container @ ∈ l as per the 
requirements of the tasks. A task can able to execute in a computational device if the remaining resource 
capacity (also referred as the remaining load capacity) of the device meets the resource requirements of the 
task. The current load of a device is defined as the percentage of the resources have been utilized within a 
specific time interval (T’ to T’’ ). Here we consider each computing device is configured based on two types 
of resources i.e. CPU (Cc(t)) and memory (Mc(t)). The current load of a computational device c at each time 
interval is defined as follows.    
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(18) 



where, > is the constant in the interval [0, 1]. The value of Cc(t) and Mc(t) are represented in the interval 
[0,100]. If the remaining load of a computational device c, �mj�E, /� = �1 − mj�E, /��is less than the 
required load (TLk(C, M)) by the task SK: n ∈ {/, ?}, i.e. �mj�E, /�  ≤ SmK�E, /��, then the tasks should 
be assigned to that device. Otherwise, the task should be offloaded to CDC or wait in a local queue for further 
execution. The aim should be to keep the resource utilization of an individual device within the permissible 
level. Utilization is another key decision parameter used to indicate whether a device capacity is adequate to 
assign a new task or not. However, very high resource utilization often compromises the performance of the 
system and may increase the completion time of the tasks. For a given device c, the resource utilization, RUc, 
is calculated as follows. 

100
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MCL
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c

c
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(19) 

where Lc
max(C, M) indicates the maximum resource capacity of the device c.  

 

Case 1: Local Computing: The IoT devices have limited processing capacity which can execute the small 
tasks locally. If the remaining load of an IoT device o ∈ {/}, is less than the required load of a task SK: n ∈
{/}, i.e. �mj�E, /�  ≤ SmK�E, /��, then the task Tk should be executed locally. As the task executes locally, 
so the total transmission time of the task is 0, i.e. TTak = 0. So the overall computational time required by the 
task to complete its execution is equal to the execution time, i.e. ESKjN = iSKjN + 0 = iSKjN .  
 

Case 2: Remote Computing: In this case, the long task of the IoT devices and all Non-IoT based tasks should 
be offloaded to the CDC. Here, we consider the cloud data center has the maximum resource capacity to 
execute any kind of tasks. The tasks will transmit over a wireless user interface which requires an uplink and 
downlink transmission time. The cloud administrator develops a container based on the resource 
requirements by a task and assigns the container to an available server � ∈ C in a CDC. For offloading a 
task, the computational time consists of the total transmission time by the task to the selected computation 
server and the execution time of the task on the selected container, i.e. ESKjN = iSKjN + SSNK.  
  

E. Energy Model 
 

The energy consumption of an IoT or Non-IoT based task mainly depends on two factors- (i) Computational 
energy: consumes energy based on the amount of time the computing resources are busy to execute the task 
and (ii) Transmission energy: produces energy based on the time required to transmit the task to the CDC 
and receive the computational results from CDC. The IoT devices may execute the small tasks locally which 
minimize the transmission time as well as the energy consumption for transmission time. However, for the 
long tasks of the IoT devices and the Non-IoT based tasks should be offloaded to the CDC which consumes 
computational energy and transmission energy for executing the tasks in CDC.   
 

1) Computational Energy: The computational energy consumption varies greatly depending on the 
workload of the computing devices. The power consumption of a device is determined mainly by 
the processors and memory and the power consumption of the resources is determined primarily by 
resource utilization. However, the energy consumption of a device is estimated based on the 
utilization of the resources and the execution time of the tasks. The amount of energy consumed by 
the IoT device or the selected container o ∈ {/, l} is defined as follows.  
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where, T5jF and �5jF represents the dynamic power and static power consumption by the processors 
respectively. The dynamic power of a device depends on the frequency (f) and the voltage (Vdd) of 
the cores of the CPU while executing a task. The dynamic power consumption of a device is defined 

as T5jF = ∑ >0pgg-F^NJ* . Here CR represents the number of cores of the processor and > is a constant, 
where > = EqC=.; Cl and N represent the capacity and the number of logic gates available in each 



core and = is constant where = ≤ 1. Similarly, the static power consumption of a CPU is defined as 
�5jF = rpgg, where d is a constant. The power consumption of the memory depends on the read 
write operation while executing a task on an IoT device or a container which is defined as follows       
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Where, T5js^ and T5jsZ represent the dynamic power consumption by the memory while 
performing reading and writing operation and AM represents the static power required by the 
memory during an ideal state. The dynamic power consumption by the memory during read and 

write operation is defined as T5jsZ = T5js^ = *
- opgg- 0 , where c is a constant. So, the total power 

consumed by the device c in each unit time is defined as follows.  
M

c
C
cc TPTPTP +=  (22) 

So, the total computational energy (TCEk) by a task Tk, executing in a computing device c, a 
container is SEiK = S5j × iSKjN . 
   

2) Transmission Energy: The transmission energy of a task depends on the amount of bandwidth 
consumed by the tasks during offload the task to the CDC through an uplink network and transmits 
back the task to the user through a downlink channel. Here, we consider the bandwidth consumes 
by the task for uplink and downlink channel between user a and CSC j is BWaj and BWja respectively. 
The total time requires to transmit the data from the user a to CDC j and vice-versa is TTaj

u and TTja
d 

respectively. So the total transmission energy (TTEk) consumed by a task Tk is. 

SSiK = u_ ǸU × SSNUe v + �_ ÙN × SSUNg � (23) 

 So, the total energy consumes by a task while Tk executing in a container in a CDC j is 

SiEKU = �SEiK + SSiK� = �S5j × iSKjN � + u_ ǸU × SSNUe v + �_ ÙN × SSUNg � (24) 

The power consumption of a device also affects two parameters- the CO2 emission rate and the temperature 
of the device. The relationship between power consumption and CO2 emission is an important factor to 
account in consideration of the sustainability of a device. The CO2 emission rate of the CPU (EijF�+��and 
memory (Eijs�+�� of a device c at time t is defined as follows. 
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where, wFx-F  and wFx-s  are two user-defined constants. So, the total CO2 emission rate of a device c is defined 
as follow. 

)()( tCEtCETCE M
c

C
cc +=  (26) 

Similarly, the relationship between the temperature and power emission of the CPU (SjF�+�� and memory 
(Sjs�+�� of a device is defined as follows. 
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where = is a user-define constant. So, the total temparature (TMc) emitted by a device c is defined as follow. 
M

c
C

cc TTTM +=  (28) 

5.2 Problem Statement 
 



The main intention of the container-based scheduling strategy is to minimize the start-up time of the virtual 
resources as a form of containers for the tasks which can reflect the performance of the CDC including 
overall computation time, energy consumption and overall resource utilization. In this work, the tasks may 
execute locally (small IoT-based tasks) or should be offloaded (i.e. large IoT or Non-IoT based tasks) to the 
CDC for further processing and analyzing. A suitable container @ ∈ l is deployed for each task based on the 
multiple QoS parameters including computation time and energy consumption. The selected containers are 
assigned to an optimal computational server � ∈ C based on the availability of the resources and the resource 
requested by the containers for processing. There are multiple indicators and objectives that can offload the 
tasks to the appropriate computational server and execute the tasks efficiently [43-44]. The main focus of 
the paper is to minimize the energy consumption and computational time of the tasks while maximizing the 
resource utilization of the computing devices. These objectives can be achieved by executing the tasks 
locally or offloading to the CDC. Consequently, the optimization of the tasks is formulated as a bi-objective 
optimization problem which is discussed below. 
 

Minimize TECkj 
 

Minimize CTkc
a 

 
 

    Subject to 
          SiEKU ≤ θ*          .............................................................(i) 
            SEij ≤ θ-        ................................................................ (ii)   
 

          S/j ≤ θz            ..............................................................(iii) 
          m��E, /� ≤ θ                   .................................................. (iv) 
            mj�E, /� ≤ mjBND�E, M�           ......................................... (v)   
 

         �l� ≤ 100                     ...................................................  (vi) 
         |Kj ∈ {0, 1};   n ∈ {/, ?},   o ∈ {/, l}  ........................... (vii) 
         ∑ |�Kj�J* ;  n ∈ {/, ?}, o ∈ {/, l}  ....................................(viii) 
 

Constraint (i) indicates that the total power consumption of a device c must not beyond a threshold value �*. 
Constraint (ii) represents that the total CO2 emission rate of a device c must not beyond a threshold value θ-. 
The CO2 emission rate is linearly proportion with the energy emission of the computing devices which is 
depicted in Eq. (25) and Eq. (26). Constraint (iii) indicates that the total temperature consumption of a device 
c must not beyond a threshold value �z. Temperature emission rate is linearly proportion with the energy 
emission of the computing devices which is depicted in Eq. (27) and Eq. (28). Constraint (iv) indicates that 
a load of a computing device c must not beyond a threshold value θ. Constraint (v) represents that a load of 
a computing device c must not beyond the maximum capacity of that server. Constraint (vi) indicates that 
the resource utilization of a computing device c must not beyond 100%. Constraint (vii), xkc denotes whether 
a task Tk is assigned to a computational device c. Constraint (viii) describes that each computational server 
can execute multiple numbers of tasks by multiple containers @ ∈ l concurrently.    
 

6. Energy-Efficient Container-based Scheduling (EECS) Strategy 
 

In this section, the details of our proposed EECS strategy are described. Its three main components, i.e., 
selection of executing component and optimal server selection, are respectively introduced in the following 
sub-sections. At last the complete algorithm of the EECS strategy is also provided. 
 

6.1 Selection of Executing Component    
 

Here, we discuss a selection strategy of a suitable executing component for each task using the APSO 
technique based on the multiple objectives of the task scheduling strategy. As we discussed earlier that some 
of the IoT-based tasks may execute locally if the micro-services of the IoT devices meet the resource 
requirements of the tasks; otherwise the tasks should be offloaded to the CDC for further processing in a 
suitable container or VM instances. One of the common approaches for solving MOPs is a weighted-sum 
method, which is introduced by Zadeh [45]. This method linearly aggregates all the individual objective 
function of a MOP into one objective by using a weight vector. Here, we apply a weighted-sum method to 



design an objective function to find a suitable executing device (i.e. containers or VM instances) for each 
task based on the APSO technique. Let’s assume that the executing devices are represented as particles which 
are represented as D = {d1, d2, d3, ..., dZ} includes Z particles. Each particle has a position xz and velocity vz 
{ z= 1, 2, 3, ..., Z} in a 2-D space. Initially, this phase generates a multi-objective optimization function 
(referred as Fitness Function) based on the two QoS parameters i.e. total energy consumption and the 
computational time, defined in Section 5.2. The total energy consumption of the executing devices are 
denoted as 

TECz(dz, D) = {TEC1, TEC2, TEC3, TEC4, ..., TECz}, where ~ ∈ {l, c} 
 

and the computational time of those  are represented as 
CTz(dz, D) = {CT1, CT2, CT3, CT4, ..., CTz}, where ~ ∈ {l, c} 

 

The Fitness Function places all the two QoS parameters into a single one based on weighted-sum approached 
which is defined below.  

)(.)(.),( 21 zkzzz dCTdTECDdfit αα +=       (29) 

Thus the scheduling objectives are aggregated in a single Fitness Function, which measures the degree of 
the optimal executing device. In Eq. (29), fitz(dz, D) represents the Fitness solution of the selection of the 
suitable executing device n ∈ {l, c} for each requested task or application. In the above equation, the 
coefficients =*, and =- are the weights which are used to indicate the priority of the objectives whose value 
lies between [0, 1]. During finding an optimal executing device each objective of particle dz is normalized 
based on the maximum and minimum values of the corresponding objective function. Such normalized 
objective function helps to eliminate the impact of various amplitudes on multi-objectives. The normalized 
objective FNr(di) (where r represents the total number of objectives) of di are obtained using  
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Where frmax and frmin represent the maximum and minimum values of the rth objective which are obtained 
from the non-dominated solutions. The particles are placed in a 2-D space based on the two objectives (total 
energy consumption and computational time) of the given problem using Eq. (29), shown in Fig. 6(a). While 
running the APSO technique, all the normalized particles are generated in the 2-D plane and converge to a 
single point of the plane, which is shown in Fig. 6(b) and Fig. 6(c) respectively. Finally, the gbest location 
of the converged particle finds the best-fit executing device using the Euclidean distance (ED) among the 
nearest neighboring particles in that plane which is shown in Fig. 6(c). Finally, the APSO algorithm pointed 
the best-fit executing device in the plane with minimum ED value, shown in Fig. 6(d) and is defined as   
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where ED value ED(di, dj) between two particles di and dj in 2-D space is defined as 



 >−

=
Otherwise

dfdfifdfdf
dfdfED irjrirjr

ijir 0

))()(()()(
))(),((  

 
(32) 

The above total energy consumption and computational time are dynamically balancing two weight factors 
=* and =-. Those factors are adaptively adjusted for different particles based on the objectives. For this 
purpose, the average value of all TECz(dz, D) and CTz(dz, D) in the particle swarm dz are calculated by 
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(a)                                                                                             (b) 

 
(c)                                                                                             (d) 

Fig. 6. The process of finding the best-fit executing device using multiple objectives based on APSO technique  
 

The main idea of this phase of EECS strategy is to use a weighted-sum approach to define the fitness 
function, defined in Eq. (29). However, different particles should be assigned in the 2-D plane based on the 
various weight of =* and =-, in order to improve some potentiality for a superior solution instead of the 

poorly converged ones. Therefore, using ),( DdTEC z  and ),( DdCT z , four situations of the particles are 

considered for adjusting the values of =* and =-, aiming to properly balance the value of TECz(dz, D) and 
CTz(dz, D). The example of different weights of =* and =- for various cases is shown in Fig. 7.  
 

Case I: {The particle di with TECz(dz, D) < ),( DdTEC z  and CTz(dz, D) > ),( DdCT z }: In this category, all 

the normalized particles have minimum total energy consumption with maximum computational time. For 
better convergence, the values of the weighted factors set as =* = [0.7, 1] and =- = [0, 0.3].   
 

Case II: {The particle di with TECz(dz, D) > ),( DdTEC z  and CTz(dz, D) < ),( DdCT z }: In this category, all 

the normalized particles have maximum total energy consumption with minimum computational time. For 
better convergence, the values of the weighted factors set as =* = [0, 0.3] and =- = [0.7, 1].   
 

Case III: {The particle di with TECz(dz, D) < ),( DdTEC z  and CTz(dz, D) < ),( DdCT z }: In this category, 

all the normalized particles have minimum total energy consumption and computational time. For better 
convergence, the values of the weighted factors are equally distributed among them and set as =* =  0.5 and 
=- = 0.5.   
 

TECz(dz, D) 

CTz(dz, D) 

Particle with Maximum 
TEC and minimum CT 

Particle with Maximum 
CT and minimum TEC 

Particle with minimum 
TEC and CT 

TECz(dz, D) 

CTz(dz, D) 

Original Particles 

Particles obtain during run to 
find gbest location of the 
particles 

TECz(dz, D) 

CTz(dz, D) 

Find Euclidean distance from nearest 
neighbours to find best-fit particle 

Final position of the gbest 
particle 

TECz(dz, D) 

CTz(dz, D) 

Find the best-fit executing 
device with minimum 
TEC and CT for a task 
using APSO 



Case IV: {The particle di with TECz(dz, D) > ),( DdTEC z  and CTz(dz, D) > ),( DdCT z }: In this category, all 

the normalized particles have maximum total energy consumption and computational time. For better 
convergence, the values of the weighted factors are set as =* = [0, 0.5] and =- = [0, 0.5].   
 

 
Fig. 7. Example of various cases for adjusting the values of =* and =-  

 

Finally, the velocity and the position of the particles of the APSO technique need to be updated using their 
positional information of the local and global best positions. To reduce the evolutionary distance between 
the local-best particles and global-best one while making more disturbances, a velocity updated equation is 
designed as follows.   

)( *
1 zzzz XXVV −++=+ βαε   (34) 

where, ɛ is a random vector uniformly distributed in the range [0, 1] and =, > are the user-defined constraints. 
Xz

* and Xz represents the global-best position of a swarm and the position of the swarm in the previous 
iteration respectively. This velocity update helps to guide the particles to search toward the global-best particles. 

The updated location of a single particle to increase the convergence even further using one step is 
formulated as   

 l
zz XXX αεββ ++−=+
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Thus, it is expected to enhance the convergence speed of selection of executing component of EECS strategy. 
The pseudo code of selection of executing component of EECS strategy is shown in Fig. 8.  
 

EECS Strategy: Selection of Executing Component  
Input:  Set the objectives of the computational devices; Set the user defined constants: n, α, β, 
and ɛ                                                          
Output: Find a suitable computational device   

1: Begin 
2:    For each j: 1 to z  do                                  // r = Maximum number of iterations 
3:           fit(dz, D)  = Initial Solution() 
4:     End For 
5:     While (fit(dz, D)  <= Δ) do                  // Δ= Threshold value 
6:           min = arg min fit(dz, D)   
7:            For each i: 1 to z do 
8:                   For each  j: 1 to z do 
9:                         \\ Calculate the modified attractiveness function 
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10:                           If ( fj(di) >  fi(di)) 

TECz(dz, D) 

CTz(dz, D) 

The particle di with TECz(dz, D) >  and CTz(dz, 

D) <  

The particle di with TECz(dz, D) >  and CTz(dz, 

D) >  

The particle di with TECz(dz, D) <  and CTz(dz, 

D) <  

The particle di with TECz(dz, D) <  and CTz(dz, 

D) <  



11:                                \\ Find the Euclidean distance between the servers 
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12:                                  Set the values of =* and =- for the particles. 
13: Compare the Pareto dominance relationship between each pair of 

the computational devices and put the non-dominated ones. 
14:  Randomly select the executing devices from the set of swarms. 
15:                                    \\ Update the velocity and position of the particles   

                                        )( *
1 zzzz XXVV −++=+ βαε  

                                           l
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16:                            End if     
17:                       End for 
18:                  End for 
19:                  Find the best-fit executing device for each task or application 
20:              End for 
21:      End 

 

Fig. 8. The pseudo code of selection of executing component of EECS strategy  
 

6.2 Optimal Server Selection 
 

The main contribution of this phase is to select an optimal loaded computing server with available resources 
for deploying the selected executing devices (containers or VM instances) o ∈ {l, c}. The current load of 
each computing server � ∈ C depends on the current CPU and memory usage by various executing devices 
which is defined in Eq. (18). The remaining load of the computing server � ∈ C is defined as �m��E, /� =
�1 − m��E, /�� and the remaining CPU and memory usage of the computational servers is represented as 
Ci

R(t) and Mi
R(t) respectively. This phase sort the remaining loads of the computing servers and select the 

server with minimum load, i.a e. 
 

       Si
optimal = MAX  {RL1(C, M), RL1(C, M), RL1(C, M), ..., RLN(C, M)}  

 

A selected executing device o ∈ {l, c} is assigned to the optimal server with required resources (Cc(t), Mc(t)) 
at time t based on the following rules:   
 

Rule 1: {If ( MAX (�m��E, /�: � ∈ C� ⋀ E�̂ �+� ≥ Ej�+� ⋀ /�̂ �+� < /j�+��}: The computing server � ∈ C 
is a minimum loaded server which satisfies the CPU requirements of the executing device o ∈ {l, c}, 
however, fails to meet memory usage requirements. The executing device o ∈ {l, c} needs to wait until 
sufficient memory is available. 
 

Rule 2: {If ( MAX (�m��E, /�: � ∈ C� ⋀ E�̂ �+� < Ej�+� ⋀ /�̂ �+� ≥ /j�+��}: The computing server � ∈ C 
is a minimum loaded server which satisfies the memory requirements of the executing device o ∈ {l, c}, 
however, fails to meet CPU usage requirements. The executing device o ∈ {l, c} needs to wait until 
sufficient CPU is available. 
 

Rule 3: {If ( MAX (�m��E, /�: � ∈ C� ⋀ E�̂ �+� < Ej�+� ⋀ /�̂ �+� < /j�+��}: The computing server � ∈ C 
is a minimum loaded server which does not has sufficient CPU and memory usage for assigning the 
executing device o ∈ {l, c}, The executing device o ∈ {l, c} needs to wait until sufficient CPU and 
memory are available. 
 

Rule 4: {If ( MAX (�m��E, /�: � ∈ C� ⋀ E�̂ �+� ≥ Ej�+� ⋀ /�̂ �+� ≥ /j�+��}: The computing server � ∈ C 
is a minimum loaded server which satisfies the CPU and memory requirements both of the executing 
device o ∈ {l, c}. The executing device o ∈ {l, c} is immediately assigned to the computing server � ∈ C. 
 

The pseudo code of the optimal server selection of EECS strategy is shown in Fig. 9.  



 

EECS: Optimal Server Selection 
Input: Set of executing devices o ∈ {l, c}, remaining loads �m��E, /� of the computational 
servers � ∈ C  
Output: Select the optimal server 

1. Begin 
2. For each computational servers i: 1 to N 
3.      For each computational servers j: 1 to N 
4.             Calculate loads of the computational servers 
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5.              Calculate remaining loads of the servers 
                          �m��E, /� = �1 − m��E, /�� 
6.               Sort the servers and selects the minimum loaded servers with maximum 

reaming load 
                          Si

optimal = MAX  {RL1(C, M), RL1(C, M), RL1(C, M), ..., RLN(C, M)} 
7.        End for      
8.        If  (MAX(�m��E, /�: � ∈ C� ⋀ E�̂ �+� ≥ Ej�+� ⋀ /�̂ �+� < /j�+�� 
9.                     Executing device o ∈ {l, c} needs to wait 
10.        If  (MAX(�m��E, /�: � ∈ C� ⋀ E�̂ �+� < Ej�+� ⋀ /�̂ �+� ≥ /j�+�� 
11.                     Executing device o ∈ {l, c} needs to wait 
12.        If  (MAX(�m��E, /�: � ∈ C� ⋀ E�̂ �+� < Ej�+� ⋀ /�̂ �+� < /j�+�� 
13.                     Executing device o ∈ {l, c} needs to wait 
14.        If  (MAX(�m��E, /�: � ∈ C� ⋀ E�̂ �+� ≥ Ej�+� ⋀ /�̂ �+� ≥ /j�+�� 

       15.                     Immediately deploy the executing device o ∈ {l, c} to the server � ∈ C 
16.   End for 
17.   Find CTk: o ∈ {/, ?} and RUi: � ∈ C 
18. End 

Fig. 9. The pseudo code of optimal server selection of EECS strategy  
 

Lemma: The worst case and the best case time complexity of the EECS strategy is O(K2r) and O(Kr log(K)) 
respectively. 
 

Proof: Let K be the total number of executing devices such as containers and VM instances. Step 1 to Step 
21 of the selection of executing component of EECS strategy requires O(K2r) time (in the worst case) or  
O(Kr log(K)) time (in the best case) to find the optimal executing device on the fly. This algorithm has two 
inner loops when going through population K and one outer loop for iteration r. So the complexity of the 
extreme case is O(K2r). As K is small (typically, K= 40 to 100) and r is large (r= 5000), the computation cost 
of this phase is relatively inexpensive because the complexity of this phase is linearly proportional to r. If K 
is relatively large, the complexity of the strategy is going to be O(Kr log(K)). Let, N is the total number of 
computing servers in a CDC. So, for the optimal server selection of EECS strategy, the total time complexity 
of Step 1 to Step 18 is O(N2). The total time complexity of EECS strategy for best case is- O(Kr log(K)) + 
O(N2) = O(Kr log(K)) (value of K >> N). The total time complexity of EECS strategy for worst case is- 
O(K2r) + O(N2) = O(K2r) (value of K >> N)  
 

7. Performance Analysis 
 

In this section, we investigate the performance of the proposed EECS strategy by evaluating various QoS 
parameters such as computational time, energy consumption, CO2 emission, Temperature emission, and 
resource utilization. We further compare the proposed method with existing algorithms proposed in [20], 
[21], and [32]. 
 

7.1 Simulation Setup 
 

The simulation parameters of the proposed EECS strategy are summarized in Table 4. Here we consider 100 
IoT and 100 Non-IoT devices and each the devices are capable to generate multiple tasks or applications 



simultaneously. Each IoT device has some processing and storage capacity which is randomly and uniformly 
taken as [1000-4000] MIPS and [256-512] MB respectively. Each IoT and Non-IoT device randomly 
generates multiple numbers of tasks with sizes lay in [7000-100000] MI. We assume that each computing 
device is equipped with three different wireless interfaces, Long Term Evolution (LTE), Wifi and Bluetooth. 
The IoT and Non-IoT devices may use the LTE connection for long-term communication such as the cloud 
data center, while they use Wifi and Bluetooth interfaces to connect with the other IoT and Non-IoT devices. 
Here, we assume that the transmission rate of the LTE and Wifi interfaces are randomly and uniformly 
distributed over [4.85, 6.85] Mbps and [2.01, 4.01] Mbps respectively. Here, we consider two cloud data 
center where each of them has enough processing and storage capacity. The CPU capacity and memory 
usage of each cloud server lay in [12000-30000] MIPS and [2018-4096] MB respectively.   

Table 4: Simulation parameters 
 

Parameter Description Values 
Number of IoT devices 100 
Number of Non-IoT devices 100 
Number of tasks or applications 1000 
Sizes of the IoT applications 7000- 100000 MI 
Number of Containers 100 
Number of Servers 10 
Number of cloud data centers 2 
CPU Capacity of IoT devices 1000- 4000 MIPS 
RAM Size of IoT devices 256-512MB 
CPU Capacity of each computing server 25000- 45000 MIPS 
RAM Size of each computing server 2048-4096MB 
Storage capacity of each computing server 100 GB 

 

7.2 Dataset Used  
 

In this section, we discuss the dataset used to evaluate the performance of the proposed method. Here we 
generate six different synthetic datasets where each of the datasets randomly generates the energy 
consumption and the computational time for the executing devices as a form of containers and VM instances. 
The two important parameters of the APSO algorithm are α, β and we assumed their possible values of the 
parameters are in the range of [0, 1], where the expected possible values of those parameters are selected 
randomly such as 0.25, 0.45, 0.55, 0.65, 0.85 and 1.0. In the experimental purpose, we consider the size of 
the populations lie in [0, 100] and the possible values of the population values are selected randomly such 
as 20, 40, 50, 60, 80, and 100. An empirical test is performed to fix the values of the parameter. The proposed 
algorithm is simulated with a fixed value of each parameter for 100 iterations and minimum, maximum and 
average error are recorded with 1000 independent runs. In this experiment, for finding the best-possible 
value of a single parameter of APSO technique other parameters are in the constant state.  
\ 

A fitness value of each pattern in a dataset is calculated based on two QoS parameters, shown in Eq. (29) 
and performs a significance test between the dataset to measure the reality of the data. The significant level 
of the datasets is measured based on P-value analysis with an unpaired t-test. The unpaired t-test assumes 
that the data have been sampled from the normally distributed population. The P-value is the probability of 
finding a result equal to or more extreme than the observed data when the null hypothesis (H0) is true. P-
value is less than the selected significance level then the null hypothesis is rejected and supported the 
alternative hypothesis with proper evidence. The choice of significance level at which we reject H0 is 
arbitrary. Conventionally the 5%, 1% and 0.1% (P < 0.05, 0.01 and 0.001) levels have been used. Most 
researchers refer to statistically significant P < 0.05 and statistically highly significant P < 0.001. From Table 
5, it is clearly observed that all the datasets are highly significant. So we can conclude that all the datasets 
are valid.  
 

Table 5. Significant test of the datasets (DSs) based on P-value 
 

 DATASET- 1 DATASET- 2 DATASET- 3 DATASET- 4 DATASET- 5 DATASET- 6 
DS- 1 0 4.16421E-08 3.5324E-08 6.64E-07 0.000287 3.1346E-07 



DS- 2 1.2539E-07 0 2.35E-07 2.46E-07 7.37E-10 6.64E-07 
DS- 3 4.22E-11 1.24E-07 0 1.25395E-07 3.43E-10 3.1346E-07 
DS- 4 1.24E-07 2.46E-07 3.24E-07 0 3.64221E-08 4.16421E-08 
DS- 5 3.43E-10 3.64221E-08 6.12E-11 7.37E-10 0 0.000287 
DS- 6 1.2539E-07 2.46E-07 2.35E-07 6.64E-07 7.37E-10 0 

 

7.3 Parameter analysis and discussion 
 

In this section, we analyze the values of the parameters of the proposed EECS strategy for observing the 
better quality of the solutions. For fixing the values of the parameters of the EECS strategy, we calculate the 
minimum, mean and maximum error of the populations. Here, we use Euclidean distance for calculating the 
minimum error (MinErr (D*, dz)) and maximum error (MaxErr (D*, dz)) between the best-position of a 
particle (D*) and the other particles (dz), ~ ∈ [  in the dataset, which is shown below. 
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The mean error ( ),( *
zdDErr ) of the c, o ∈ {l, c} number of executing devices is calculated as follow. 

  
c

dD

c

dDED
dDErr

i
z

zz
z

∑
=

−

==

2

1

*

*
*

)(
),((

),(  

 
(37) 

 

Analysis of β value: Beta parameter of the proposed algorithm is one of the most important parameters and 
the performance of the proposed EECS strategy varies for the different values of the parameter. The 
fluctuation in the performance due to the different values of the beta parameter can be easily observed in 
Table 6 and Fig. 10. In Table 6, the minimum error for different values of Beta is shown. All the dataset used 
for the experiment with the proposed method produces the minimum value if the beta value is set to 0.55. 
Hence, for the rest of the experiment, the beta value is fixed at 0.55. 
 

Table 6. Minimum, mean and maximum error of β 
Dataset Error  

β = 0.25 β = 0.45 β = 0.55 β = 0.65 β = 0.85 β = 1.0 
DS- 1 Minimum 2.77127E-05 9.02E-05 7.66E-06 0.000268 0.000291 0.000427 

Mean 0.60433687 0.693567 0.584586 0.567229 0.684708 0.610959 
Maximum 0.90433678 1.293556 0.784575 1.167231 0.984712 0.920769 

DS- 2 Minimum 7.45E-05 0.000327 6.38E-05 7.27E-05 0.000215 1.22E-05 
Mean 2.386025 2.192138 2.524406 2.142301 2.698928 2.479959 

Maximum 2.871234 2.834512 2.613425 2.943161 2.814531 2.825432 
DS- 3 Minimum 0.000301 6.47E-06 1.18E-05 8.22E-06 3.28E-05 8.9E-05 

Mean 1.594098 1.685053 1.748093 1.613907 1.685876 1.547047 
Maximum 1.892132 2.0564321 1.814321 1.919071 2.134325 2.013245 

DS- 4 Minimum 0.000126 2.71E-05 1.31E-05 3.13E-05 0.000361 0.000168 
Mean 0.446152 0.735002 0.542211 0.530446 0.735819 0.428055 

Maximum 1.032456 1.412313 0.900123 1.212365 .9934210 1.1045236 
DS- 5 Minimum 4.16E-05 3.375E-05 3.75E-05 0.000348 0.000142 0.000149 

Mean 0.295197 0.333111 0.173401 0.307142 0.479175 0.126886 
Maximum 1.234123 1.412423 0.985423 .9912341 1.104231 1.045231 

DS- 6 Minimum 5.22E-05 2.47E-05 2.18E-05 0.000191 7.16E-05 6.61E-05 
Mean 0.40563 0.691009 0.407218 0.377485 0.443640 0.443048 

Maximum 1.102341 0.994216 .9721650 1.132456 0.991234 1.012363 
 



 
(a)                                                                                              (b) 

 
(c)                                                                                              (d) 

 
(e)                                                                                              (f) 

Fig. 10. Box Plot of Error for different value of β (a) β  =.25 (b) β =.45 (c) β   =.55 (d) β =.65 (e) β =.85 (f) 

β =1.0 
 

Analysis of α value: Alpha parameter of the proposed algorithm is one of the most important parameters 
and the performance of the proposed EECS strategy varies for the different values of this parameter. The 
fluctuation in the performance due to the different values of the Alpha parameter can be easily observed 
from Table 7 and Fig. 11. In Table 7, the minimum error for different values of Alpha is shown. All the 
dataset used for the experiment with the proposed method produces the minimum value if the alpha value is 
set to 1.0. Hence, for the rest of the experiment, the alpha value is fixed at 1.0. 
 

Table 7. Minimum, mean and maximum error of α  



Dataset Minimum Error  
α = 0.25 α = 0.45 α = 0.55 α = 0.65 α = 0.85 α = 1.0 

DS- 1 Minimum 0.000124 7.84E-05 0.00023 6.94E-05 0.000178 5.14E-06 
Mean 1.298154 0.824462 0.62336 0.742566 0.474447 0.357432 

Maximum 1.534123 1.412423 0.985423 .9912341 1.104231 1.045231 
DS- 2 Minimum 3.38124E-05 3.81E-05 4.08E-05 6.41E-05 4.38E-05 3.26E-05 

Mean 2.263859796 1.340141 1.112783 1.19726 1.09794 0.910373 
Maximum 2.90433678 1.693556 1.784575 1.217231 1.584712 0.940769 

DS- 3 Minimum 0.001088 0.000267 0.000427 5.4E-05 0.000153 2.18E-05 
Mean 3.508792 2.700784 2.489331 1.985265 1.899956 1.628176 

Maximum 4.102341 2.994216 2.9721650 2.132456 1.991234 1.912363 
DS- 4 Minimum 4.91E-05 0.000134 8.24E-05 4.76E-05 2.49E-05 4.82E-06 

Mean 0.714127 0.735838 0.474563 0.339181 0.094042 0.190216 
Maximum 1.271234 1.034512 0.913425 0.943161 0.914531 0.825432 

DS- 5 Minimum 0.528811 0.00031 0.000177 0.000149 0.000304 0.000255 
Mean 5.531986 4.43705 4.015667 3.73585 3.175658 2.928514 

Maximum 5.892132 5.0564321 4.814321 3.919071 3.634325 3.013245 
DS- 6 Minimum 0.00026 6.95E-05 0.000212 7.41E-05 1.56E-05 5.28E-06 

Mean 2.33300 1.327611 1.052162 0.746555 0.552767 0.706386 
Maximum 2.932456 1.412313 1.400123 1.212365 .9934210 0.9045236 

 

 
(a)                                                                                                (b) 

 
(c)                                                                                           (d) 

 



(e)                                                                                                 (f) 
Fig. 11. Box plot of error for different value of α (a) α = 0.25 (b) α = 0.45 (c) α = 0.55 (d) α = 0.65 (e) α =0.85 

(f) α =1.0 
 

Analysis of Population Size: Population Size parameter of the proposed algorithm is another important 
parameter and the performance of the proposed algorithm varies for the different values of this parameter. 
The fluctuation in the performance due to the different values of the Pop_Size parameter can be easily 
observed in Table 8 and Fig. 12. In Table 8, the minimum error for different values of Pop_Size is shown. 
All the dataset used for the experiment with the proposed method produces the minimum value if the 
Pop_Size value is set to 60. Hence, for the rest of the experiment, the Pop_Size value is fixed to 60. 
 

Table 8. Minimum, mean and maximum error of Pop_Size (PS) 
Dataset Minimum Error  

PS= 20 PS= 40 PS= 50 PS= 60 PS= 80 PS= 100 
DS- 1 Minimum 5.14E-06 6.94E-05 0.00023 0.000291 0.000178 7.66E-06 

Mean 0.357432 0.742566 0.62336 0.684708 0.474447 0.584586 
Maximum 1.045231 .9912341 0.985423 0.984712 1.104231 0.784575 

DS- 2 Minimum 3.26E-05 6.41E-05 4.08E-05 0.000215 4.38E-05 6.38E-05 
Mean 0.910373 1.19726 1.112783 2.698928 1.09794 2.524406 

Maximum 0.940769 1.217231 1.784575 2.814531 1.584712 2.613425 
DS- 3 Minimum 2.18E-05 5.4E-05 0.000427 3.28E-05 0.000153 1.18E-05 

Mean 1.628176 1.985265 2.489331 1.685876 1.899956 1.748093 
Maximum 1.912363 2.132456 2.9721650 2.134325 1.991234 1.814321 

DS- 4 Minimum 4.82E-06 4.76E-05 8.24E-05 0.000361 2.49E-05 1.31E-05 
Mean 0.190216 0.339181 0.474563 0.735819 0.094042 0.542211 

Maximum 0.825432 0.943161 0.913425 .9934210 0.914531 0.900123 
DS- 5 Minimum 0.000255 0.000149 0.000177 0.000142 0.000304 3.75E-05 

Mean 2.928514 3.73585 4.015667 0.479175 3.175658 0.173401 
Maximum 3.013245 3.919071 4.814321 1.104231 3.634325 0.985423 

DS- 6 Minimum 5.28E-06 7.41E-05 0.000212 7.16E-05 1.56E-05 2.18E-05 
Mean 0.706386 0.746555 1.052162 0.443640 0.552767 0.407218 

Maximum 0.9045236 1.212365 1.400123 0.991234 .9934210 .9721650 
 

 
 

(a)                                                                                 (b) 

 



(c)                                                                             (d) 

 
(e)                                                                                               (f) 

Fig. 12.  Box Plot of Error for different value of Pop_Size (a) Pop_Size =20 (b) Pop_Size =40 (c) Pop_Size =50 
(d) Pop_Size =60 (e) Pop_Size =80 (f) Pop_Size =100 

 

Result analysis: The experiment was conducted with the fixed parameter values of alpha, beta, and Pop_Size 
which are decided by the analysis. The experiment was conducted to prove the convergence speed, stability 
and solution quality of the proposed EECS strategy. The convergence of the proposed EECS strategy over 
different synthetic datasets is presented in Table 9 and Fig. 13. The convergence is the minimum Euclidean 
distance between the target result and the optimized result produced by the proposed method. So, the main 
target of all the conducted experiment is to achieve the minimum error. It is observed from the experiment, 
which is presented in Table 9 that the error of the proposed algorithm is almost close to zero for all datasets. 
The performances of the proposed method over the extremely significant dataset are less than the predefined 
threshold value 0.0001 and the proposed method achieved the target level for all the datasets.  
 

 
 

Fig. 13. Comparison of performance over different synthetic datasets 
 

Table 9. Minimum and mean error over different synthetic datasets  
 

Datasets Minimum Error Mean Error Maximum Error  

DS 1 4.72758E-07 0.677862757 1.472345 

DS 2 4.70339E-07 0.280634301 1.104523 
DS 3 1.36224E-08 0.396771942 1.002345 
DS 4 2.53E-07 0.690372 1.324561 
DS 5 7.64E-07 1.597311 1.931023 
DS 6 4.26E-06 2.589816 2.934127 

 

7.4 Comparison Analysis 
 

In this section, we evaluate the proposed EECS strategy via simulation runs over the six synthetic datasets 
and compare with the existing algorithms such as MOBFOA [20], PSO-COGENT [21] and GAS [32]. Here, 



we consider various performance metrics to evaluate the proposed strategy such as computational time, 
energy consumption, CO2 emission, Temperature emission, and resource utilization. 
 

A) Computational Time: Computational time of a task is defined as the amount of time requires to complete 
its execution within an executing device. The computational time depend on the executing time of a task in 
the assigned resources, the time requires to transmit the task from the computational devices to the CDC and 
the time requires to deploy an executing device. As in Section 4, we already discussed that the deployment 
time of the VM instances is much higher than the containers. This may affect the computational time of the 
tasks. The proposed EECS strategy finds a suitable container for each task and assigns the container to the 
best-fit server. However, the existing MOBFOA and PSO-COGENT multi-objective scheduling strategies 
deploy the tasks to the suitable VM instances which may take more deployment time and consume the 
maximum amount of resources. However, the GAS deployed the tasks to the suitable containers based o 
single objective optimization strategy which may reduce the overall performance of the servers. The 
comparative analysis between the EECS algorithm and the existing state-of-art-algorithms in term of 
computational time over various numbers of tasks are shown in Fig. 14. The average computational time of 
EECS strategy is better than the GAS 21%, the MOBFOA algorithm by 26%, and the PSO-COGENT 
algorithm by 30%. Based on the experiments, the EECS strategy outperforms than other scheduling 
algorithms for different synthetic datasets.  
 

 
(a)                                                                                (b) 

 
(c)                                                                                (d) 

 
(e)                                                                                (f) 



Fig. 14. Average computational Time of different state-of-arts-algorithms: (a) Dataset- 1; (b) Dataset- 2; (c) 
Dataset- 3; (d) Dataset- 4; (e) Dataset- 5; (f) Dataset- 6   

 

The statistical analysis of the proposed EECS strategy and the existing multi-objective scheduling algorithms 
in a cloud environment is shown in Table 10. This may prove the efficiency of the EECS strategy over the 
existing ones in term of computational time. The metrics of minimum value, mean, maximum value and 
standard deviation (SD) are specified and computed for the algorithms based on the results of the 
computational time of various datasets. It was found that the MOBFOA, PSO-COGENT and GAS 
algorithms all performed significantly worse than the proposed EECS, especially when the algorithms need 
to schedule and execute a maximum number of tasks in CDC.    

 

Table 10. Statistical analysis of computational time of EECS strategy and existing algorithms 
 

Datasets Computational Time for IoT and Non-IoT based tasks 
EECS GAS MOBFOA PSO_COGENT 

 
 

DS- 1 

Minimum 10 21 24 29 
Mean 35.12 47.17 49.34 55.45 

Maximum 65 91 94 104 
SD 5.495657 10.43240 11.34250 14.56231 

 
DS- 2 

Minimum 11 24 27 33 
Mean 37.54 49.23 51.92 58.12 

Maximum 71 92 97 110 
SD 4.215431 11.43245 12.43516 16.32187 

 
DS- 3 

Minimum 14 27 32 37 
Mean 40.32 53.29 59.17 61.75 

Maximum 71 96 101 118 
SD 5.912652 13.12543 15.32546 18.32187 

 
DS- 4 

Minimum 9 19 22 27 
Mean 36.12 45.86 54.73 59.56 

Maximum 65 85 92 102 
SD 4.126543 9.985641 11.43276 14.65234 

 
DS- 5 

Minimum 12 25 28 35 
Mean 40.54 42.34 50.23 56.10 

Maximum 69 87 90 107 
SD 5.103424 10.12875 12.12654 13.62342 

 
DS- 6 

Minimum 15 28 30 37 
Mean 42.44 56.12 53.56 58.07 

Maximum 72 98 94 114 
SD 6.123451 14.01235 16.12654 15.65213 

 

B) Energy Consumption: Energy consumption of a task is defined as the amount of energy consumed by 
the resources of executing device which is assigned for that task (defined in Eq. (24)). The energy 
consumption of a task depends on the energy consumption of the transmitting channel and the energy 
consumption of the resources during processing a task in a computing server. Here, we considered that a 
suitable container is assigned for each task due to its minimum resource usage and limited deployment time 
for running a task. As in Section 4, we discussed that a container must consume a minimum amount of 
resources which may reduce the overall energy consumption for executing a task. The proposed EECS 
strategy finds a suitable container for each task and assigns the container to the best-fit server. However, the 
existing MOBFOA and PSO-COGENT multi-objective scheduling strategies deploy the tasks to the suitable 
VM instances which may consume the maximum amount of resources due to their own OS and consume 
maximum energy for running the assigned task. On the other hand, the GAS algorithm did not consider the 
energy consumption parameter for minimizing the overall energy consumption of the CDC. The comparative 
analysis between the EECS algorithm and the existing state-of-art-algorithms in term of energy consumption 
over various numbers of tasks are shown in Fig. 15. The average energy consumption of EECS strategy is 
better than the GAS 24%, the MOBFOA algorithm by 29%, and the PSO-COGENT algorithm by 33%. 



Based on the experiments, the EECS strategy outperforms than other scheduling algorithms for different 
synthetic datasets. 
 

 
(a)                                                                                (b) 

 
(c)                                                                                (d) 

 
(e)                                                                                (f) 

Fig. 15. Average energy consumption of different state-of-arts-algorithms: (a) Dataset- 1; (b) Dataset- 2; (c) 
Dataset- 3; (d) Dataset- 4; (e) Dataset- 5; (f) Dataset- 6  

 

The statistical analysis of the proposed EECS strategy and the existing multi-objective scheduling algorithms 
in a cloud environment is shown in Table 11. This may prove the efficiency of the EECS strategy over the 
existing ones in term of energy consumption. The metrics of minimum value, mean, maximum value and 
standard deviation (SD) are specified and computed for the algorithms based on the results of the energy 
consumption of various datasets. It was found that the MOBFOA, PSO-COGENT and GAS algorithms all 
performed significantly worse than the proposed EECS, especially when the algorithms need to schedule 
and execute a maximum number of tasks in CDC.   
 

Table 11. Statistical analysis of energy consumption of EECS strategy and existing algorithms 
 

Datasets Energy Consumption for IoT and Non-IoT based tasks 
EECS GAS MOBFOA PSO_COGENT 

 
 

DS- 1 

Minimum 7.12 15.34 18.32 21.53 
Mean 25.32 37.65 39.51 42.56 

Maximum 42.87 57.23 65.02 71.98 



SD 3.145657 3.84320 3.94520 4.14234 
 

DS- 2 
Minimum 8.37 17.45 20.11 22.76 

Mean 26.54 38.76 40.12 42.95 
Maximum 47.54 57.76 60.43 67.13 

SD 3.215431 4.33245 4.87516 5.13187 
 

DS- 3 
Minimum 7.86 13.54 16.78 15.65 

Mean 23.45 33.56 35.65 38.97 
Maximum 39.98 45.56 50.98 57.34 

SD 2.912652 3.72543 3.97546 4.13287 
 

DS- 4 
Minimum 9.11 11.43 15.32 19.11 

Mean 22.12 25.86 27.73 30.56 
Maximum 32.23 40.31 45.65 49.67 

SD 2.426543 2.985641 3.123276 3.75234 
 

DS- 5 
Minimum 12.12 19.13 21.32 24.34 

Mean 25.54 29.34 31.23 35.10 
Maximum 36.65 41.34 45.54 49.98 

SD 2.103424 2.82875 3.12654 3.72342 
 

DS- 6 
Minimum 11.12 16.43 19.67 21.34 

Mean 21.44 27.12 29.56 34.07 
Maximum 37.65 41.23 43.45 46.32 

SD 2.123451 2.81235 3.12654 3.85213 
 
C) CO2 Emission: CO2 emission of a task is defined as the amount of CO2 emitted by the resources of 
executing device which is assigned for that task (defined in Eq. (26)). The CO2 emission of a task depends 
on the CO2 emitted of the transmitting channel and the CO2 emitted of the resources during processing a task 
in a computing server. Here, we considered that a suitable container is assigned for each task due to its 
minimum resource usage and limited deployment time for running a task. As in Section 4, we discussed that 
a container must consume a minimum amount of resources which may reduce the overall CO2 emission for 
executing a task. The proposed EECS strategy finds a suitable container for each task and assigns the 
container to the best-fit server. However, the existing MOBFOA and PSO-COGENT multi-objective 
scheduling strategies deploy the tasks to the suitable VM instances which may consume the maximum 
amount of resources due to their own OS and emit maximum CO2 for running the assigned task. On the other 
hand, the GAS algorithm did not consider the energy consumption parameter for minimizing the overall CO2 
emission of the CDC. The comparative analysis between the EECS algorithm and the existing state-of-art-
algorithms in term of CO2 emission over various numbers of tasks are shown in Fig. 16. The average CO2 
emission of EECS strategy is better than the GAS 25%, the MOBFOA algorithm by 30%, and the PSO-
COGENT algorithm by 34%. Based on the experiments, the EECS strategy outperforms than other 
scheduling algorithms for different synthetic datasets. 
 

The statistical analysis of the proposed EECS strategy and the existing multi-objective scheduling algorithms 
in a cloud environment is shown in Table 12. This may prove the efficiency of the EECS strategy over the 
existing ones in term of CO2 emission. The metrics of minimum value, mean, maximum value and standard 
deviation (SD) are specified and computed for the algorithms based on the results of the CO2 emission of 
various datasets. It was found that the MOBFOA, PSO-COGENT and GAS algorithms all performed 
significantly worse than the proposed EECS, especially when the algorithms need to schedule and execute a 
maximum number of tasks in CDC.   



 
(a)                                                                             (b) 

 
(c)                                                                              (d) 

 
(e)                                                                            (f) 

Fig. 16. Average CO2 emission of different state-of-arts-algorithms: (a) Dataset- 1; (b) Dataset- 2; (c) Dataset- 
3; (d) Dataset- 4; (e) Dataset- 5; (f) Dataset- 6  

 

Table 12. Statistical analysis of CO2 emission of EECS strategy and existing algorithms 
 

Datasets Energy Consumption for IoT and Non-IoT based tasks 
EECS GAS MOBFOA PSO_COGENT 

 
 

DS- 1 

Minimum 8.12 16.64 19.72 23.63 
Mean 25.32 38.65 40.53 43.58 

Maximum 47.87 59.23 68.02 73.98 
SD 3.245657 3.74320 3.94520 4.14234 

 
DS- 2 

Minimum 9.47 16.55 21.01 23.75 
Mean 27.54 38.98 41.17 41.75 

Maximum 47.84 59.76 61.73 66.53 
SD 3.205431 3.71245 3.97516 4.13187 

 
DS- 3 

Minimum 7.96 13.85 16.89 16.75 
Mean 23.35 33.46 35.75 38.86 

Maximum 39.98 45.56 50.98 57.34 
SD 2.912652 3.62543 3.87546 4.13287 

 
DS- 4 

Minimum 9.51 11.89 15.72 19.91 
Mean 22.89 26.76 28.96 31.76 



Maximum 33.43 41.51 46.75 50.07 
SD 2.456343 2.975641 3.343276 3.84234 

 
DS- 5 

Minimum 12.12 19.13 21.32 24.34 
Mean 25.54 29.34 31.23 35.10 

Maximum 36.65 41.34 45.54 49.98 
SD 2.103424 2.82875 3.12654 3.72342 

 
DS- 6 

Minimum 11.82 16.75 19.76 21.54 
Mean 22.65 28.82 30.12 35.18 

Maximum 38.75 42.45 44.56 48.45 
SD 2.223451 2.91235 3.62654 3.95213 

 

D) Temperature Emission: Temperature emission of a task is defined as the amount of heat emitted by the 
resources of executing device which is assigned for that task (defined in Eq. (28)). The Temperature emission 
of a task depends on the amount of heat emitted of the transmitting channel and the heat emitted of the 
resources during processing a task in a computing server. Here, we considered that a suitable container is 
assigned for each task due to its minimum resource usage and limited deployment time for running a task. 
As in Section 4, we discussed that a container must consume a minimum amount of resources which may 
reduce the overall Temperature emission for executing a task. The proposed EECS strategy finds a suitable 
container for each task and assigns the container to the best-fit server. However, the existing MOBFOA and 
PSO-COGENT multi-objective scheduling strategies deploy the tasks to the suitable VM instances which 
may consume the maximum amount of resources due to their own OS and emit maximum heat for running 
the assigned task. On the other hand, the GAS algorithm did not consider the energy consumption parameter 
for minimizing the overall temperature emission of the CDC. The comparative analysis between the EECS 
algorithm and the existing state-of-art-algorithms in term of Temperature emission over various numbers of 
tasks are shown in Fig. 17. The average Temperature emission of EECS strategy is better than the GAS 24%, 
the MOBFOA algorithm by 29%, and the PSO-COGENT algorithm by 33%. Based on the experiments, the 
EECS strategy outperforms than other scheduling algorithms for different synthetic datasets. 
 

 
(a)                                                                                (b) 

 
(c)                                                                                (d) 



 
(e)                                                                                (f) 

Fig. 17. Average CO2 emission of different state-of-arts-algorithms: (a) Dataset- 1; (b) Dataset- 2; (c) Dataset- 
3; (d) Dataset- 4; (e) Dataset- 5; (f) Dataset- 6 

 

The statistical analysis of the proposed EECS strategy and the existing multi-objective scheduling algorithms 
in a cloud environment is shown in Table 13. This may prove the efficiency of the EECS strategy over the 
existing ones in term of Temperature emission. The metrics of minimum value, mean, maximum value and 
standard deviation (SD) are specified and computed for the algorithms based on the results of the 
Temperature emission of various datasets. It was found that the MOBFOA, PSO-COGENT and GAS 
algorithms all performed significantly worse than the proposed EECS, especially when the algorithms need 
to schedule and execute a maximum number of tasks in CDC.   
 

Table 13. Statistical analysis of Temperature emission of EECS strategy and existing algorithms 
 

Datasets Energy Consumption for IoT and Non-IoT based tasks 
EECS GAS MOBFOA PSO_COGENT 

 
 

DS- 1 

Minimum 7.12 15.34 18.32 21.53 
Mean 25.32 37.65 39.51 42.56 

Maximum 42.87 57.23 65.02 71.98 
SD 3.145657 3.84320 3.94520 4.14234 

 
DS- 2 

Minimum 8.37 17.45 20.11 22.76 
Mean 26.54 38.76 40.12 42.95 

Maximum 47.54 57.76 60.43 67.13 
SD 3.215431 4.33245 4.87516 5.13187 

 
DS- 3 

Minimum 7.86 13.54 16.78 15.65 
Mean 23.45 33.56 35.65 38.97 

Maximum 39.98 45.56 50.98 57.34 
SD 2.912652 3.72543 3.97546 4.13287 

 
DS- 4 

Minimum 9.11 11.43 15.32 19.11 
Mean 22.12 25.86 27.73 30.56 

Maximum 32.23 40.31 45.65 49.67 
SD 2.426543 2.985641 3.123276 3.75234 

 
DS- 5 

Minimum 12.12 19.13 21.32 24.34 
Mean 25.54 29.34 31.23 35.10 

Maximum 36.65 41.34 45.54 49.98 
SD 2.103424 2.82875 3.12654 3.72342 

 
DS- 6 

Minimum 11.12 16.43 19.67 21.34 
Mean 21.44 27.12 29.56 34.07 

Maximum 37.65 41.23 43.45 46.32 
SD 2.123451 2.81235 3.12654 3.85213 

 

E) Resource Utilization: Resource utilization of a server is defined as the number of executing devices 
executing the tasks and reuses the resources to schedule the tasks. As a container is a lightweight instance 
compared with the VM instances, the container must utilize the resources better than the VM instances. The 
containers are deployed over the host OS which must not require additional memory and CPU cycle to 
execute the processes of OS. However, the VM instances have their own OS and deployed over the 



computing hardware and require additional memory to store the processes of OS image with extra CPU 
cycle. This may reduce the parallelism among the tasks in a server and minimizes the resource utilization in 
terms of CPU and memory. However, the containers may execute a number of tasks and increase the 
parallelism among the tasks. This strategy again improves the CPU and memory utilization of the servers. 
The proposed EECS strategy finds a suitable container instead of the VM instances for each task and assigns 
the container to the best-fit server. However, the existing multi-objective scheduling strategies deploy the 
tasks to the suitable VM instances which may consume the maximum amount of resources and minimize the 
CPU and memory utilization. On the other hand, GAS should assign the tasks to the suitable server without 
considering its resource availability which may reduce the overall performance. The comparative analysis 
between the EECS algorithm and the existing state-of-art-algorithms in term of CPU and memory utilization 
over various synthetic datasets are shown in Fig. 18.  

 
(a)                                                                                    (b) 

Fig. 18. Average resource utilization: (a) CPU Utilization; (b) Memory Utilization 
 

The percentage of resource (CPU and memory) utilization of the proposed EECS strategy and the existing 
algorithms by the tasks on the servers is shown in tabular form (Table 14) for better understanding and 
discussion. The average CPU utilization of EECS strategy is better than the GAS 10%, the MOBFOA by 
12%, and the PSO-COGENT by 15%. Similarly, the average memory utilization of EECS strategy is better 
than the GAS 19%, the MOBFOA algorithm by 23%, and the PSO-COGENT algorithm by 28%. Based on 
the experiments, the EECS strategy outperforms than other scheduling algorithms for different synthetic 
datasets. 
 

Table 14. Resource utilization of EECS strategy and existing algorithms 
 

CPU Utilization  
Datasets EECS GAS MOBFOA PSO-COGENT 

DS- 1 94.75% 88.25% 84.35% 81.15% 
DS- 2 95.66% 87.45% 85.15% 82.23% 
DS- 3 95.88% 88.48% 84.27% 82.45% 
DS- 4 94.32% 87.15% 83.24% 81.43% 
DS- 5 95.93% 87.25% 85.22% 80.45% 
DS- 6 94.99% 86.65% 83.18% 81.46% 

Memory Utilization  
DS- 1 94.32% 83.45% 80.85%  79.22%  
DS- 2 95.93% 81.78% 78.24% 77.15% 
DS- 3 94.99% 80.45% 79.17% 75.15% 
DS- 4 93.80% 81.87% 78.34% 76.35% 
DS- 5 93.42% 82.85 % 80.65 % 77.26% 
DS- 6 92.96% 83.92% 79.45% 76.85% 

 
 
 
 
8. Conclusion 



 

In this work, we have developed an energy-efficient container based strategy in a cloud environment, namely 
EECS to tackles MOPs. The main contribution of the algorithm is to find a suitable lightweight container 
for each task based on multiple-objectives such as energy consumption and computational time. Here, we 
have applied the APSO technique for finding a suitable container based on a weighted-sum approach. This 
may minimize the overall computation time and energy consumption of the CDC due to minimum 
deployment time and resource consumptions of the containers. Due to minimize energy consumption, the 
proposed EECS strategy also minimizes the overall CO2 emission and temperature of the computing servers. 
The algorithm also finds a suitable computing server based on a rule-based strategy for the containers for 
better resource utilization of the multiple resources of the computing servers such as CPU and memory. We 
have conducted the simulation runs using six synthetic datasets. Through comparisons, we have established 
the superior performance of the proposed algorithm over the existing ones using various statistical and 
comparative analyses.      
 

Our future research plan is to methodically scrutinize the trade-off between the qualities of container-based 
scheduling with different heuristic and meta-heuristic algorithms for different types of QoS parameters of 
various types of applications along with their penalties. Further, we will develop a dynamic container-based 
Cloud environment for IoT applications and assign the applications on an online basis to the best-fit 
containers for meeting various QoS constraints. 
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