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Abstract: Over the last decades, cloud computing leveragesdpability of loT-based applications by
providing computational power as a form of a camaior virtual machines (VMs). Most of the existing
scheduling strategies deploy the VM instances &mhetask which require maximum start-up time and
consumes maximum energy for processing the tasksvever, containers are a lightweight process and
start in less than a secornd.this paper, we develop a new energy-efficienitamer-based scheduling
(EECS) strategy for processing various types ofdod@ non-loT based tasks with quick succession. The
proposed method use accelerated particle swarrmization (APSO) technique for finding a suitable
container for each task with minimum delay. Resewtheduling is another important objective incudl
environment for better utilization of the resouraeshe cloud servers. The EECS strategy can depley
containers on an optimal cloud server with an ogltiseheduling strategy. The main objectives of EBG&S

to minimize the overall energy consumptions and patational time of the tasks with efficient resaurc
utilization. The effect of the control parametefshe APSO technique is investigated thoroughlyroTigh
comparisons, we show that the proposed methodrpesfbetter than the existing ones in terms of vaxio
performance metrics including computational timaergy consumption, COemission, Temperature
emission, and resource utilization.

Keywords— Internet-of-Things, Cloud computing; Container®?30 technique; Computational time;
Energy consumptian

1. Introduction

A diverse set of resources connected through adpgled network offer a new computing paradigm in a
distributed environment, called cloud computing [Lhe cloud providers provide three types of s&wic
including Platform-as-a-Service (PaaS), Softwara-&ervice (SaaS) and Infrastructure-as-a-Serlaes]

[2]. PaaS model offers a computing platform toukers including operating system, database, wekrser



programming language, etc. The users can easiyecend deploy a new application in that envirorimen
without managing the underlying software and haréviayers [3]. In the SaaS model, the users redoest
the application software without managing the isifinacture and platform to run the applications je
laaS cloud model consists of thousands of compustingers with sufficient resources in a cloud datater
(CDC) and each of them can run multiple virtual hiae (VM) instances simultaneously [5]. Cloud
provides various types of computing resources sgdiPU, memory, storage as an on-demand basis to th
users as a form of VM. VM instances are becomingppular technology in a cloud environment for
deploying and executing large-scale distributedlieajions [6]. Each VM instance requires a separate
operating system image, which adds overhead im#r@ory and storage footprint. This approach also ha
limited portability of applications between variotisud service providers.

Nowadays, in contrary to the traditional monolitrapplications, the computing devices generate a
composition of various types of small and specialiprocesses as a form of micro-service applica{ioh
Instead of monolithic architecture, in micro-seeviarchitecture, each service is self-contained and
implements a single application at a time insta@ntainer technologies such as Docker, Kubernets o
Linux Containers, have such ability to deploy angarite micro-service applications efficiently and
effectively in CDC [8-9]. Containers are stand-@and self-contained units that enable users tdléan
customized execution environment instead of bulky instances. Similar to the VM instances, the
containers enable the resources of a single congpaérver and enable the resources to executeithe-m
services or Internet-of-Things (I0T) applicatiod®{12]. Containers use the similar properties wicalern
Linux operating system kernel such as lib cont@negroups, and Linux containers. The main advastag
of the containers are- (i) They can initiate quyckhd launch within a second in a computing selpased

on the requirements of the tasks, and (ii) Containequire very small memory to store the inforovatnd
consume a minimum amount of resources to run alicatipn. Unlike VM instances, containers improve
the utilization and performance of the resources imcrease the parallelism among the tasks [13-14].
Moreover, the researchers and developers pref@gtoy the containers in the private cloud envireni
instead of the public and hybrid cloud environneun to security and privacy.

Containerized applications deploy the micro-sewige a cluster of heterogeneous servers in a Ciagr
than a single server with a set of VM instancess phoperty may create a lightweight environmenttfie
applications and utilizes the computing resourdésiently. Over the years, most of the Industraasd
educational organizations are relying on this tetdgy for deploying multiple modern-day applicason
such as IoT and event-driven applications, wehicesyBig-data, etc. Such types of applicationslriaster
completion and response time with minimum systeprloead [15]. However, most of the recent scheduling
strategies are based on VM instances for execatinog modern-day applications in CDC which consumes
the maximum amount of storage and processing pdueto its own operating system. Using VM instances
also consume maximum energy of the CDC and impdaega performance penalty as a form of various
Quality-of-Service (QoS) parameters. Another impottissue in the cloud environment is resource
scheduling as a form of VM scheduling or contaswreduling. The main purpose of an optimal scheduli
strategy is to find an optimal loaded active sefeerthe selected VM instances or containers wiiety
maximize the resource utilization efficiency in tC. Moreover, most of the existing scheduling
strategies have more than one conflict objective#enexecuting the applications in the CDC. These
problems are referred to as multi-objective optatian problems (MOPSs).

In past two decades, two types of multi-objectiveletionary algorithms have been developed to solve
MOPs- (i) finding a set of Pareto optimal soluti@ms: single run and (ii) non-Pareto-based algoritiased

on decomposition method [16]. Here, the algorithenainposes a MOP into a number of single-objective
optimization problems (called sub-problems). Thare still many recent optimization algorithms whose
effectiveness is yet to be explored in the contxa multi-objective scheduling problem [17]. The
optimization algorithms are the high-level problemdependent algorithms which have a set of rulémtb

an optimal solution to a given problem. The coneerge speed of the optimization algorithms is tlodal



(or nearly global) optimal which is better than treditional techniques [18]. Therefore, the metasistic
algorithms have also been increasingly used toestite multi-objective optimization based scheduling
strategy in a cloud environment. One such algoriththe accelerated particle swarm optimization {89
technique [19-20]. In the twentieth century, theOPBchnique was introduced by Eberhart and Kennedy.
The standard PSO uses both the current globahbdghe individual best of the particles to findogmimal
solution. Due to the limitations of convergenceezpand accuracy, the PSO algorithm is modifieddhase

its velocity and displacement and called as APSfinigue. APSO technique uses the global best of the
individuals for convergence of the algorithm anduges the randomness as iteration proceeds.

Here, we propose a new multi-objective aware eneffigient container-based scheduling (EECS) strate
using APSO technique. The contribution of the psgabmethod is two folded. The first contributionids
find an optimal container for each requested taset on multi-objective aware APSO technique. i th
phase, we design a fitness function based on leictibg optimization parameters including energy
consumption and computation time of the executegjaks using the weighted-sum method. This method
linearly aggregates all the individual objectivendétion of a MOP into one objective by using a weigh
vector. During finding an optimal executing devéaeh objective of the particle is normalized basethe
maximum and minimum values of the correspondingabje function. Such normalized objective function
helps to eliminate the impact of various amplitudesnulti-objective. The existing APSO techniquépbke

to find an optimal executing device for each task &rm of containers, local loT devices or VMiarsees

in a 2-D plane based on the bi-objective optim@aparameters. The main objective of the firstcbation

is to minimize the total energy consumption and potation time of the CDC. The second contribut®n i
to schedule the tasks on an optimal loaded serithr avrule-based strategy. This may maximize the
utilization of the resources and minimizes the vese wastage of the computing servers and the GDC.
simulation, we deploy the Docker image in the gevaoud servers for each task based on the betige
optimization parameters and the resource requireamiey the tasks. The proposed EECS strategy is
compared with the existing ones in terms of varipagormance metrics including computational time,
energy consumption, GQemission, Temperature emission, and resourceattdn. The results of the
performance metrics are further evaluated basetlavious statistical parameters including maximum,
minimum, mean and standard deviation. The majotritutions of this work are summarized as follow.

A. Discuss the merits of containers for executing aisgrvice applications such as 10T and Event-driven
applications, web services, Big-data over VM insemwith a comparative analysis.

B. Design a multi-objective optimization problem catesing two major scheduling objectives, namely,
energy consumption and computational time. Theirobjective aspects are dealt with a weighted sum
approach based fitness function to evaluate thitgoathe solution.

C. APSO technique has been incorporated to addresettainer-based scheduling strategy, which selects
a suitable container for each task.

D. Devise an effective rule-based strategy for selgan optimal loaded server in the CDC for thecdete
containers for further execution.

E. Finally, the effect of the control parameters af PSO technique is investigated thoroughly. We als
evaluate the performance of the proposed algorifien synthetic datasets using various performance
metrics.

The rest of the paper is organized as follows. fieeits and demerits of various existing VM-based an
container-based scheduling strategies in a cloudamment are discussed in Section 2. The ovengéw
the multi-objective optimization strategy and AP&0hnique are presented in Section 3. The overgfew
the containers and their effectiveness over VMainsés for micro-service applications are preseimed
Section 4. The system model and problem formuladibthe proposed method is discussed in Section 5.
The proposed EECS strategy is discussed in Segtidbhe performance analyses of the proposed digorit
are discussed in Section 7. Finally, the conclusioah future work are given in Section 8.

2. Related Work



Over the times, there have been numerous resadtietive tailored in task scheduling for solvingrious
types of multi-objective optimization problems (M&HRn a cloud environment. Nowadays, most of the
researchers are used different types of meta-tiewstsategies such as particle swarm optimizafiR®0O),
Genetic algorithm (GA), Honey-bee algorithm (HBAqt-colony optimization (ACO), Fuzzy strategy, etc.
to solve MOPs due to their accuracy and convergspeed. Here, we discuss few currently publishedPMO
based task scheduling strategies in the cloud R0Kaur et al. have proposed a task scheduliregegy

for solving MOP problem using bacteria foragingimiation technique [20]. The algorithm solves thre
objectives of the scheduling strategy such as flowe, makespan and resource usage cost. This thlgori
found the suitable VM instances for assigning tidependent jobs which meet the scheduling objective
and deployed on a server for further processingn#&uet al. have proposed an energy-efficient task
scheduling strategy in the cloud [21]. This aldaritmet three scheduling objectives of the serveh s
Execution cost and time and the total energy ok#reer. The authors have applied the PSO techmigue
finding an energy efficient VM instance for eachkighat met the total execution cost and time. Ramie

et al. designed a PSO based load balancing stratetpg cloud [22]. The authors have applied th©PS
technique for finding an optimal server of a CDGrtigrate the VM instance from a heavily loaded eerv
to the minimum loaded server. The main objectiviethis algorithm are to balance the loads among the
servers and minimize the total execution time eftdsks.

The above-mentioned task scheduling algorithms mmedtiple scheduling objectives using various meta-
heuristic strategies; however, the algorithmstéadesign an efficient task scheduling strategieaihimize

the total computation time and energy consumptatfie tasks, especially loT-based tasks. Moshef t
real-time tasks such as IoT, event-driven appbeetj etc want the result with quick succession. &l

the VM instances take too much time (nearly a neihttt deploy in a CDC for processing a task andgore
more energy due to the consumption of an excessivaunt of resources. This may maximize the total
computational time and the energy consumption®ftdisks. To overcome the above-mentioned challenges
a new technique is initiated in a cloud environmeatled container-based scheduling. Containersimeq
minimum time to deploy and consume a minimum amaidinesources for executing a task. Due to the
advantages of the containers, in recent yearsetfearchers have developed different types of mmrta
based scheduling in a cloud environment [23-37]tnBein et al. have proposed a container-based
scheduling strategy in a PaaS cloud environmerjt 28 author discussed the overview of the coetain
over VM instances and the importance of this tetdgofor executing various types of applicationkisT
paper deployed a Docker container over Linux coetaand Kubernetes. This paper only presented the
architectural view of the containers in a cloudisnvment. Kaewkasi et al. have proposed a contdiased
scheduling strategy based on ACO technique [24¢. dlithors have developed an optimal scheduler over
the Docker container which can efficiently schedihile tasks with minimum execution time. The main
objective of this algorithm is to utilize computingsources efficiently and improves the performasfdbe
system.

Li et al. have proposed a container-based schaeglstihema in the cloud to achieve high availabdityhe
computing resources [25]. This scheduling stratigynd a suitable host to deploy the containers and
monitor the hosts for further deployment strategyg @ontainer migration purpose. The containers are
migrated to another host due to the failure ottbst or balancing the loads among the availabl&shoshe
CDC. Yi et al. have proposed a container-basedeglyain a Fog-cloud environment [26]. The main
objective of this strategy is to minimize the detdythe tasks while minimizing the execution tinidais
method tried to deploy most of the tasks to the irades, however, due to lack of resources, fewstaskd

to deploy to the CDC for further computation pumpoBerez et al. have designed a container-baded tas
deployment strategy in a serverless environmerit [B7s algorithm deployed the Docker containerrove
AWS Lambda platform and presented the performampedvement of this strategy over existing ones. The
authors stated that this environment is most shaitilo bursty workloads of short stateless jobsigrat al.
have developed a container-based auto-scalingegyran an elastic cloud environment [28]. The atgho



have developed a container-based auto-scalar niodelcloud environment. This paper developed a
mathematical model for auto-scaling strategy armtudised the necessity of auto-scaling strategy in a
container-based cloud environment.

Zhou et al. have designed two online and offlinetamer-based scheduling strategies in cloud enrrient
[29]. The proposed strategies select an optimatadoer for each task which meets the deadline while
maintaining an efficient inter-container dependeridye objectives of the paper are two folded. Fifss
authors use a compact-exponential technique fordlimgn non-conventional scheduling objectives.
Secondly, the authors design an optimal frameworlgénerating a primal solution based on the exjsti
constraints and produced a near-optimal solutidrang et al have developed a cost-effective containe
based scheduling strategy in cloud environment [BG¢ authors have developed an adaptive and ig#ect
scheduler based on integer linear programming tqaknwhich can easily integrate to the container
orchestration framework. The main objective of therk is to minimize the overall cost of the tasks
including computational and transmission cost. &gal. have developed a global container-basedireso
allocation strategy based on fuzzy inference sysfiexible deployment and high availability of the
resources [31]. The authors applied their algorithrar various use-cases to prove the effectiveards
efficiency of the proposed method. Guerrero ehalie designed an optimal container allocation esjsat
using a genetic algorithm with Non-dominated Sgrtdenetic Algorithm-Il [32]. The proposed strategy
minimizes the network overhead and system failundeanmaximizing system performance and resource
utilization of the server. The authors are mairdpsidered the micro-services for processing inaiopts

as a form of Kubernetes with an efficient conta@léocation strategy including resource elastidifiyet al.
have developed a container-based scheduling sfrateg cloud environment using artificial fish swar
algorithm [33]. The main objectives of the algomittare to improve the load balancing among the cloud
servers and utilize the computing resources effttje

Mao et al designed a container-based schedulirdegr in a cloud environment for minimizing the
drawback of the VM instances [34]. The proposedtsgy deployed the containers as a form of Docker
image for processing the tasks with minimum delay eomputation time. The authors classified thkstas
into two categories- CPU-intensive and memory-igitemand deployed the containers for the task$ien t
suitable node in the cluster. Havet et al. haveothiced container-based scheduling in the CDC that
leverages the principals from the generation ofbage collection [35]. The proposed framework
investigated the current status and resource ugdbe active containers and deployed the contaioeithe
physical machines based on the requirements ofdhtainers. The main objective of the strategyois t
minimize the overall energy consumption of the diservers. Fazio et al. have designed a contaamseb
strategy for processing micro-services in cloudremment [36]. This strategy maximizes the religpénd
scalability of the CDC with efficient resource i#tiltion. Wan et al. have developed a containerébase
strategy for processing micro-services [37]. Thinaxs have designed a communication-efficient doata
based framework which deployed the containers erlthud servers as a form of Docker images. Tha mai
objectives of the work are to minimize the overakt while utilizing the resources efficiently. dur
previous paper [38], we have developed a schedalimgresource provisioning strategy in an laaScclou
environment using K-means and Bat algorithm. Thierthm helped to find a set of the optimal loaded
server for assigning the VM instances for furthegaaition. This strategy also derived a rule-basedegyy

for finding a suitable VM instance for each taskeTsuperiority of this method over existing onealso
shown using various simulation runs.

Most of the existing container-based schedulingtstyies try to optimize a single objective of theSQ
parameters. However, single objective optimizati@y reduce the performance and efficiency of th€CD
Nowadays, most of the applications or tasks aremgded from real-time devices I0T devices. Souto r
such types of applications or tasks with minimurmpatational time and energy consumption is onéef t
challenging issues in a cloud environment, whickiehaot discussed yet in the existing literature. To
overcome the short comes of the existing strategiedave developed an energy efficient contaiased



scheduling strategy for solving multiple objectivasthe task scheduling. Here, the loT-based taalk m
execute locally or offload the resource-intensivewent-driven tasks to the CDC. The task schediildre
CDC finds a suitable container for each task basedhe APSO technique using two QoS parameters
including energy consumption and computational toh¢he computing devices. This may minimize the
total computational time and the energy consumptibthe servers. The proposed strategy also fimds a
optimal server based on a rule-based strategyskigming the selected containers. This may maxithiee
resource utilization of the computing devices éintly.

3. Preliminaries

Here, we first discuss the multi-objective optintiaa strategy followed by the overview of the APSO
technique.

3.1 Multi-objective Optimization
Definition 1. Global Minimum:Given a functiorF: ¢ € R™ - R, ¢ # @, for y € ¢, the global minimum
of functionfis F* £ F(y*) > —«, if and only if

Vy € @: Fy) < F(¥") 1)
Here,y" represents the global minimum solutiénis the objective function and the setgfs the feasible
regiong € S, whereSrepresents the whole search space [16].

Definition 2. Multi-objective Optimization (MOOMOO problems (MOPs) at times defined as follows
[16].

Minimize F(y, t) = {fi(y, 9, f20y, 9, fa(y, 9), fa(y, 9, ...,fm(y, O} T
Subjecttox € 6

where,y = (1, Y2, Y3, Va, ...,Ym)", is them dimensional decision vectc,is the decision space arF: 6 -
R':i=(1,2,3,..,n), consists oh real-valued objective functions aRis called the objective space. In
other wordy = (y1, Y2, Y3, Y4, ...,Ym)" Which will satisfy then inequality constraints which is defined as

hi(y)=0:i=1,2,3,...,n 2)

Thep equality constraints are represented are
This will optimize the vector func'?tig)a: E &S D ©
F(y, 1) = {fuy, 9, Ty, D, fa(y, 9, faly, O, ... Taly, O} 4

where,y = (y1, Y2, ¥a, Y4, ...,Ym)" represents the dimensional decision vector.

Definition 3. Decision Vector DominatiorA decision vectok; Pareto dominates another vecpat time
t, denoted by, (t) > y,(t), if and only is,
{Vi =1L..M,  fiyut) < fi(YZ:t)} ®)

3i=1..M fiyu,t) < fi(ya, t) )
Definition 4. Pareto Optimal Set: Letandy are decision vectors, and if the decision vegtds said to be

non-dominated at timeif and only if there is no other decision veci@uch thay(t) > y*(t). The Pareto-
Optimal Set (POS) is the set of all Pareto optisedditions [16].e.:

POS = {y* ()| Ay(0), y(t) > y*(£)} (6)
Definition 5. Pareto-optimal Front: Pareto-optimal Front (PGRhe corresponding objective vectors of the
POS at time.

POF = F{y*(t)|y*e POS (7)



An ideal multi-objective optimization strategy mibstve the ability to find a set of optimal solucend at
the same time, the solutions must be as diverg@ssible. Here, we solve a bi-objective optimizatio
strategy in a container-based cloud environmeneé ifiain objective of this work is to find an optimal
executing device as a form of local 0T device,taorer or VM instances based on energy consumptioin
computational time of the tasks.

3.2 Accelerated Particle Swarm Optimization (APSOYechnique

Particle swarm optimization (PSO) is a populatiasdd stochastic optimization technique developed by
Eberhart and Kennedy in 1995. The method was iedpiry social behavior of bird flocking and fish
schooling that does not have any leader in thegrduflock of animals achieves their best condition
simultaneously by communicating among the membéis already have a better position. Animals who
are in a better position will inform the othergheir flocks and others will follow them simultanesty. This
would happen repeatedly until the best conditiotheffood source is discovered. The PSO algorithdsf
the optimal value of a population using the worlkiimpciple of the animal society. PSO consists sfvarm

of particles which represents a potential valu@afticle represents an individual (either fish mdbfrom

a population. It has the ability to move to theied problem space and represents a candidatéosolut
based on an optimization technique. Each parictepresented by its position and velocity. Eaatidhai
keeps track of its best position by Pb&&) (= {Y'1, Y'1, Y'1,..., Y'u}. The best of all Pbest is denoted as the
global best position GbesE(). Values of each particle are determined basethefiitness function. The
movement of the particles is defined by their vi#locThe velocity is represented by a vector anbis a
magnitude and direction which is defined as follow.

) . . (8)

Vi +D)=Vi)+a.r.(G =Yi())+Br,.(Y; )-=-Yi(l))
whereY; andV; are the position vector and velocity of tiffeparticle respectively and andr, are two
random numbers uniformly distributed in the intéf@al]. The velocity is determined by the bestifios
of the particle so far and the best position inchtany of the particles has been so far. Baseglisnit is
imperative to be able to measure how good or haatticle position is. At each step, the algorithmamges
the velocity of the particle towards the Pbest &fest location. The updated position of each parisc
represented as

Yi(l+1) =Yi()+Vi(l +1) (9)

To increase the diversity of quality solution fach individual, the normal PSO technique uses buth
currentPbestand Gbestposition of the individuals. Though, the diversitgn be simulated using some
randomness. A modified version of PSO algorithntaled as APSO algorithm [20] which is used to
accelerate the convergence of the algorithm baseglodal best location. The velocity vector of kieSO
algorithm is formulated in Eq. (10) [39-40]. Thhudtration of the velocity calculation of APSO tedue

is shown in Fig. 1.

Vi1 =V, () +ae+BY =Y (1) (10)
wheree is a random vector uniformly distributed in thaga [0, 1].The updated location of a single particle
to increase the convergence even further usingtaneis formulated in Eq. (11).

Yi(+)=@-B)Y,()+ LG +ae' (11)



Vi(l) @

Vi(l+1)

Fig. 1.lllustration of velocity calculation of APSO teclyuie
The APSO technique is used to find optimal exegutrvices based on two QoS parameters including
energy consumption and the computation time ofabks. Due to the faster convergence speed anchagcu
from the existing optimization technique, i.e. g@melgorithm, ant-colony optimization, honey-bee
algorithm, PSO, simulated annealing, we selecAf80O technique for solving the bi-objective optiatian
strategy for container-based scheduling strategy.

4. Overview of containers and their effectiveness

Cloud computing is a computing paradigm, whereathputing resources are available to process variou
types of tasks and applications as a pay-per-uses.b@he cloud providers receive various types of
applications or tasks to execute based on theirinements. We broadly classify the tasks and agtitins
into two categories- 10T based task/applicationd Alon-loT-based tasks/applications. The loT-based
devices generate various real-time applicationsclwimay execute locally in the micro-services or
microprocessor or may offload the tasks to the Gw@ffective and faster processing. The Non-loVicks
generate various types of batch mode tasks oragioins which require maximum resources for prangss
and storage. Moreover, the Non-loT devices may igeaefew event-driven applications for further
processing. The Non-loT devices directly offload thsks or applications to the CDC, which may b&lCP
intensive or memory-intensive applications. The-b@Bed applications are either event-driven oresgu
based applications. The event-driven applicatioasganerated by the users or the systems baseshan s
specific events such as keystrokes, fraud detectemi-time warehouse management, receiving HTML
based messages, etc. The users also request ferspatific resources for executing or storing tteesks,
which types of applications are called requestdapplications. Request-based applications areretRU-
intensive (require more CPU) or memory-intensiex(lire more storage) applications. The classificati
of various types of user-driven applications/taskshown in Fig. 2.
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Fig. 2. Types of user-based Tasks/ Applications

The underlying technology that makes the cloud renvent important in a distributed environment is
virtualization. Virtualization technology allowsdtproviders to assign multiple numbers of VM instzn
for the tasks or applications without the knowleddehe users. The maturity of the cloud environtnen
mostly depends on the virtualization technology chimproves the utilization of the resources and
minimizes the energy consumption of the tasksabt decades, cloud providers provide the resotodbse
users as a form of VM instances. The VM instanddsalize the computing resource in hardware level
where each VM instance has its own underlying Gpeg&ystem (OS) and shares the computing resources
of a host server based on “Bear-Metal” or “HypewvisThe hypervisor or virtual machine monitor @ik
server is a software or firmware that helps to dggind run the VM instances. The main advantagbeof
VM instances is that they help to virtualize theaerces of the servers and increases the parnallefithe
tasks while improving the utilization of the comimgt resources. However, the VM instances not omty r
the full version of the OSs but also a virtualizegy of the hardware needs to run by the OS of ¥ath
instance. This may quickly add a lot of storagthefmemory and increase the CPU cycle. The VM nt&s
also take more than a minute time to deploy andinma® the overall energy consumption and cost ef th
tasks.

However, to overcome the drawbacks of the VM instaha new type of virtualization technology isdjse
known as containers. Containers provide a lighttieggvironment for the tasks and applications whisé

the process-level virtualization technique for sigarand utilizing the computing resources efficignt
Containers are stand-alone and self-contained timétisenable users to handle a customized execution
environment in the form of Docker, Linux ContainerKubernetes images instead of bulky VM instances
Containers sit on the top of the server with tbain OS. Each container shares the OS kernel {lergries,
binaries) of the hosted server. This may reducendesls to reproduce the OS code and server mag run
number of tasks or application with a single OSe $tiucture of the VM instances and containersiaog/n

in Fig. 3. Thus the containers require only a feggabytes to store and start-up within a few mitligals.
This technology may increase the parallelism antbadasks and utilize the resources more effigighdn

VM instances. Container technology is better fer ¢foud providers that want to run a maximum number
of applications or tasks on a minimum number ofesex. This may minimize the overall energy consummpt
and the exceptional cost of the applications destabBhe differences between the two different waiization
technologies in a cloud environment are shown iold &.

Table 1. Difference between Containers and VM instances

Properties Containers Virtual Machines (VMs)
Process Type Lightweight. Heavyweight.




Type of OS All containers share the OS of the hodtach VM has its own OS.
server.
Performance Native Performance Limited Performance
Portability Easily portable from one server tdComplex process to migrate VMs from

another server.

one server to another server.

Auto-scaling Process

Easily scale-in or scale-out th

resources as per requirements.

out.

eComplex process for scale-in and scd

e_

Type of virtualization

OS-level virtualization.

Hardware level virtualizat.

Start-up Time

Start-up time in seconds.

Start-up times in minutes

Required Memory | Require less memory space to run |@Require more memory space to run |an
space application or task. application or task due to the overhead of
OS.

Cost Minimization Effective use of resources and lesRequire more cost due to the
consumption of resources may reduceonsumption of more amounts pf
the overall cost. resources.

Energy Efficient Less resource consumption may reduddaximize energy consumption due to the
overall energy consumption. maximum amount of resource usage.

Parallelism Maximize the parallelism among theReduce the parallelism among the tagks
tasks and applications. and applications.

Security Less secure due to process-leyéliore secure due to full isolated apd

virtualization.

maintain hardware-level virtualization.

For experimental purpose, we have deployed Doakatainers in four heterogeneous private cloud serve
and assigned the 1000 tasks to the Docker imagasrdkeir requirements. During processing thestask
the Docker images we have investigated that the&k€rdmages contain very minimum time to compute the
tasks with minimum energy consumption and alsoeiases the parallelism among the tasks. This may als
increase the resource utilization of the cloud sexvThe same strategy we have also applied over VM
instances and assigned the tasks to the suitablestieinces as per the resource requirements kgsks.
However, due to maximum resource consumption bytenstances and maximum deployment time, the
performances of the cloud servers are going dowithwincreases the computation time and energy
consumption of the tasks. This virtualization tdgle also minimized the parallelism among the tas#

the resources utilization of the cloud servers. Peeformance analysis between containers and VM
instances in terms of start-up time, memory usageeaergy consumption is shown in Fig. 4.

APP 1 APP 2 APP 3
APP 1 APP 2 APP 3
Bins/Lib Bins/Lib Bins/Lib
Bins/Lib Bins/Lib Bins/Lib
Guest Guest Guest
OS 0OS 0OS
HYPERVISOR OPERATING SYSTEM

Infrastructure Infrastructure

Machine Virtualization Containers

Fig. 3. Difference between VM instances and containersaseheir structure

The container technologies have widely used byattaglemicians and researcher due to the advantages o
Docker and Kubernetes. Docker is an open platfaoh which makes it easier to create, deploy and to
execute the tasks or applications as a form ofatoets. Docker Containers allows the system toespitlee
tasks among the resources which can execute thanfeister way. The main components of a Docker are



Docker Swarm, Docker Compose, Docker Images, DoEkermon, and Docker Engine. Docker can
manage its own infrastructure in the same waysnaapglication is being managed. Docker uses Linux
kernel control groups and namespace to run indeperntainers in a server. The control groupsigeov
the various types of resources to run a task apgtication and namespace provide the details abeut
running application of the operating environmerdtsas process tree, User Id, network usage rateT le¢
main advantage of the Docker platform is to skdpt,tand deploy application quicker which may redihe
computational time and cost of the tasks or apiatina.
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Fig. 4. Performance analysis between VM instances and ioenga (a) Start-up Time; (b) Memory Usage; (c)
Energy consumption

Kubernetes is an alternative of Docker containeckvprovides a scalable, loosely coupled envirorirt@n
run an application. A Kubernetes form a masteresiarchitecture where the cluster consists of aanast
node and multiple slave nodes. The master nodelstdsethe tasks in order and deploys them to tneesl
nodes in the cluster. The slave nodes executeatths ind return back the result to the master nidue.
master node works as a controller in the Kuberndteser. The Kubernetes architecture incorportétes
concept of a pod which can host a set of contawghssome shared resources at the same serydayh

an important role to maximize the performance efklubernetes. Kubernetes supports two types of-pods
(i) Service pods- This can run permanently and dédpsee the background workload of the clustdr. (i
Job/Batch pod- This helps to execute the taskstemmainate from the server on task completion. While
launching a pod of a Kubernetes, it requests afsetsources. The Kubernetes scheduler is resgdertsib
select the best-fit resources for the tasks. Doeker Kubernetes run on a different level of a serve
Kubernetes can integrate the Docker engine for tnong the scheduling and execution of the tasks.
However, Docker can create its own container imagan an application using the docker build comdhan



5. Problem Formulation

The proposed EECS strategy requires addressingaseesearch challenges for enabling effective and
efficient operations. In this section, we discuss $ystem model followed by the problem statement t
address the proposed method.

5.1 System Model

Here, we consider a container-based CDC model avislet of computing servers that can accommodate
multiple numbers of containers and VM instancepaaghe requirements of the tasks. The containgeda
CDC model is shown in Fig. 5. Here, we consider tyyees of users such as 10T based and Non-loT based
who can transmit the various types of applicationsasks (e.g. event-driven tasks, request-basdd,ta
CPU-intensive tasks or memory-intensive tasksh&o@DC for further processing. However, most of the
IoT devices have some processing capability (eigraprocessors, microcontrollers, FPGAs, SOCs) and
storage for executing some micro-services apptioator tasks. Otherwise, the loT devices and altiod
devices can upload the applications or tasks t@CID€. The admission controller receives the tashs f

the users and decides whether the tasks can bé&edimi not. This decision is based on the avditgtuf

the computing resources of the servers. Anothérigodf the admission controller is to assign trantrol

of the tasks either to the Container schedulerMrivanager for further processing. Based on outesjya

by default, the controls of the tasks come to tleat@iner scheduler due to the benefits of the doerta
deployment policy than the VM instances. The adimissontroller assigns the control of the task&h®

VM manager based on the requests of the userséaugng the tasks on the VM instances.

The main responsibility of the Container schedideto create various types of containers basechen t
requirements of the tasks. However, the main agtofi the VM manager is to select a VM instancarfro
the pool of VMs for each task based on its resotggairements and characteristics. The tasks stdradu
responsible for holding detail information of thetige servers in the CDC and receives the inforomati
about the availability of the resources in the seswn each time interval. This may help to findoghimal
server with a minimum load for deploying the sedelctontainers or the VM instances. The task sckedul
is also responsible for auto-scaling the serverth®rcontainers based on the overall resourceaditity
and the tasks or applications arrival rate in tH@CC The symbols of the variables along with their
descriptions are given in Table 2.
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Table 2. Computational elements of 10T

Symbols Descriptions
CcpeN CPU capacity of the containgr
ICR| Number of CPU cores
sizeofCR) | Size of each CPU core
CMN Memory capacity of the containgr
[Mj] Number of blocks in the memory
sizeofM) Size of each memory block
T Total tasks are arrival rate at each server
P Rate of a Poisson process for task generatiorcimtéae
slot
TTy Transmission time between the uaend CD(J




SDy Serialization delay between the useand CD(

PDj Propagation delay between the usand CD(J

S4a Sizes of a task emitted from a devica

TRy Transmission rate between the usand CD(J

P; Transmission power

TTd Total time requires to transmit the downlink traffiom
CDCj to userm

TTa" Total time requires to transmit the uplink traffrom
CDCj to usera

ETid Execution time of a task emitted from a devica in a
computational device

CTd Computation time of a tadkemitted from a devica in
a computational device

Cc(t) CPU usage od computational deviceat timet

Mc(t) Memory usage oi computational deviceat timet

L(C, M) Current load ofi computational devioce

RC(C, M) Reaming load o computational device
TL(C, M) Required load by a tagk

RU; Resource utilization of the device

L,™®(C, M) | Maximum resource capacity of the device

TPL Total power consumption of CPU by computationa
devicec

TPM Total power consumption of memory bBycomputationa
devicec

DPL Dynamic power consumption of CPU bBycomputational
devicec

SRC Static power consumption of CPU k& computationa
devicec

DPMR Dynamic power consumption of memory during readally
computational device

DPMW Dynamic power consumption of memory during writegby
computational device

TP Total power consumed by the device

TCE Total computational energy by a taBk executing in g
computing device

TEGq Total energy consumes by a task wHileexecuting in g
container in a CDQ

CEL(t) The CQ emission rate of the CPU

CEM(1) The CQ emission rate of the memory

TCE Total CQ emission rate of a deviee

TE() The temperature emission rate of the CPU

TM(t) The temperature emission rate of the memory

TMc Total temperature emission rate of a dewice

A. Network Model

We consideN computational servers, denoted by theSet{S, &, S, ..., S\}, deploying in a CDC and
connected by the same Local Area Network. Eachesaran hostU number of heterogeneous containers
andH number of VM instances as per the requirementledtasks and the resource availability of servers,
represented &N = {CNy, CNp, CNg, ...,CNu}, VM = {VMy, VM., VM, ...,VMy} respectively. Let consider
that there aré 10T users denoted by the $et{ly, I, I3, ...,Im} and X Non-loT users denoted by the bbt

= {NIy, NIz, Nl3, ...,NIx}. Here, we consider each loT device has a prooegssinit (i.e. microprocessors,
FPGAs, SOCs, microcontrollers) and software apfitioa which has some computational ability. The
processing units and the software of the loT devare shown in Table 3 [41].

Table 3. Computational elements of loT



Computational Elements of Samples

loT devices

Hardware Arduino, Raspberry Pi, Smart

Things, Gadgeteer, Smart Phone

Phidgets, Intel Galileo,
BeagleBone, Cubieboard.

Software Operating System (TinyOS,

Contiki, Riot OS, LiteOS, Android
Cloud (Hadoop, Nimbits, etc).

w

Due to the processing ability, each IoT uggre I can execute the tasRg°' locally. However, due to
limited processing capability, the 10T users caftoafl the tasks to the CDC for processing via sl
communications. The Non-loT use¥d, € NI must not have any processing ability and offldael task
TN to the CDC for processing or storage purpose usirgless networks. The servers of each CDC have
heterogeneous computational resources (e.g. CPtdorgwith fixed capacities. Hence, the computadion
capabilities of the servaris characterized by its computational service @t¢CPU capacity), and the
computational service rate of the servers availabla CDC,Cqpc = YV, C;. Each server can deploy
multiple containers based on the requirementsefabkks. Here we consider two types of resources as!
CPU and memory for deploying the containers. Th& €Rpacity of the containg(CP,“") is defined as
follows.

CH™ =|CR | xsizeofCR (12)

where (CR]) is the number of cores and the size of each deroted asizeofCR). The memory capacity
of the containej (CM;M) is defined as follows.

CMSN =M |xsizeofM) (13)

where (M|) is the number of blocks in the memory and tkze sif each block, denoted sigzeofM). Note
that our proposed CBSS algorithm is compatible witier network structure until unless the loT/Nofi-|
to CDC association is unchanged in one peer ofift@pdecision cycle.

B. Task Arrival Model

The computational tasks are categorized in tweabfit way- (i) real-time tasks (also known as la3ks)
which are generated by the loT devices and (iiplbaasks (also known as non-loT tasks), which are
generated by the non-loT devices. 10T devices magwe the tasks locally or immediately offload tiweks

to the CDC for faster processing. However, the lndntasks offload the tasks to the CDC as a batotien
The operational timeline is decentralized for mglireer offloading for non-1oT based tasks. In et
slott, a batch of non-loT taskds generated from non-loT devices (e.g Users oaptdp, Desktop, mobile,
etc) according to the Poisson process. This ismnman assumption on the batch tasks arrival in a
computational server [42]. L& denotes the rate of a Poisson process for taskaf@rein each time slot.
Attimet, Pdis randomly drawn fronRf € [0, P,q.] to generate the temporal variation in task arppedtern.
Let Pt = {P{} ,.ern1, denotes the non-loT based task arrival at timetsHere, we assume that the size of
the 10T and Non-loT based tasks are measured bioMilnstructions (MI) and the required CPU and
memory capacity for the tasks is represented adioWlilinstructions Per Second (MIPS) and MB
respectively. The total tasks are arrival rateagheservetr, denoted b¥li', isT{ = Y xer kernt Pr. The task

arrival rate of alN servers in a CDC is denotedlag: = {T}}ien-
C. Transmission Model

The transmission time is incurred during 10T anchNoT based devices offloading the tasks to the CDC
for further computation or storage through an dptihannel or CDC transmit the computation resuth&®
requesting devices through a downlink channel.riniae-free channel, the transmission time betwsers



and CDC depends on the distance and the bandwittlibe aetwork. The transmission time between tlee us
aand CD( (TTy) is defined as follows.
TT, =PD, +SD; :alM,all X (14)

wherePD,; andSD,; represent the propagation delay and serializateday. The propagation dela %)
is defined as the ratio between the distance artttngsera and CDCj and the bandwidth of the network

(BWy), i.e. PD,j = DS“"', where DS, =\/(Xa -X;)?+(Y,-Y;)? in a two-dimensional spac¥,(Y). The

BWg;

serialization delay is the ratio between the sofes taskk emitted from a device, SZy, € [0,SZ,,4x] 1O

the transmission rate of the networlR), i.e.SD,; = “;i’“f. However, during data transmission, some noise
aj

may be added with the actual data, which may changassumption. So, we can consider that each CDC

consumes a fixed transmission powRj,(and the data are transmitted over an orthogdmatnel, and the

achievable transmission ral&; between usest and CD( is given by Shannon Capacity,

pity as)
52

whereH,}' is the channel gain between useand CDCj andé? represents the noise power. Then, the

TRa] = BWa]lng(l +

amount of time required to uplink the data from tisera to CDCj (TTy") is TT,; = %. However, the
aj

downlink traffic, from CDCj to usera, consists of the computational res§i#t;, € [0,5Z,,,,] and a few
communication data @D, ; € [0, CDp,qx]. Then, total time requires to transmit the dowkliraffic from

CDCj to userais TTj; = Pi5%+CPaj)
TRjq

CDCj to usera andS4; is the size of the tadk emitted from CDG. So, the total transmission time is the
combination of uplink time to transmit data fronetsto CDC and users and the downlink time to fodwa
the data from CDC to users, which is formulated as-

_ u d _ PjSZa Pj(SZj+CDaj) 16
TTax = TTaj + TTja = 2=+ = (16)

, WhereTRg is the transmission rate of the downlink channeinf

D. Computational Model

The computational time of an 0T or Non-IoT basesktdepends on the capacity of the computationvidele
and total transmission time required for transmittihe tasks and receiving the tasks from CDC wihsch
defined as follow.

CT2 =ET2 +TT, : cO{CN, I}, al0{I, NI} 17)
Here,ETk& represents the execution time of a teskmitted from a devica in a computational devicg
which is defined a&Ty. = SCZ;‘“, whereCP; is the CPU capacity of a computational devicélere, the

computational device for IoT based tasks is eitherloT device itself or the containdre U of a server

i € N. loT devices have some limited processing anédgtcapacity to execute the small task, also exferr
to as local computing; otherwise they can offlohd tasks to the servére N of a CDC for further
processing, also denoted as remote computing. Hawthe Non-loT based devices must offload thestask
to the servei € N for remote computing and assigned the tasks taitalbde containef € U as per the
requirements of the tasks. A task can able to égdoua computational device if the remaining reseu
capacity (also referred as the remaining load dgpaif the device meets the resource requiremeinise
task. The current load of a device is defined asptrcentage of the resources have been utilizéaihve
specific time intervalT to T”). Here we consider each computing device is candid based on two types
of resourcese. CPU (C¢(t)) and memoryNic(t)). The current load of a computational deviad each time
interval is defined as follows.

T T
Le(C,M)=Bx Y Cc)+(L-B)x Y M (t): cO{1,CN} (18)
t=T" t=T"



where,f is the constant in the interval [0, 1]. The vatfeC(t) andMc(t) are represented in the interval
[0,100]. If the remaining load of a computationavitec, RL.(C,M) = (1 — L.(C, M))is less than the
required load TL(C, M)) by the task.: k € {M, X}, i.e.RL.(C,M) < TL,(C, M)), then the tasks should
be assigned to that device. Otherwise, the taskdle offloaded to CDC or wait in a local queueftother
execution. The aim should be to keep the resouilization of an individual device within the perssible
level. Utilization is another key decision parametged to indicate whether a device capacity isjadte to
assign a new task or not. However, very high resoutilization often compromises the performancthef
system and may increase the completion time dftbles. For a given devicethe resource utilizatio U,
is calculated as follows.
. ML ACLORNTY.

L™ (C, M) (19)
whereL™{C, M) indicates the maximum resource capacity of thécde.

RU

Case 1: Local Computing: The IoT devices have limited processing capachictvcan execute the small
tasks locally. If the remaining load of an loT dm4 € {M}, is less than the required load of a tBskk €
{M},i.e.RL.(C,M) < TL,(C,M)), then the taskx should be executed locally. As the task execotelly,
so the total transmission time of the task iséTiTax = 0. So the overall computational time requiredhey
task to complete its execution is equal to the etkec time, i.eCT. = ETg. + 0 = ETj..

Case 2: Remote Computing: In this case, the long task of the 10T devicesahdon-loT based tasks should
be offloaded to the CDC. Here, we consider thedldata center has the maximum resource capacity to
execute any kind of tasks. The tasks will transiwér a wireless user interface which requires dinkipnd
downlink transmission time. The cloud administratgvelops a container based on the resource
requirements by a task and assigns the containam ewailable servare N in a CDC. For offloading a
task, the computational time consists of the twismission time by the task to the selected cdatipn
server and the execution time of the task on thextl container, i.&€Ty. = ET}%, + TTy.

E. Energy Model

The energy consumption of an 10T or Non-loT basa#t mainly depends on two factors- (i) Computationa
energy: consumes energy based on the amount oflieBr@mputing resources are busy to execute she ta
and (ii) Transmission energy: produces energy basetthe time required to transmit the task to tieCC
and receive the computational results from CDC. [bhiedevices may execute the small tasks locallicivh
minimize the transmission time as well as the eneansumption for transmission time. However, foz t
long tasks of the 10T devices and the Non-loT baaskis should be offloaded to the CDC which consume
computational energy and transmission energy feceting the tasks in CDC.

1) Computational Energy: The computational energy consumption varies gresgpending on the
workload of the computing devices. The power corgion of a device is determined mainly by
the processors and memory and the power consunygtibe resources is determined primarily by
resource utilization. However, the energy consuompif a device is estimated based on the
utilization of the resources and the execution tifhthe tasks. The amount of energy consumed by
the 10T device or the selected container {M, U} is defined as follows.

DPS +SP :WherCPU executedtask
TPS ={ SFF :WherCPU is activestatewithoutexecutingatask
0:WherCPUi isinidle state

(20)

where,DPE andSPS represents the dynamic power and static powerucopson by the processors
respectively. The dynamic power of a device depemdhe frequencyf and the voltageVyq) of

the cores of the CPU while executing a task. Thedyjc power consumption of a device is defined
asDPf = YCR, BfV2,. HereCRrepresents the number of cores of the processigt @ma constant,
wheref = C;Na.; C; andN represent the capacity and the number of logiesgavailable in each



core andx is constant where < 1. Similarly, the static power consumption of a CiBdefined as

SP¢ = dV,,, whered is a constant. The power consumption of the merdepends on the read

write operation while executing a task on an loVicke or a container which is defined as follows

DPMY :Whermemoryperformswrite operation

DPMR :Whermemoryperformsread operation

TR ={DPMW + DPMR + A, :Whermemoryperformseadandwrite operation

Ay ‘Whermemorysinidle state
0:Whememonysinidle state

(21)

Where, DPMR and DPMY represent the dynamic power consumption by the angrwhile
performing reading and writing operation aAgl represents the static power required by the
memory during an ideal state. The dynamic powesgoption by the memory during read and
write operation is defined &PM" = DpMR = %cvdzd f , wherec is a constant. So, the total power
consumed by the devigein each unit time is defined as follows.

TP, =TPS +TPV (22)

So, the total computational energyQE) by a taskTy, executing in a computing device a
container iTCE,, = TP, X ET}..

2) Transmission Energy: The transmission energy of a task depends onrtteumt of bandwidth
consumed by the tasks during offload the taskeddBC through an uplink network and transmits
back the task to the user through a downlink chlamiexe, we consider the bandwidth consumes
by the task for uplink and downlink channel betwaseara and CSG is BW;; andBW, respectively.
The total time requires to transmit the data framusea to CDCj and vice-versa i§Ty" andT T
respectively. So the total transmission enefigh) consumed by a tadk is.

TTE, = (BWa; X TTE) + (BWjq X TT}) (23)

So, the total energy consumes by a task wihilexecuting in a container in a CD®&
TECyj = (TCEy + TTEy) = (TP, X ET{,) + (BW,; X TT2) + (BW;q X TT}2) (24)
The power consumption of a device also affectsgamameters- the G@mission rate and the temperature
of the device. The relationship between power congion and CQ@ emission is an important factor to
account in consideration of the sustainability afewice. The C@emission rate of the CPUES (t))and
memory CEM(t)) of a devicec at timet is defined as follows.
CEg (t) = ¥éo, XTRY (25)
CEY' (t) = y &0, X TR
wherey&,, andyX,, are two user-defined constants. So, the total €@fssion rate of a devicds defined
as follow.
TCE,. =CEC (t) +CEM (1) (26)
Similarly, the relationship between the temperaamd power emission of the CPQ(t)) and memory
(TM (1)) of a device is defined as follows.
TR
avdd
TR

TE() = (27)

TV (t) =
dd

whereq is a user-define constant. So, the total tempargfiMc) emitted by a deviceis defined as follow.
™, =TS +TM (28)
5.2 Problem Statement



The main intention of the container-based schedudtrategy is to minimize the start-up time of tirgual
resources as a form of containers for the taskslwban reflect the performance of the CDC including
overall computation time, energy consumption aneral resource utilization. In this work, the taskay
execute locally (small loT-based tasks) or shoeldtiloaded (i.e. large 10T or Non-loT based taskghe
CDC for further processing and analyzing. A suiatdntainef € U is deployed for each task based on the
multiple QoS parameters including computation tane energy consumption. The selected containers are
assigned to an optimal computational sefveN based on the availability of the resources andebeurce
requested by the containers for processing. Therenaltiple indicators and objectives that canazftl the
tasks to the appropriate computational server aedute the tasks efficiently [43-44]. The main feai

the paper is to minimize the energy consumptionamdputational time of the tasks while maximizihg t
resource utilization of the computing devices. Ehebjectives can be achieved by executing the tasks
locally or offloading to the CDC. Consequently, tigimization of the tasks is formulated as a feotive
optimization problem which is discussed below.

Minimize TEG
Minimize CTy&
Subject to

TECKj S 1 e 0]
J 0 S P (i)
TM, S B3 e (iii)
Li(C,M) SO e (iv)
Lo(C, M) S LT(C, M) e (V)
RU; S100 e (vi)
Xee €{0,1}; k€ {M, X}, c €{M,U} .cccvvvviiiiiiies (vii)
YiciXik; K €M, X}, c E{M,U} oo (viii)

Constraint (i) indicates that the total power canption of a device must not beyond a threshold valiye
Constraint (ii) represents that the total &ission rate of a devicemust not beyond a threshold value
The CQ emission rate is linearly proportion with the egyeemission of the computing devices which is
depicted in Eq. (25) and Eq. (26). Constraint {figicates that the total temperature consumpti@ndevice

¢ must not beyond a threshold vallye Temperature emission rate is linearly proportidtih the energy
emission of the computing devices which is depidatellg. (27) and Eq. (28). Constraint (iv) indicatbat

a load of a computing devieemust not beyond a threshold vafueConstraint (v) represents that a load of
a computing device must not beyond the maximum capacity of that se@enstraint (vi) indicates that
the resource utilization of a computing dewicqaust not beyond 100%. Constraint (v denotes whether
a taskTy is assigned to a computational devic€onstraint (viii) describes that each computatiaerver
can execute multiple numbers of tasks by multipletainerd € U concurrently.

6. Energy-Efficient Container-based Scheduling (EES) Strategy

In this section, the details of our proposed EEG&egyy are described. Its three main componemts, i
selection of executing component and optimal sesgbgction, are respectively introduced in theofelhg
sub-sections. At last the complete algorithm of ER&CS strategy is also provided.

6.1 Selection of Executing Component

Here, we discuss a selection strategy of a suitakéeuting component for each task using the APSO
technigue based on the multiple objectives ofdlsk& scheduling strategy. As we discussed earbgisttime

of the loT-based tasks may execute locally if theroaservices of the loT devices meet the resource
requirements of the tasks; otherwise the tasksldhmi offloaded to the CDC for further processingai
suitable container or VM instances. One of the comm@pproaches for solving MOPs is a weighted-sum
method, which is introduced by Zadeh [45]. This moel linearly aggregates all the individual objegtiv
function of a MOP into one objective by using agieivector. Here, we apply a weighted-sum method to



design an objective function to find a suitablecateng device (i.e. containers or VM instances)dach
task based on the APSO technique. Let's assum#hihakecuting devices are represented as panibties
are represented &= {d, dy, ds, ...,dz} includesZ particles. Each particle has a positigiand velocityv,
{z= 1, 2, 3, ...Z} in a 2-D space. Initially, this phase generatasidti-objective optimization function
(referred as Fitness Function) based on the two Q8meters i.e. total energy consumption and the
computational time, defined in Section 5.2. Thalt@nergy consumption of the executing devices are
denoted as

TEC(d,, D) ={TEC, TEG, TEG, TEC, ..., TEG}, wherez € {U,H}

and the computational time of those are repredease
CT4(dz, D) = {CTs, CTy, CT3, CTy, ...,CT3}, wherez € {U, H}

The Fitness Function places all the two QoS parrs@tto a single one based on weighted-sum appedac
which is defined below.

fit(d,, D) =&, TEG,(d,) +a, CTi (d,) (29)
Thus the scheduling objectives are aggregatedsingde Fitness Function, which measures the degfree
the optimal executing device. In Eq. (28):(d,, D) represents the Fitness solution of the selecifahe
suitable executing devick € {U, H} for each requested task or application. In thevalequation, the
coefficientsa,,and a, are the weights which are used to indicate tharipyiof the objectives whose value
lies between [0, 1]. During finding an optimal extieg device each objective of partideis normalized
based on the maximum and minimum values of theesponding objective function. Such normalized
objective function helps to eliminate the impactafious amplitudes on multi-objectives. The noizel
objectiveFN:(d) (wherer represents the total number of objectives); afre obtained using
fr (d| ) _ frmln

FNV (di ) = fFmax _ ¢ min (30)
r r

Wheref,"™ andf,™" represent the maximum and minimum values ofrthebjective which are obtained
from the non-dominated solutions. The particlegéaieed in a 2-D space based on the two objectived
energy consumption and computational time) of tkergproblem using Eq. (29), shown in Fig. 6(a).ih
running the APSO technique, all the normalizediglag are generated in the 2-D plane and converge t
single point of the plane, which is shown in Fi¢p)éand Fig. 6(c) respectively. Finally, the gblesation
of the converged patrticle finds the best-fit examutevice using the Euclidean distance (ED) antbeg
nearest neighboring particles in that plane whscshiown in Fig. 6(c). Finally, the APSO algorithoirged
the best-fit executing device in the plane withimmm ED value, shown in Fig. 6(d) and is defined as

2

2
gbes(d;) =min \/Z ED(f, (d;), f, (d;)) :\/Z(fr (di) = f (dj)? (31)
x=1

x=1

where ED valu&D(d;, dj) between two particle andd; in 2-D space is defined as

f(dy)—f. (dy) if (. (d;)>f (d)))
ED(f, (di), f; (d;)) :{ 6 OtJherwise (32)

The above total energy consumption and computdttona are dynamically balancing two weight factors
a, anda,. Those factors are adaptively adjusted for diffegarticles based on the objectives. For this
purpose, the average value of BHiC,(d;, D) andCT/d, D) in the particle swarrd, are calculated by

z zZ
> TEC(d;, D) > CT(d, D) (33)

TECd,, D)=-4L — > and CT(d,, D) ==L >
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Fig. 6. The process of finding the best-fit executing dewising multiple objectives based on APSO teclaiqu

The main idea of this phase of EECS strategy ias® a weighted-sum approach to define the fitness
function, defined in Eq. (29). However, differemtrficles should be assigned in the 2-D plane bardtie
various weight ofx; anda,, in order to improve some potentiality for a sugesolution instead of the

poorly converged ones. Therefore, us@dz, D) and C_T(dz, D), four situations of the particles are

considered for adjusting the valuesagfanda,, aiming to properly balance the valueT&G,(d,, D) and
CT4(d,, D). The example of different weights @f anda, for various cases is shown in Fig. 7.

Case I:{The particled; with TEC/(d;, D) < TEQ(d,, D) andCT«d,, D) > CT(d,,D)}: In this category, all
the normalized particles have minimum total energrysumption with maximum computational time. For
better convergence, the values of the weightedfacet ag; = [0.7,1] anda, = [0, 0.3].

Case II: {The particled; with TEC,(d,, D) > TEQd,, D) andCT(d;, D) < CT(d,,D)}: In this category, all
the normalized particles have maximum total eneaysumption with minimum computational time. For
better convergence, the values of the weightedfacet ag; = [0,0.3] anda, = [0.7,1].

Case llI: {The particled; with TEG/(d,, D) < 'I?:(dz, D) andCTx(d,, D) < ﬁ(dz, D) }: In this category,
all the normalized particles have minimum total rggeconsumption and computational time. For better

convergence, the values of the weighted factoregually distributed among them and setas- 0.5 and
az = 05



Case IV:{The particled; with TEG/(d,, D) >'@dz, D) andCTx(d,, D) > ﬁ(dz, D) }: In this category, all
the normalized particles have maximum total energgsumption and computational time. For better
convergence, the values of the weighted factorsetrasr; = [0,0.5] anda, = [0, 0.5].

EAD e . The paricia with TEG(3, 0) > TEC(d.., D) andCTd,
The particled; with TECAd,, D) > TEC(d., D) andCT{(d,

O D)>CT(d.. D)

O C The particled; with TEG(d,, D) < TEC(d.., D) andCT{d,
......................................................... e

. The particled, with TEC(d, D) < TEC(d, D) andCT4d,
. DY <CT(d.. D)

CT(d;, D)

Fig. 7. Example of various cases for adjusting the vabies anda,

Finally, the velocity and the position of the pelds of the APSO technique need to be updated tis@ig
positional information of the local and global bpssitions. To reduce the evolutionary distancevbeh
the local-best particles and global-best one wiig&ing more disturbances, a velocity updated eguadi
designed as follows.

Vau =Vz+ag+ﬁ(xz_xz) (34)
where g is a random vector uniformly distributed in thage [0, 1] anw, B are the user-defined constraints.
X; andX; represents the global-best position of a swarmthadposition of the swarm in the previous
iteration respectivelyThis velocity update helps to guide the partictesearch toward the global-best particles.

The updated location of a single particle to insee¢éhe convergence even further using one step is
formulated as

X 20 = (- B)X ,+ BX +ae' (35)

Thus, itis expected to enhance the convergeneglsgeselection of executing component of EECSexjsa
The pseudo code of selection of executing componfdBECS strategy is shown in Fig. 8.

EECS Strategy: Selection of Executing Component
Input: Set the objectives of the computational devicestt&euser defined constantsu, /3,

ande
Output: Find a suitable computational device
1. Begin
2: Foreachj:1toz do r/E Maximum number of iterations
3 fit(d,, D) = Initial Solution()
4: End For
5. While (fit(d, D) <=4) do = Threshold value
6 min = arg mirfit(d;, D)
7 For eacti: 1 tozdo
8 For each j: 1tozdo
9 \\ Calculate the modifietta@ctiveness function

f(d)=f™"

max _ ¢ min
fmax— f

FN, (d) =

10: If (fi(d) > fi(dy))



11: \\ Find the Euclidedistance between the servers
f(d:)=f (d.)if (f (d; f (d.

0 Otherwise
12: Set the valuestpfanda, for the particles.
13: Compare the Pareto dominance relationship betwaem gair of
the computational devices and put the non-dominanes.
14: Randomly select the executing devices from theksivarms.
15: \\ Update thdoeity and position of the particles

V, =V, +ae+ B(X, - X,)

Xz = Q- PB)X ,+BX" +ae'

16: End if

17: End for

18: End for

19: Find the best-fit executing device for each taskmplication
20: End for

21: End

Fig. 8. The pseudo code of selection of executing compiomieBECS strategy
6.2 Optimal Server Selection

The main contribution of this phase is to seleabtimal loaded computing server with availableteses
for deploying the selected executing devices (éoata or VM instances) € {U, H}. The current load of
each computing servére N depends on the current CPU and memory usage musagxecuting devices
which is defined in Eq. (18). The remaining loadl® computing servere N is defined aRL;(C,M) =

(1 - L;(C,M)) and the remaining CPU and memory usage of the atatipnal servers is represented as
CiR(t) andMiR(t) respectively. This phase sort the remaining lazdfe computing servers and select the
server with minimum load, i.a e.

gortimal = MAX {RLy(C, M), RLy(C, M), RLy(C, M), ..., RLy(C, M)}

A selected executing devices {U, H} is assigned to the optimal server with requirstuecesCc(t), Mc(t))
at timet based on the following rules:

Rule 1: {If (MAX (RL;(C,M): i € N) ACF(t) = C.(t) AN ME(t) < M.(t))}: The computing servei € N
is a minimum loaded server which satisfies the GBguirements of the executing device {U, H},
however, fails to meet memory usage requiremertis. &xecuting devicee {U, H} needs to wait until
sufficient memory is available.

Rule 2: {If (MAX (RL;(C,M): i € N) ACF(t) < C.(t) AN MR(t) = M.(t))}: The computing servei € N
is a minimum loaded server which satisfies the mgmequirements of the executing device {U, H},
however, fails to meet CPU usage requirements. &teeuting device € {U, H} needs to wait until
sufficient CPU is available.

Rule 3: {If (MAX (RL;(C,M):i € N) ACF(t) < C.(t) N MR(t) < M.(t))}: The computing servei € N

is a minimum loaded server which does not has gefft CPU and memory usage for assigning the
executing device € {U,H}, The executing devicee {U,H} needs to wait until sufficient CPU and
memory are available.

Rule 4: {If (MAX (RL;(C,M):i € N) ACF(t) = C.(t) AN MR(t) = M.(t))}: The computing servei € N
is a minimum loaded server which satisfies the Gild memory requirements both of the executing
devicec € {U, H}. The executing deviae€ {U, H} is immediately assigned to the computing seivei.

The pseudo code of the optimal server selectidb&ES strategy is shown in Fig. 9.



EECS: Optimal Server Selection
Input: Set of executing devicese {U, H}, remaining load®L;(C, M) of the computational
serverg € N
Output: Select the optimal server
1. Begin
2. For eact computational serveisl toN
3. For eacl computational servejs1 toN
4, Calculate loads of the computational servers

T" T
Le(C,M)=Bx Y Co )+ (L=B)x D M, (1)
t=T" t=T'

5. Calculate remaining loads of thevees
RL;(C,M) = (1 —L;(C,M))
6. Sort the servers and selects themam loaded servers with maximum
reaming load
serimal = MAX {RLy(C, M), RLy(C, M), RLi(C, M), ...,RLn(C, M)}
7. End for
8.  If (MAX(RL;(C,M):i € N) ACR(t) = C.(t) N MR(t) < M.(t))
9. Executing devices {U, H} needs to wait
10.  If (MAX(RL;(C,M):i € N) ACR(t) < C.(t) AMR(t) = M (t))
11. Executing devices {U, H} needs to wait
12, If (MAX(RL;(C,M):i € N) ACR(t) < C.(t) AMR(t) < M.(t))
13. Executing devices {U, H} needs to wait
14,  If (MAX(RL(C,M):i € N) ACR(t) = C.(t) AMR(t) = M (b))
15. Immediately deplbg executing device € {U, H} to the servef € N
16. End for
17. FindCTi: c € {M,X} andRUi: i € N
18.End

Fig. 9. The pseudo code ofptimal server selectioof EECS strategy

Lemma: The worst case and the best case time complexitg EECS strategy 8(K?r) and O(Kr log(K))
respectively.

Proof: Let K be the total number of executing devices suctoatamers and VM instances. Step 1 to Step
21 of the selection of executing component of EEBStegy require®(K?r) time (in the worst case) or
O(Kr log(K)) time (in the best case) to find the optimal exeg device on the fly. This algorithm has two
inner loops when going through populatiérand one outer loop for iteration So the complexity of the
extreme case B(K?r). AsK is small (typicallyK= 40 to 100) and is large (= 5000), the computation cost
of this phase is relatively inexpensive becausedmaplexity of this phase is linearly proportiotat. If K

is relatively large, the complexity of the stratégygoing to beO(Kr log(K)). Let, N is the total number of
computing servers in a CDC. So, for the optimaleeselection of EECS strategy, the total time dexity

of Step 1 to Step 18 B(N?). The total time complexity of EECS strategy fessbcase isO(Kr log(K)) +
O(N?) = O(Kr log(K)) (value ofK >> N). The total time complexity of EECS strategy foorat case is-
O(K?r) + O(N?) = O(K?r) (value ofK >>N)

7. Performance Analysis

In this section, we investigate the performancéhefproposed EECS strategy by evaluating variouS Qo
parameters such as computational time, energy ogtgan, CQ emission, Temperature emission, and
resource utilization. We further compare the pregosiethod with existing algorithms proposed in [20]
[21], and [32].

7.1 Simulation Setup

The simulation parameters of the proposed EEC&girare summarized in Table 4. Here we consider 10
IoT and 100 Non-loT devices and each the devicesapable to generate multiple tasks or application



simultaneously. Each 10T device has some processidgtorage capacity which is randomly and unifprm
taken as [1000-4000] MIPS and [256-512] MB respetyi Each 10T and Non-loT device randomly
generates multiple numbers of tasks with sizesnidy000-100000] MI. We assume that each computing
device is equipped with three different wirelegeiifaces, Long Term Evolution (LTE), Wifi and Bloeth.
The loT and Non-IoT devices may use the LTE corniaedbr long-term communication such as the cloud
data center, while they use Wifi and Bluetoothrifaees to connect with the other l1oT and Non-loVicks.
Here, we assume that the transmission rate of e and Wifi interfaces are randomly and uniformly
distributed over [4.85, 6.85] Mbps and [2.01, 4.8ps respectively. Here, we consider two cloudadat
center where each of them has enough processingtaraje capacity. The CPU capacity and memory
usage of each cloud server lay in [12000-30000]$/Rd [2018-4096] MB respectively.

Table 4: Simulation parameters

Parameter Description Values

Number of 10T devices 100

Number of Non-loT devices 100

Number of tasks or applications 1000

Sizes of the IoT applications 7000- 100000 MI
Number of Containers 100

Number of Servers 10

Number of cloud data centers 2

CPU Capacity of 10T devices 1000- 4000 MIPS
RAM Size of 10T devices 256-512MB

CPU Capacity of each computing server 25000- 450R5
RAM Size of each computing server 2048-4096MB
Storage capacity of each computing server 100 GB

7.2 Dataset Used

In this section, we discuss the dataset used toaeathe performance of the proposed method. ere
generate six different synthetic datasets wheréh edcthe datasets randomly generates the energy
consumption and the computational time for the etieg devices as a form of containers and VM instan
The two important parameters of the APSO algoriéinew, f and we assumed their possible values of the
parameters are in the range of [0, 1], where tlpeebed possible values of those parameters aretextle
randomly such as 0.25, 0.45, 0.55, 0.65, 0.85 ahdi the experimental purpose, we consider the ai

the populations lie in [0, 100] and the possiblliga of the population values are selected randsonty

as 20, 40, 50, 60, 80, and 100. An empirical tegerformed to fix the values of the parameter. @roposed
algorithm is simulated with a fixed value of ea@rgmeter for 100 iterations and minimum, maximurh an
average error are recorded with 1000 independers flm this experiment, for finding the best-polesib
value of a single parameter of APSO technique gtheameters are in the constant state.

\

A fitness value of each pattern in a dataset isutatled based on two QoS parameters, shown in28y. (
and performs a significance test between the daiaseeasure the reality of the data. The signifidavel
of the datasets is measured base®-malue analysis with an unpairédest. The unpairetitest assumes
that the data have been sampled from the normeslgilmited population. ThB-value is the probability of
finding a result equal to or more extreme thanahserved data when the null hypothesls) (s true.P-
value is less than the selected significance léweh the null hypothesis is rejected and suppattied
alternative hypothesis with proper evidence. Theiagh of significance level at which we reject id
arbitrary. Conventionally the 5%, 1% and 0.1P6<{ 0.05, 0.01 and 0.001) levels have been usedt Mos
researchers refer to statistically significBrit 0.05 and statistically highly significaRt< 0.001. From Table
5, it is clearly observed that all the datasetshighly significant. So we can conclude that a#l thatasets
are valid.

Table 5. Significant test of the datasets (DSs) base&-walue

DATASET-1  DATASET-2 DATASET-3  DATASET-4 DATASET-5 DATASET- 6
DS-1 0 4.16421E-08 3.5324E-08 6.64E-07 0.000287 3.1306E-




DS-2 1.2539E-07 0 2.35E-07 2.46E-07 7.37E-10 6.64E-07

DS-3 4.22E-11 1.24E-07 0 1.25395E-07 3.43E-10 3.1346E-07
DS- 4 1.24E-07 2.46E-07 3.24E-07 0 3.64221E-08 4.1648E-0
DS-5 3.43E-10 3.64221E-08 6.12E-11 7.37E-10 0 0.000287
DS- 6 1.2539E-07 2.46E-07 2.35E-07 6.64E-07 7.37E-10 0

7.3 Parameter analysis and discussion

In this section, we analyze the values of the patara of the proposed EECS strategy for observiag t
better quality of the solutions. For fixing the was of the parameters of the EECS strategy, wela#dcthe
minimum, mean and maximum error of the populatibtese, we use Euclidean distance for calculatieg th
minimum error MinErr (D, d;)) and maximum errorMaxErr (D", d;)) between the best-position of a
particle O*) and the other particledj, z € Z in the dataset, which is shown below.

2
MinErr(D",d,) =min(ED (D", d,)) =min Z(D* -d,))
i=1 (36)

2
MaxEr(D",d,) = max€D; (D", d,)) =max(|> (D" ~d,))
i=1

The mean error@(D*,dz) ) of thec, ¢ € {U, H} number of executing devices is calculated as follow

(37)

(ED,(D".d,) _

Err(D",d,) =
c

Analysis of g value: Beta parameter of the proposed algorithm is ortbeofnost important parameters and
the performance of the proposed EECS strategy svdoie the different values of the parameter. The
fluctuation in the performance due to the differealues of the beta parameter can be easily oldénve
Table 6 and Fig. 10. In Table 6, the minimum efoodifferent values of Beta is shown. All the dagtused
for the experiment with the proposed method prodilce minimum value if the beta value is set t&0.5
Hence, for the rest of the experiment, the betaeva fixed at 0.55.

Table 6. Minimum, mean and maximum error f

Dataset Error
£=0.25 | p=045 | p=055 | p=065 | p=08 | p=1.0
DS-1 | Minimum 2.77127E-05 9.02E-05 7.66E-06 0.000268 0.000291 00827
Mean 0.60433687 0.693567 0.584586 0.567229 0.684708 0.610959
Maximum 0.90433678 1.293556 0.784575 1.167231 0.984712 0vew
DS-2 | Minimum 7.45E-05 0.000327 6.38E-05 7.27E-05 0.000215 1(RE-
Mean 2.386025 2.192138 2.524406 2.142301 2.698928 2.479959
Maximum 2.871234 2.834512 2.613425 2.943161 2.814531 2354
DS-3 | Minimum 0.000301 6.47E-06 1.18E-05 8.22E-06 3.28E-05 8BE-0
Mean 1.594098 1.685053 1.748093 1.613907 1.685876 1.547047
Maximum 1.892132 2.0564321 1.814321 1.919071 2.134325 24513
DS-4 | Minimum 0.000126 2.71E-05 1.31E-05 3.13E-05 0.000361 06801
Mean 0.446152 0.735002 0.542211 0.530446 0.735819 0.428055
Maximum 1.032456 1.412313 0.900123 1.212365 .9934210 128845
DS-5 | Minimum 4.16E-05 3.375E-05 3.75E-05 0.000348 0.000142 Q420
Mean 0.295197 0.333111 0.173401 0.307142 0.479175 0.126886
Maximum 1.234123 1.412423 0.985423 .9912341 1.104231 131452
DS-6 | Minimum 5.22E-05 2.47E-05 2.18E-05 0.000191 7.16E-05 6@AE-
Mean 0.40563 0.691009 0.407218 0.377485 0.443640 0.443048
Maximum 1.102341 0.994216 .9721650 1.132456 0.991234 163123
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Analysis of o value: Alpha parameter of the proposed algorithm is ohthe most important parameters
and the performance of the proposed EECS strataggsvfor the different values of this parametdre T
fluctuation in the performance due to the differealues of the Alpha parameter can be easily observ
from Table 7 and Fig. 11. In Table 7, the minimurroefor different values of Alpha is shown. Alleh
dataset used for the experiment with the proposstied produces the minimum value if the alpha vaue
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set to 1.0. Hence, for the rest of the experintbetalpha value is fixed at 1.0.

Table 7. Minimum, mean and maximum error @f




Dataset

Minimum Error

a=0.25 | =045 | a=055 2=065 | «=08 [ =10
DS-1 | Minimum 0.000124 7.84E-05 0.00023 6.94E-05 0.000178 5.14E-06
Mean 1.298154 0.824462 0.62336 0.742566 0.474447 0.357432
Maximum 1.534123 1.412423 0.985423 9912341 1.104231 131452
DS-2 | Minimum 3.38124E-05 3.81E-05 4.08E-05 6.41E-05 4.38E-05 3.26E-05
Mean 2.263859796 1.340141 1.112783 1.19726 1.09794 0.910373
Maximum 2.90433678 1.693556 1.784575 1.217231 1.584712 0DeH
DS-3 | Minimum 0.001088 0.000267 0.000427 5.4E-05 0.000153 2.18E-05
Mean 3.508792 2.700784 2.489331 1.985265 1.899956 1.628176
Maximum 4.102341 2.994216 2.9721650 2.132456 1.991234 36312
DS-4 | Minimum 4.91E-05 0.000134 8.24E-05 4.76E-05 2.49E-05 4.82E-06
Mean 0.714127 0.735838 0.474563 0.339181 0.094042 0.190216
Maximum 1.271234 1.034512 0.913425 0.943161 0.914531 03254
DS-5 | Minimum 0.528811 0.00031 0.000177 0.000149 0.000304 0.000255
Mean 5.531986 4.43705 4.015667 3.73585 3.175658 2.928514
Maximum 5.892132 5.0564321 4.814321 3.919071 3.634325 34513
DS-6 | Minimum 0.00026 6.95E-05 0.000212 7.41E-05 1.56E-05 5.28E-06
Mean 2.33300 1.327611 1.052162 0.746555 0.552767 0.706386
Maximum 2.932456 1.412313 1.400123 1.212365 .9934210 0ZBBS5
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Analysis of Population Size Population Size parameter of the proposed alyuoris another important
parameter and the performance of the proposeditligovaries for the different values of this paraene
The fluctuation in the performance due to the diffé values of thé>op_Sizeparameter can be easily
observed in Table 8 and Fig. 12. In Table 8, theimmim error for different values &fop_Sizas shown.

All the dataset used for the experiment with theppsed method produces the minimum value if the
Pop_Sizevalue is set to 60. Hence, for the rest of theeerpent, the Pop_Size value is fixed to 60.

Table 8. Minimum, mean and maximum error®bp_Size (PS)

Dataset Minimum Error
PS= 20 | PS=40 | PS=50 | PS=60 | PS=80 | PS=100
DS-1 | Minimum 5.14E-06 6.94E-05 0.00023 0.000291 0.000178 7.66E-0
Mean 0.357432 0.742566 0.62336 0.684708 0.474447 0.584586
Maximum 1.045231 .9912341 0.985423 0.984712 1.104231 078845
DS-2 | Minimum 3.26E-05 6.41E-05 4.08E-05 0.000215 4.38E-05 6.38E-04
Mean 0.910373 1.19726 1.112783 2.698928 1.09794 2.524406
Maximum 0.940769 1.217231 1.784575 2.814531 1.584712 25134
DS-3 | Minimum 2.18E-05 5.4E-05 0.000427 3.28E-05 0.000153 1.18E-04
Mean 1.628176 1.985265 2489331  1.685876 1.899956 1.748093
Maximum 1.912363 2.132456 2.9721650 2.134325 1.991234 3R14
DS-4 | Minimum 4.82E-06 4.76E-05 8.24E-05 0.000361 2.49E-05 1.31E-04
Mean 0.190216 0.339181 0.474563  0.735819 0.094042 0.542211
Maximum 0.825432 0.943161 0.913425 .9934210 0.914531 028001
DS-5 | Minimum 0.000255 0.000149 0.000177 0.000142 0.000304 3.75E-06
Mean 2.928514 3.73585 4.015667 0.479175 3.175658 0.173401
Maximum 3.013245 3.919071 4.814321 1.104231 3.634325 02854
DS-6 | Minimum 5.28E-06 7.41E-05 0.000212 7.16E-05 1.56E-05 2.18E-04
Mean 0.706386 0.746555 1.052162  0.443640 0.552767 0.407218
Maximum 0.9045236 1.212365 1.400123 0.991234 .9934210 a1
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Result analysisThe experiment was conducted with the fixed parametiues of alpha, beta, and Pop_Size
which are decided by the analysis. The experimesteonducted to prove the convergence speed,itstabil
and solution quality of the proposed EECS strat@tne convergence of the proposed EECS strategy over
different synthetic datasets is presented in Taladad Fig. 13. The convergence is the minimum Haaln
distance between the target result and the optthriesult produced by the proposed method. So, #ie m
target of all the conducted experiment is to achitie minimum error. It is observed from the expent,
which is presented in Table 9 that the error ofpfgposed algorithm is almost close to zero fodathsets.
The performances of the proposed method over tinerezly significant dataset are less than the pireste
threshold value 0.0001 and the proposed metho@amthithe target level for all the datasets.
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Fig. 13.Comparison of performance over different synthdtitasets

Table 9. Minimum and mean error over different synthetitadats

Datasets| Minimum Error Mean Error Maximum Error
DS1 4.72758E-07 0.677862757 1.472345
DS 2 4.70339E-07 0.280634301 1.104523
DS 3 1.36224E-08 0.396771942 | 1.002345
DS 4 2.53E-07 0.690372 1.324561
DS 5 7.64E-07 1.597311 1.931023
DS 6 4.26E-06 2.589816 2.934127

7.4 Comparison Analysis

In this section, we evaluate the proposed EEC$egyavia simulation runs over the six syntheticadats
and compare with the existing algorithms such a8MOA [20], PSO-COGENT [21] and GAS [32]. Here,



we consider various performance metrics to evalttedeproposed strategy such as computational time,
energy consumption, G@mission, Temperature emission, and resourceattoin.

A) Computational Time: Computational time of a task is defined as the arhoftime requires to complete
its execution within an executing device. The cotapanal time depend on the executing time of & tas
the assigned resources, the time requires to tiatimrtask from the computational devices to tiEOGnd

the time requires to deploy an executing deviceinASection 4, we already discussed that the deptoy
time of the VM instances is much higher than thetaimers. This may affect the computational tim¢éhef
tasks. The proposed EECS strategy finds a suitaisiainer for each task and assigns the containtet
best-fit server. However, the existing MOBFOA ar8ilRCOGENT multi-objective scheduling strategies
deploy the tasks to the suitable VM instances wimity take more deployment time and consume the
maximum amount of resources. However, the GAS gepldhe tasks to the suitable containers based o
single objective optimization strategy which mayluee the overall performance of the servers. The
comparative analysis between the EECS algorithm thadexisting state-of-art-algorithms in term of
computational time over various numbers of taskssdown in Fig. 14. The average computational tifme
EECS strategy is better than the GAS 21%, the MOBR@orithm by 26%, and the PSO-COGENT
algorithm by 30%. Based on the experiments, the £EE@ategy outperforms than other scheduling
algorithms for different synthetic datasets.
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Fig. 14.Average computational Time of different state-gfalgorithms: (a) Dataset- 1; (b) Dataset- 2; (c)
Dataset- 3; (d) Dataset- 4; (e) Dataset- 5; (febet- 6

The statistical analysis of the proposed EECSesjyatind the existing multi-objective schedulingaitpms

in a cloud environment is shown in Table 10. Thasymprove the efficiency of the EECS strategy oler t
existing ones in term of computational time. Therioge of minimum value, mean, maximum value and
standard deviation (SD) are specified and compdibedthe algorithms based on the results of the
computational time of various datasets. It was @uhat the MOBFOA, PSO-COGENT and GAS
algorithms all performed significantly worse th&we proposed EECS, especially when the algorithrad ne
to schedule and execute a maximum number of task®LC.

Table 10. Statistical analysis of computational time of EESIi&itegy and existing algorithms

Datasets Computational Time for IoT and Non-loT based tasks
EECS GAS MOBFOA PSO COGENT
Minimum 10 21 24 29
Mean 35.12 47.17 49.34 55.45
DS-1 | Maximum 65 91 94 104
SD 5.495657 | 10.43240 11.34250 14.56231
Minimum 11 24 27 33
DS-2 Mean 37.54 49.23 51.92 58.12
Maximum 71 92 97 110
SD 4.215431 11.43245 12.43516 16.32187
Minimum 14 27 32 37
DS- 3 Mean 40.32 53.29 59.17 61.75
Maximum 71 96 101 118
SD 5.912652 13.12543 15.32546 18.32187
Minimum 9 19 22 27
DS-4 Mean 36.12 45.86 54.73 59.56
Maximum 65 85 92 102
SD 4.126543 9.985641 11.43276 14.65234
Minimum 12 25 28 35
DS-5 Mean 40.54 42.34 50.23 56.10
Maximum 69 87 90 107
SD 5.103424 10.12875 12.12654 13.62342
Minimum 15 28 30 37
DS- 6 Mean 42.44 56.12 53.56 58.07
Maximum 72 98 94 114
SD 6.123451 14.01235 16.12654 15.65213

B) Energy Consumption: Energy consumption of a task is defined as the amoluenergy consumed by
the resources of executing device which is assigoedhat task (defined in Eq. (24)). The energy
consumption of a task depends on the energy cortgampf the transmitting channel and the energy
consumption of the resources during processinglaitaa computing server. Here, we consideredahat
suitable container is assigned for each task dits toinimum resource usage and limited deployntierg

for running a task. As in Section 4, we discus$ed & container must consume a minimum amount of
resources which may reduce the overall energy copg8an for executing a task. The proposed EECS
strategy finds a suitable container for each taskassigns the container to the best-fit servewdder, the
existing MOBFOA and PSO-COGENT multi-objective sahkng strategies deploy the tasks to the suitable
VM instances which may consume the maximum amotinéspurces due to their own OS and consume
maximum energy for running the assigned task. @rother hand, the GAS algorithm did not consider th
energy consumption parameter for minimizing theralenergy consumption of the CDC. The comparative
analysis between the EECS algorithm and the egistiate-of-art-algorithms in term of energy constiomp
over various numbers of tasks are shown in FigThe. average energy consumption of EECS strategy is
better than the GAS 24%, the MOBFOA algorithm by@%nd the PSO-COGENT algorithm by 33%.



Based on the experiments, the EECS
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The statistical analysis of the proposed EECSegjyadind the existing multi-objective schedulingaitpms

in a cloud environment is shown in Table 11. Thaymrove the efficiency of the EECS strategy oler t
existing ones in term of energy consumption. Thériogeof minimum value, mean, maximum value and
standard deviation (SD) are specified and compfdethe algorithms based on the results of thegner
consumption of various datasets. It was found ttatMOBFOA, PSO-COGENT and GAS algorithms all

performed significantly worse than the proposed EE€specially when the algorithms need to schedule
and execute a maximum number of tasks in CDC.

Table 11.Statistical analysis of energy consumption of EE88tegy and existing algorithms

Datasets Energy Consumptionfor loT and Non-loT based tasks
EECS GAS MOBFOA PSO_COGENT

Minimum 7.12 15.34 18.32 21.53

Mean 25.32 37.65 39.51 42.56

DS-1 | Maximum 42.87 57.23 65.02 71.98




SD 3.145657 3.84320 3.94520 4.14234
Minimum 8.37 17.45 20.11 22.76
DS-2 Mean 26.54 38.76 40.12 42.95
Maximum 47.54 57.76 60.43 67.13
SD 3.215431 4.33245 487516 5.13187
Minimum 7.86 13.54 16.78 15.65
DS-3 Mean 23.45 33.56 35.65 38.97
Maximum 39.98 45,56 50.98 57.34
SD 2.912652 3.72543 3.97546 4.13287
Minimum 9.11 11.43 15.32 19.11
DS-4 Mean 22.12 25.86 27.73 30.56
Maximum 32.23 40.31 45.65 49.67
SD 2.426543 2.985641 3.123276 3.75234
Minimum 12.12 19.13 21.32 24.34
DS-5 Mean 25.54 29.34 31.23 35.10
Maximum 36.65 41.34 45,54 49,98
SD 2.103424 2.82875 3.12654 3.72342
Minimum 11.12 16.43 19.67 21.34
DS-6 Mean 21.44 27.12 29.56 34.07
Maximum 37.65 41.23 43.45 46.32
SD 2.123451 2.81235 3.12654 3.85213

C) CO; Emission: CO, emissionof a task is defined as the amount of G&itted by the resources of
executing device which is assigned for that tagfiiéd in Eq. (26)). The CQemissionof a task depends
on the CQ emitted of the transmitting channel and the;@@itted of the resources during processing a task
in a computing server. Here, we considered thatitalde container is assigned for each task duésto
minimum resource usage and limited deployment faneunning a task. As in Section 4, we discusbed t

a container must consume a minimum amount of ressuvhich may reduce the overall £€nissiorfor
executing a task. The proposed EECS strategy findsitable container for each task and assigns the
container to the best-fit server. However, the texgs MOBFOA and PSO-COGENT multi-objective
scheduling strategies deploy the tasks to theldaitdM instances which may consume the maximum
amount of resources due to their own OS and emitrman CQ for running the assigned task. On the other
hand, the GAS algorithm did not consider the eneamsumption parameter for minimizing the overalhC
emission of the CDC. The comparative analysis betwibe EECS algorithm and the existing state-of-art
algorithms in term of C®emissionover various numbers of tasks are shown in FigThé. average CO
emissionof EECS strategy is better than the GAS 25%, theBHWOA algorithm by 30%, and the PSO-
COGENT algorithm by 34%. Based on the experimetite, EECS strategy outperforms than other
scheduling algorithms for different synthetic datas

The statistical analysis of the proposed EECSesjyadind the existing multi-objective schedulingaitpms

in a cloud environment is shown in Table 12. Thaymrove the efficiency of the EECS strategy oler t
existing ones in term of C@&mission. The metrics of minimum value, mean, maxn value and standard
deviation (SD) are specified and computed for tgerathms based on the results of the X&missionof
various datasets. It was found that the MOBFOA, FSWSENT and GAS algorithms all performed
significantly worse than the proposed EECS, espigeidaen the algorithms need to schedule and exeaut
maximum number of tasks in CDC.
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Table 12. Statistical analysis of G missionof EECS strategy and existing algorithms

Datasets Energy Consumptionfor 10T and Non-loT based tasks
EECS GAS MOBFOA PSO_COGENT
Minimum 8.12 16.64 19.72 23.63
Mean 25.32 38.65 40.53 43.58
DS-1 | Maximum 47.87 59.23 68.02 73.98
SD 3.245657 3.74320 3.94520 4.14234
Minimum 9.47 16.55 21.01 23.75
DS- 2 Mean 27.54 38.98 41.17 41.75
Maximum 47.84 59.76 61.73 66.53
SD 3.205431 3.71245 3.97516 4.13187
Minimum 7.96 13.85 16.89 16.75
DS-3 Mean 23.35 33.46 35.75 38.86
Maximum 39.98 45.56 50.98 57.34
SD 2.912652 3.62543 3.87546 4.13287
Minimum 9.51 11.89 15.72 19.91
DS- 4 Mean 22.89 26.76 28.96 31.76




Maximum 33.43 41.51 46.75 50.07
SD 2.456343 2.975641 3.343276 3.84234
Minimum 12.12 19.13 21.32 24.34
DS-5 Mean 25.54 29.34 31.23 35.10
Maximum 36.65 41.34 45.54 49.98
SD 2.103424 2.82875 3.12654 3.72342
Minimum 11.82 16.75 19.76 21.54
DS- 6 Mean 22.65 28.82 30.12 35.18
Maximum 38.75 42.45 44.56 48.45
SD 2.223451 2.91235 3.62654 3.95213

D) Temperature Emission:Temperature emissiarf a task is defined as the amount of heat emiifyeithe
resources of executing device which is assignethdrtask (defined in Eq. (28)). The Temperatunéssion

of a task depends on the amount of heat emittalenfransmitting channel and the heat emitted ef th
resources during processing a task in a compuénges Here, we considered that a suitable contaéne
assigned for each task due to its minimum resousege and limited deployment time for running &.tas
As in Section 4, we discussed that a container mwstume a minimum amount of resources which may
reduce the overall Temperature emisdmmexecuting a task. The proposed EECS strategisfa suitable
container for each task and assigns the contairteetbest-fit server. However, the existing MOBFa#d
PSO-COGENT multi-objective scheduling strategieglalethe tasks to the suitable VM instances which
may consume the maximum amount of resources dieitoown OS and emit maximum heat for running
the assigned task. On the other hand, the GASitilgodid not consider the energy consumption patame
for minimizing the overall temperature emissiortted CDC. The comparative analysis between the EECS
algorithm and the existing state-of-art-algoritim$germ of Temperature emissiomer various numbers of
tasks are shown in Fig. 17. The average Temperatnigsiorof EECS strategy is better than the GAS 24%,
the MOBFOA algorithm by 29%, and the PSO-COGENTatgm by 33%. Based on the experiments, the
EECS strategy outperforms than other schedulingriitigns for different synthetic datasets.
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Fig. 17.Average CQemission of different state-of-arts-algorithmg: Qamtaset- 1; (b) Dataset- 2; (¢) Dataset-
3; (d) Dataset- 4; (e) Dataset- 5; (f) Dataset- 6

The statistical analysis of the proposed EECSesjyadind the existing multi-objective schedulingpaitpms

in a cloud environment is shown in Table 13. Thasymprove the efficiency of the EECS strategy oler t
existing ones in term of Temperature emission. Mké&ics of minimum value, mean, maximum value and
standard deviation (SD) are specified and comptidedthe algorithms based on the results of the
Temperature emission of various datasets. It wasdahat the MOBFOA, PSO-COGENT and GAS
algorithms all performed significantly worse th&we proposed EECS, especially when the algorithrad ne

to schedule and execute a maximum number of tasR®C.

Table 13.Statistical analysis of Temperature emission o€EEtrategy and existing algorithms

Datasets Energy Consumptionfor loT and Non-loT based tasks
EECS GAS MOBFOA PSO_COGENT
Minimum 7.12 15.34 18.32 21.53
Mean 25.32 37.65 39.51 42.56
DS-1 | Maximum 42.87 57.23 65.02 71.98
SD 3.145657 3.84320 3.94520 4,14234
Minimum 8.37 17.45 20.11 22.76
DS- 2 Mean 26.54 38.76 40.12 42.95
Maximum 47.54 57.76 60.43 67.13
SD 3.215431 4.33245 4.87516 5.13187
Minimum 7.86 13.54 16.78 15.65
DS-3 Mean 23.45 33.56 35.65 38.97
Maximum 39.98 45,56 50.98 57.34
SD 2.912652 3.72543 3.97546 4.13287
Minimum 9.11 11.43 15.32 19.11
DS- 4 Mean 22.12 25.86 27.73 30.56
Maximum 32.23 40.31 45.65 49.67
SD 2.426543 2.985641 3.123276 3.75234
Minimum 12.12 19.13 21.32 24.34
DS-5 Mean 25.54 29.34 31.23 35.10
Maximum 36.65 41.34 45.54 49.98
SD 2.103424 2.82875 3.12654 3.72342
Minimum 11.12 16.43 19.67 21.34
DS-6 Mean 21.44 27.12 29.56 34.07
Maximum 37.65 41.23 43.45 46.32
SD 2.123451 2.81235 3.12654 3.85213

E) Resource Utilization: Resource utilization of a server is defined asrnttmber of executing devices
executing the tasks and reuses the resources adiwdelthe tasks. As a container is a lightweightance
compared with the VM instances, the container mtite the resources better than the VM instantas.
containers are deployed over the host OS which moistequire additional memory and CPU cycle to
execute the processes of OS. However, the VM instatave their own OS and deployed over the



computing hardware and require additional memorgttoe the processes of OS image with extra CPU
cycle. This may reduce the parallelism among thkstin a server and minimizes the resource utitinah
terms of CPU and memory. However, the containerg en@cute a number of tasks and increase the
parallelism among the tasks. This strategy agapranes the CPU and memory utilization of the sexver
The proposed EECS strategy finds a suitable cataistead of the VM instances for each task asidjas

the container to the best-fit server. However,dkisting multi-objective scheduling strategies dgpthe
tasks to the suitable VM instances which may comstita maximum amount of resources and minimize the
CPU and memory utilization. On the other hand, GA8uld assign the tasks to the suitable serveowith
considering its resource availability which mayueel the overall performance. The comparative aiglys
between the EECS algorithm and the existing sthtetealgorithms in term of CPU and memory utilipat
over various synthetic datasets are shown in Bg. 1
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Fig. 18.Average resource utilization: (a) CPU Utilizatigh) Memory Utilization

The percentage of resource (CPU and memory) utdizaf the proposed EECS strategy and the existing
algorithms by the tasks on the servers is showtabnlar form (Table 14) for better understanding an
discussion. The average CPU utilizatmhEECS strategy is better than the GAS 10%, theBROA by
12%, and the PSO-COGENT by 15%. Similarly, the agermemory utilizatioof EECS strategy is better
than the GAS 19%, the MOBFOA algorithm by 23%, #relPSO-COGENT algorithm by 28%. Based on
the experiments, the EECS strategy outperforms thla@r scheduling algorithms for different syntbeti
datasets.

Table 14.Resource utilization of EECS strategy and existilggrithms

CPU Utilization
Datasets EECS GAS MOBFOA PSO-COGENT
DS-1 94.75% 88.25% 84.35% 81.15%
DS- 2 95.66% 87.45% 85.15% 82.23%
DS- 3 95.88% 88.48% 84.27% 82.45%
DS- 4 94.32% 87.15% 83.24% 81.43%
DS-5 95.93% 87.25% 85.22% 80.45%
DS- 6 94.99% 86.65% 83.18% 81.46%
Memory Utilization
DS-1 94.32% 83.45% 80.85% 79.22%
DS- 2 95.93% 81.78% 78.24% 77.15%
DS- 3 94.99% 80.45% 79.17% 75.15%
DS- 4 93.80% 81.87% 78.34% 76.35%
DS-5 93.42% 82.85 % 80.65 % 77.26%
DS- 6 92.96% 83.92% 79.45% 76.85%

8. Conclusion



In this work, we have developed an energy-efficaamtainer based strategy in a cloud environmemhety
EECS to tackles MOPs. The main contribution ofadlgorithm is to find a suitable lightweight contain

for each task based on multiple-objectives sucbn@sgy consumption and computational time. Here, we
have applied the APSO technique for finding a dlgt@ontainer based on a weighted-sum approach. Thi
may minimize the overall computation time and egecgnsumption of the CDC due to minimum
deployment time and resource consumptions of tikageers. Due to minimize energy consumption, the
proposed EECS strategy also minimizes the ovefallénission and temperature of the computing servers.
The algorithm also finds a suitable computing sebased on a rule-based strategy for the contafoers
better resource utilization of the multiple resasrof the computing servers such as CPU and meméay.
have conducted the simulation runs using six syitidatasets. Through comparisons, we have edtellis
the superior performance of the proposed algorittwer the existing ones using various statistical an
comparative analyses.

Our future research plan is to methodically scinéirthe trade-off between the qualities of contalresed
scheduling with different heuristic and meta-hdigialgorithms for different types of QoS paramstef
various types of applications along with their dées. Further, we will develop a dynamic contatbased
Cloud environment for 10T applications and assiga &pplications on an online basis to the best-fit
containers for meeting various QoS constraints.
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