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Abstract. We investigate the problem of ranking all process models in
a repository according to their similarity with respect to a given process
model. We focus specifically on the application of graph matching algo-
rithms to this similarity search problem. Since the corresponding graph
matching problem is NP-complete, we seek to find a compromise between
computational complexity and quality of the computed ranking. Using
a repository of 100 process models, we evaluate four graph matching al-
gorithms, ranging from a greedy one to a relatively exhaustive one. The
results show that the mean average precision obtained by a fast greedy
algorithm is close to that obtained with the most exhaustive algorithm.

1 Introduction

As organizations reach higher levels of Business Process Management (BPM)
maturity, repositories with hundreds of business process models become increas-
ingly common [18]. For example, the SAP reference model contains over 600
business process models. A similar number of process models can be found in
the reference model for Dutch Local Governments [6]. On a larger scale, tool ven-
dors distribute reference model repositories (e.g. the IT Infrastructure Library
— ITIL) with over a thousand process models each.* These models are used, for
example, to document and to communicate internal procedures or to enable the
re-design and automation of business processes. In order to effectively fulfil these
tasks, tool support is needed to retrieve relevant models from such repositories.

In this paper, we focus on the problem of similarity search in process model
repositories: Given a process model or fragment thereof (the search model), find
those process models in the repository that most closely resemble the search
model. The need for similarity search arises in multiple scenarios. For example,
when adding a new process model into a repository, similarity search allows
one to detect duplication or overlap between the new and the existing process
models. Meanwhile, in the context of reference process model repositories, such

% See for example CaseWise’s ITIL repository (http://www.casewise.com/Gateway/)



as ITIL, similarity search allows one to retrieve reference models that overlap
with an existing “as is” process model.

Answering a similarity search query involves determining the degree of simi-
larity between the search model and each model in the repository. In this context,
similarity can be defined from several perspectives, including the following.

— Text similarity: based on a comparison of the labels that appear in the pro-
cess models (task labels, event labels, etc.), using either syntactic or semantic
similarity metrics, or a combination of both.

— Structural similarity: based on the topology of the process models seen as
graphs, possibly taking into account text similarity as well.

— Behavioural similarity: based on the execution semantics of process models.

In previous work, we evaluated several similarity metrics across all three per-
spectives [5,19]. We found that a structural similarity metric based on graph
matching achieved the highest retrieval quality (precision and recall). However,
the operationalization of this metric is hindered by the fact that the underly-
ing graph matching problem, namely the graph-edit distance problem, is NP-
complete [14]. This is not only a theoretical limitation, but a practical one: our
experiments show that for real-life process models with more than 20 nodes, ex-
haustive graph matching algorithms lead to combinatorial explosion. Therefore,
heuristics are needed that strike a tradeoff between computational complexity
and precision. This paper presents and compares four heuristic algorithms for
calculating the similarity of business process models based on graph matching.

The rest of the paper is structured as follows. Section 2 formulates the prob-
lem and introduces the structural similarity metric studied in the paper. Sec-
tion 3 presents four algorithms that provide alternative operationalizations of
the structural similarity metric. Section 4 presents an experimental evaluation
of these algorithms. Section 5 discusses related work and Section 6 concludes.

2 Preliminaries

This section defines the notion of business process used in this paper and formu-
lates the structural similarity metric used for comparing pairs of process models.

2.1 Business process

A business process is a collection of related tasks that lead to a specified goal.
Many modeling notations are available to capture business processes, including
Event-driven Process Chains (EPC), UML Activity Diagrams and the Business
Process Modeling Notation (BPMN) [20]. In this paper, we seek to abstract as
much as possible from the specific notation used to represent process models,
to allow for measuring similarity of business processes modeled using different
notations. Accordingly, we adopt an abstract view in which a process model is
a directed attributed graph, as captured in the following definition.



Definition 1 (Business process graph, Pre-set, Post-set, Source, Sink).
Let L be a set of labels and T be a set of types of nodes. A business process graph
is a tuple (N, E, T, \), in which:

— N is the set of nodes;

— E C N X N is the set of edges; and

— 7: N — T is a function that maps nodes to types.
— A: N — L is a function that maps nodes to labels.

Let G = (N,E,1,\) be a graph and n € N be a node: en = {m|(m,n) € E} is
the pre-set of n, while ne = {m|(n,m) € E} is the post-set of n. Source nodes
are nodes with an empty pre-set and sink nodes are nodes with an empty post-set.

Function 7 serves to distinguish between types of nodes. The available types
of nodes depend on the notation. In EPCs we can distinguish between at least
three types of nodes: functions (’f’), events (’e’) and connectors (’c’). Similarly,
in BPMN we can distinguish between activities (’a’), events (’e’) and gateways
(’g’). We could also distinguish between different types of BPMN gateways and
events, but it is not the intention of this paper to be exhaustive in this respect.

When abstracting a process model as a process graph, we may drop certain
types of nodes. Figure 1 shows two process models (one EPC and one BPMN
diagram) and two ways of abstracting them as process graphs. The left column
shows the original process models. The middle column shows the corresponding
process graphs after the events are abstracted away. Each node is annotated
with a pair indicating the node type and the node label. The right column
shows the process graphs after events and connectors/gateways are abstracted
away. As discussed later, this connector-less abstraction lifts one of the sources of
combinatorial explosion when comparing process models using graph matching.

Service
received

(f, “Order”) (f, “Order”)
*———o

Purchase Order Order (f, “Verification invoice”) (f, “Verification invoice”)
requisition created

Verify (a, “Verify invoice”) (a, “Verify invoice”)

") (a,“Order”)
(a, “Receive Goods”) (a, “Receive Goods”)
goods (a, “Store goods”) (a, “Store goods”)

iii. Process Graph
i. Business process models ii. Process Graph (no events) (no events, no gateways)

Fig. 1. Two processes and their graphs

2.2 Business process similarity metric

To compare pairs of process graphs, we define a metric based on on the no-
tion of graph edit distance [4]. The graph edit distance between two graphs is



the minimal cost of transforming one graph into the other. Transformations are
captured as sequences of elementary transformation operations. Each elemen-
tary operation has a cost, which is given by a cost function. Conceptually, a
graph-edit distance algorithm must try possible combinations of transformation
operations and return the one with the minimal total cost. We consider the
following elementary transformation operations.

— Node substitution: a node from one graph is substituted for a node from the
other graph.

— Node insertion/deletion: a node is inserted into or deleted from a graph.

— Edge insertion/deletion: an edge is inserted into or deleted from a graph.

We consider cost functions that return a constant value for insertion and deletion
of nodes and edges (e.g. a cost of 0.5 for edges and 0.2 for nodes). Meanwhile,
we assume that the cost of a node substitution is one minus the similarity of the
nodes. The similarity of nodes is determined by the similarity the node labels
and types. We introduce a predicate cs (‘can substitute’) that holds iff one type
of node can substitute another type of node (e.g. an EPC function can substitute
a BPMN activity). For a given pair of nodes, if cs does not hold, the similarity
of these nodes is undefined (L). If ¢s holds, their similarity is determined using
the string-edit distance of the node labels as defined below.

Definition 2 (String edit distance, Node similarity). Let s and t be two
strings and let || be the length of a string x. The string edit distance of s and
t, denoted ed(s,t) is the minimal number of atomic string operations needed to
transform s into t or vice versa. The atomic string operations are: inserting a
character, deleting a character or substituting a character for another.

Let G1 = (N1, E1,71, A1) and Gy = (Na, Eq, 71, A2) be two graphs and ny €
Ny and ny € No two nodes. The similarity of ny and ng is:

edn(ni) 2o (n2))
Sim(ny, nz) = {1'0 ~ (A (mn)f Dalnayy 1 6S(71(n1), 2(n2))

1 otherwise

For example, if ‘f> and ‘a’ can substitute each other, then the string edit
distance between ‘Verify invoice’ and ‘Verification invoice’ from figure 1 is seven;
substitute ‘y’ for ‘i’ and insert ‘cation’. Consequently, the string edit similarity
is 1.0 — o5. Algorithms for computing the string edit distance are well known [9].

String-edit distance is only one possible similarity metric between labels. In
separate work, we studied other label similarity metrics based on word stemming
and synonym relations [5]. However, the purpose of the present paper is not to
evaluate label similarity metrics, but rather to evaluate algorithms that, given
a label similarity metric, compute a similarity measure between pairs of process
models. Therefore, the choice of label similarity metric is secondary.

Given the above, we define the graph edit distance as follows.

Definition 3 (Graph edit distance). Let G; = (Ny, E1,71,M1) and Gy =
(Ns, Ea, 71, A2) be two graphs. Let M : Ny -+ No be a partial injective mapping



that maps nodes in Gy to nodes in Ga. Let dom(M) = {ny|(n1,n2) € M} be the
domain of M and cod(M) = {na|(n1,n2) € M} be the codomain of M.

Given an n € N1 UNa, n is substituted iff n € dom(M) orn € cod(M). subn
is the set of all substituted nodes. A node nq € N is deleted from Gy (or inserted
in Ga) iff it is not substituted. A node that is deleted from Go (or inserted in
G1) is defined similarly. skipn is the set of all inserted and deleted nodes.

Let (n1,mq) € Ey be an edge in Ey. (n1,my) is deleted from Gy (or inserted
in G3) if and only if there do not exist mappings (n1,n2) € M and (m1,mg) € M
and edge (ne, mo) € Eo. Edges that are deleted from Gy (or inserted in G1) are
defined similarly. skipe is the set of all inserted and deleted edges. An edge is
substituted if it is not inserted or deleted.

The graph edit distance that is induced by the mapping M is:

|skipn| 4 [skipe| 4 2 - X5, n,)en (1 — Sim(ny,n2))

The graph edit distance of the two graphs is the minimal possible distance
induced by some mapping.

For example, given the two process graphs in figure 1.iii, we can create a map-
ping from ‘Order’ to ‘Order’, and from ‘Verification invoice’ to ‘Verify invoice’.
The graph edit distance induced by this mapping is: 2.04+4.04+2.0-(0.04+0.35) =
6.7 (2 inserted nodes, 4 deleted/inserted edges and 2 substituted nodes).

Finally, we define the graph edit similarity metric as follows.

Definition 4 (Graph edit similarity). Let G; = (N1,E1, A1) and Go =
(N3, Eg, A\a) be two graphs. Let M : Ny - Na be a partial injective mapping
that maps nodes in Gy to nodes in Gy and let subn, skipn and skipe be the sets
of substituted nodes, inserted or deleted nodes and inserted or deleted edges as
defined in definition 3. Furthermore, let 0 < wsubn < 1, 0 < wskipn < 1 and
0 < wskipe < 1 be the weights that we assign to substituted nodes, inserted or
deleted nodes and inserted or deleted edges, respectively.

The fraction of inserted or deleted nodes, denoted fskipn, the fraction of in-
serted or deleted edges, denoted fskipe and the average distance of substituted
nodes, denoted fsubsn, are defined as follows.

2.0-Y(n,m)enm 1.0—Sim(n,m)
|[subn]|

Jipn — skipnl ipe — _lskipel —
fskipn = LA fskipe = ARSI fsubn =

The graph edit similarity induced by the mapping M is:

10— wskipn - fskipn + wskipe - fskipe + wsubn - fsubn

wskipn + wskipe + wsubn

The graph edit similarity of two graphs is the maximal possible similarity

induced by a mapping between these graphs.

For example, using the weights wsubn = 1.0, wskipn = 0.1 and wskipe = 0.3,
the graph edit similarity that is induced by the mapping that maps ‘Order’
to ‘Order’, and ‘Verification invoice’ to ‘Verify invoice’ in figure 1 is: 1.0 —
0'1'0'303.‘1"3'0%1401‘?’01'0'0'7 ~ 0.73. This is also the maximal possible similarity induced
by a mapping and, hence, this is the graph edit similarity of the two graphs.




3 Algorithms

To compute the graph edit similarity of two process graphs, we must find the
mapping that induces the maximal similarity. We could construct all possible
mappings and return the one with maximal similarity. However, this approach
has factorial complexity. Accordingly, this section presents four possible heuristic
algorithms to address this problem.

3.1 Greedy Algorithm

We first propose a greedy algorithm (Algorithm 1) that incrementally constructs
a mapping between a pair of process graphs. The algorithm starts by marking
all possible pairs of nodes from the two graphs as open pairs. (For all algorithms
we assume that pairs of nodes that cannot substitute each other, as defined in
definition 2, are not considered.) In each iteration, the algorithm selects an open
pair that most increases the similarity induced by the mapping, and adds this
pair to the mapping.® The selected pair consists of two nodes. Since each node
can only be mapped once, the algorithm removes from the set of open pairs, all
pairs in which one of the selected nodes appears. The algorithm iterates until
there is no open pair left that can increase the similarity induced by the mapping.

The algorithm is in O(n?®) where n is the number of nodes of the largest
graph. Indeed, in the first iteration we consider up to n? open pairs, in the
second iteration (n — 1)? open pairs, etc. And X7 i = n(n + 1)(2n + 1)/6.5
Also, the algorithm has a quadratic space complexity (the set of open pairs).
Unfortunately, the algorithm may lead to a suboptimal mapping, because it
selects an open pair that most increases the similarity induced by the mapping
at a particular time, but in doing so, it may discard open pairs that would
increase the similarity induced by mapping at a later iteration.

For example, in figure 1 the open pair (‘Order’; ‘Order’) is chosen in the first
iteration, because adding this pair to the mapping increases the similarity score
most. All open pairs in which ‘Order’ appears are then removed from the set of
open pairs. In the second iteration, the open pair (‘Verification invoice’, ‘Verify
invoice’) is chosen. All open pairs in which either ‘Verification invoice’ or ‘Verify
invoice’ appears are removed. This leaves no open pairs and the algorithm returns
the mapping { (‘Order’, ‘Order’), (‘Verification invoice’, ‘Verify invoice’)}.

3.2 Exhaustive Algorithm with Pruning

The second algorithm (Algorithm 2) recursively explores all possible mappings,
but when the recursion tree reaches a certain size, the algorithm prunes it to keep
only the mappings with the highest similarity. In the extreme case, the algorithm
is thus exponential, but the pruning parameters will control its complexity.

® The similarity induced by a mapping is given by function s as per definition 4.

5 Computing the graph edit similarity induced by a mapping can be done in constant
time (amortized), because when we add a pair we already know the graph edit
similarity induced by the existing mapping.



Algorithm 1: Greedy algorithm

input: two business process graphs Gi1 = (N1, E1, A1), G2 = (Na, E2, A2)
init
openpairs <= N1 X Na
map < ()
begin
while ezists (n, m) € openpairs, such that s(map U {(n,m)}) > s(map) and
there does mot exist another pair (o,p) € openpairs, such that
s(map U {(0,p)}) > s(map U{(n,m)}) do
map < map U {(n,m)}
openpairs <= {(0,p) € openpairs|o # n,p # m}
end

return s(map)
end

The algorithm starts by initializing the set of unfinished mappings to an
empty mapping, with all nodes from the two graphs mapped as ‘free’ to be
mapped. It repeatedly prunes the set of unfinished mappings and performs a
step in which finished mappings are added to the set of finished mappings and
unfinished mappings are extended with an additional pair of nodes. It repeats
this until there are no more unfinished mappings. It then returns the finished
mapping with the highest similarity score.

The pruning function (shown separately) tests if the set of unfinished map-
pings has reached the size ‘pruneat’ (a parameter of the algorithm). If it has, it
returns a set of mappings (of size ‘pruneto’) with the highest similarity score.

The recursion step is also shown in a separate function. The recursion step
takes each unfinished mapping. If the unfinished mapping has no nodes that
are free to be mapped, the mapping is added to the set of finished mappings.
Otherwise, the algorithm takes each possible combination of pairs of free nodes
and creates a new unfinished mapping in which that pair is added to the existing
unfinished mapping (and the nodes from the pair are removed from the sets of
free nodes). It includes pairs in which free nodes are not mapped (i.e. they are
removed from the sets of free nodes, but not added to the unfinished mapping).

For example, in figure 1 the set of unfinished mappings is initialized to
{(0,{0,V},{O,R,V,S})} (using the first letter of node labels as identifier).
In the first step, the algorithm takes this unfinished mapping and, since neither
{O,V} nor {O, R,V, S} is empty, it generates a mapping for each combination of
anode from {O, V'} and a node from {O, R, V, S}, i.e. ({(0,0)},{V},{R,V,S}),
{(0,R)},{V},{0,V,S}), {(O,V)},{V},{O,R,S}), .... It also generates one
mapping for each possible removal of a node from one of the two sets, generating;:
0,{V}{O,R,V,S}), (0,{0},{O,R,V,S}), (0,{O,V} {R,V,S}), .... The gen-
erated mappings form the new set of unfinished mappings. In the next step the
generation of new unfinished mappings is repeated for each of these mappings.

This example illustrates that the set of unfinished mappings increases expo-
nentially. Pruning will keep the size of the set within acceptable bounds. Suppose



Algorithm 2: Exhaustive algorithm with pruning

input: two business process graphs Gi1 = (N1, E1, A1), G2 = (Na, E2, A2)

function prune(unfinished)
begin
if |unfinished| < pruneat then
return unfinished
else
return a set pruned, such that pruned C unfinished, |pruned| = pruneto and
Vp € pruned : =3u € unfinished : s(first(u)) > s(first(p))
end
end

function step(unfinished)
begin
newunfinished < ()
foreach (map, free1, freez) € unfinished do
if (free; = 0) V (free; = @) then
finished < finished U map
else
newunfinished <= newunfinished U
{(map U {(f1, f2)},free; — {f1},frees — {f2})|f1 € free1, fo € freex}U
{(map, free; — {f1},frees)|f1 € free; }U
{(map, freeq, frees — {f2})|f2 € frees}
end
end
return newunfinished
en
init
unfinished < {(@, N1, N2)}
finished <= 0
begin
repeat
unfinished <= prune(unfinished)
unfinished < step(unfinished)
until unfinished =

return s(map), such that map € finished and s(map) is mazimal
end

that ‘prune at’ is set to 2 and ‘prune to’ is set to 1, then the set of unfinished
mappings will be pruned after the first step, because the set will have reached a
size of 2. It will be pruned back to a set the set {({(O,0)},{V},{R,V,S})} of
size 1, because this mapping has the highest similarity score.

3.3 Process Heuristic Algorithm

The third algorithm is a variation of the exhaustive algorithm. It also builds a
recursion tree of possible mappings, but it starts by mapping the source nodes
of the business process graphs, then mapping nodes that immediately follow



the source nodes, etc. Since it is plausible that nodes closer to the start of a
process should be mapped to nodes closer to the start of the other process (and
conversely), this should yield a higher-quality pruning. Indeed, the algorithm is
more likely to prune mappings with node pairs that are further apart in terms
of their distance to the starts of their processes.

Algorithm 3 shows only the initialization of the algorithm and the ‘step’
function. The ‘prune’ function and the algorithm itself are the same as for the
exhaustive algorithm 2. The algorithm starts by initializing the set of unfinished
mappings to an empty mapping with all nodes marked as ‘free’ and all source
nodes marked as ‘current’. With each ‘step’ the algorithm takes an unfinished
mapping. If the unfinished mapping has no ‘current’ nodes, the mapping is added
to the set of finished mappings. Otherwise, the algorithm takes each possible
combination of pairs of ‘current’ nodes and creates a new unfinished mapping
in which that pair is added. The nodes from the pair are removed from the sets
of free nodes. The current nodes are set to include the post-sets of the nodes
from the pairs. Only free nodes are included in the sets of current nodes. Pairs in
which ‘current’ nodes are not mapped are also included. The algorithm assumes
that process graphs always have source nodes, an assumption that is valid for
common process modeling notations (e.g. EPC, BPMN, BPEL).

Algorithm 3: Process heuristic algorithm

function step(unfinished)
begin
newunfinished < ()
foreach (map, free1, freeo, curry, currz) € unfinished do
if (curry = 0) V (curry = 0) then
finished < finished U map
else
newunfinished < newunfinished U

{(map U {(c1,c2)},freer — {c1},freea — {c2}, (curri U cie) N (free; —
{c1}), (curra U cz8) N (freez — {c2}))|c1 € curri, ez € currp}U
{(map, free1 —{c1 }, frees, (curriUci@)N(free1 —{c1}), curra)|c1 € curri} U
{(map, free1, freea —{c2 }, curr1, (curraUcoe@) N (freea —{c2}))|c2 € curra}
end
end
return newunfinished
en
init
unfinished <= {(0, N1, No, {n|n € Ni,en = 0},{n|n € No,en = 0})}
finished < 0

For example, in figure 1 the set of unfinished mappings is initialized to
{(0,{0,V},{O,R,V,S5}),{0},{O}} (using the first letter of the labels to iden-
tify each node). In the first step, the algorithm will take this unfinished mapping
and, because neither set of current nodes ({O} nor {O}) is empty. From this map-



ping, it generates one mapping in which the current nodes are mapped, generat-
ing {({(0,0)},{V},{R,V,S}),{V},{R}}. It also generates mappings for each
possible removal of a current node, generating {(0,{V},{O, R,V,S}),{V},{O}}
and {(0,{0,V},{R,V,S}),{O0},{R}}. The generated mappings form the new
set of unfinished mappings. This example illustrates that the set of unfinished
mappings explodes less rapidly for this algorithm than for the exhaustive algo-
rithm. It also illustrates that mappings of nodes closer to the start of the process
are explored first.

3.4 A-star Algorithm

The fourth algorithm (Algorithm 4) is based on the well-known A-star heuristic
search, which has been applied to the problem of graph matching in [14]. In each
step, the algorithm selects the existing partial mapping map with the maximal
graph edit similarity. The algorithm then takes a node n; from graph G; that
has not yet been mapped, and creates a mapping between this node and every
node nsy of G5 such that ns does not already appear in map. Let us say that m
such nodes no exist. The algorithm then creates m new mappings, by adding
(n1,n2) to map. In addition, one mapping is created where (nq, €) is added to
map (€ is a “dummy” node). This latter pair represents the case where node 711
has been deleted. This step is repeated until all nodes from G; are mapped. It
can be proven that the result is an optimal mapping.

The number of steps performed by the algorithm is bounded by O(n?m)
where n and m are the number of nodes in G; and Gs. However, O(m™) partial
mappings need to be maintained during the search [14]. To reduce the memory
requirements, we modified the algorithm so as to avoid mapping nodes with very
different labels. If the string-edit similarity between two node labels is less than
a cut-off value, we do not consider the possibility of mapping these nodes.

For example, if we consider the models in figure 1 and a cut-off value of
0.6, two mappings, {(‘Order’, ‘Order’)} and {(‘Order’, €)}, are created in the
first iteration. Since other candidate node pairs have a string-edit similarity
smaller than the cut-off value, no mapping is created for them. In the second
iteration, the algorithm selects the mapping {(‘Order’, ‘Order’)} and creates
two new mappings {(‘Order’, ‘Order’), (‘Verification invoice’, *Verify invoice’)}
and {(‘Order’, ‘Order’), (‘Verification invoice’, €)}. The algorithm stops in the
third iteration with a complete mapping {(‘Order’, ‘Order’), (‘Verification of
invoice’, "Verify invoice’)} and with nodes ‘Receive goods’ and ‘Store goods’
being considered as insertions. Thus, the algorithm discards the two partial
mappings {(‘Order’, €)}, {(‘Order’, ‘Order’), (‘Verification of invoice’, €)}.

4 Evaluation

In this section, we present an experimental evaluation of the algorithms discussed
above in terms of quality of retrieval results and in terms of execution time.



Algorithm 4: A-star algorithm

input: two business process graphs Gi1 = (N1, E1, A1), G2 = (Na, E2, A2)
init
open < {{(n1,n2)}|n2 € N2 U{e}, Sim(ni,n2) > ledcutoff V ny = €}, for some
n1 € N1
begin
while open # () do
select map € open, such that s(map) is maximal
open < open — {map}
if dom(map) = N; then
return s(map)
else
select n1 € N1, such that ny ¢ dom(map)
foreach ny € N2 U {€}, such that either ny ¢ cod(map) and
Sim(ni,nz2) > ledcutoff or ny = € do
map’ < map U {(n1,n2)}
open < open U {map'}
end
end
end
end

4.1 Experimental setup

We derived an experimental dataset from the SAP reference model. This is a
collection of 604 business process models (described as EPCs) capturing busi-
ness processes supported by the SAP enterprise system. We randomly extracted
100 business process models from this collection and tagged them as “document
models”. On average each model contained 21.6 nodes with a minimum of 3 and
a maximum 130 nodes. The average size of node labels was 3.8 words. From the
100 document models we randomly extracted 10 models. These models became
the “search query models”. We modified some of these models to investigate the
effect of certain types of changes (for example taking a subgraph) on the perfor-
mance of the algorithms. We did not observe any noteworthy effects. Therefore,
we will only present overall averaged results.

Next, we manually compared each of the 1000 pairs (search model, docu-
ment model) and ranked their degree of similarity on a 1-7 Likert scale. This
manual comparison was done by three process modeling experts, including the
first author of this paper. For a given search model sq, we sorted the 100 pairs
(sq, document model) in descending order according to the human expert score.
Finally, for each algorithm, we applied it to each pair (“search query model”,
“document model”) and sorted the results (for each of the 10 queries) in de-
scending order according to the similarity score retrieved by the algorithm. The
resulting sorted lists were used to calculate the average precision.

The algorithms depend on several parameters:



— wskipn, wsubn and wskipe which denote the weight given to node deletion,
node substitution and edge deletion (see Definition 4).

— ledcutoff (label edit cut-off): a number between zero and one representing
the minimum similarity that two nodes must have so that we can consider
their substitution. For example, if the cut-off is 0.5 “Pay Invoice” and “Pay
Allowance” will not be mapped since their similarity is 0.3.

— pruneat is the maximum allowed size of the recursion tree. When the recur-
sion tree reaches this level, it is pruned, down to a size of pruneto.

In the experiments, we considered multiple variants of each algorithm corre-
sponding to different parameter settings. The implementation of the proposed
algorithms (and several others) can be found in the “Graph Matching Analysis
Plug-in” of the ProM process mining and analysis framework.”

4.2 Results

Table 1 shows the mean average precision and the average execution times of
the similarity search techniques under study. Average precision is a measure
commonly used to evaluate the quality of search techniques that return ranked
lists of results [3]. It is the average of the precision scores at each point where
a relevant document appears in the ranked list. Given a ranked list of results
of size n, the average precision is X7, (precision[j] x rel[j])/R, where R is the
number of relevant documents, rel[;] is one if the document of rank j in the list
is relevant, zero otherwise, and precision[j] = X} _ rel[k]/j (i.e. the precision at
rank j). Intuitively, average precision is higher when relevant documents appear
earlier in the ranked list. The mean average precision of a search technique over
a given set of queries is the mean of the average precision of the technique over
each of the queries.

As explained above, each algorithm has a number of parameters. The mean
average precisions reported in the table correspond to the scores obtained for
the best possible settings of each algorithm. All four algorithms depend on pa-
rameters wskipn, wsubn and wskipe explained above. We varied each of these
parameters from 0 to 1 in increments of 0.1 and ran the experiments with all
possible combinations of parameter values in this range. By analyzing the mean
average precisions obtained for every combination of parameter values, we no-
ticed that the “Greedy”, “Exhaustive” and “Heuristic” algorithms give their best
results for settings such that 2 x (wskipn + wskipe) ~ wsubn. One can notice
that the optimal parameter settings for these three algorithms (Table 1) closely
satisfy this condition.

The exhaustive and the process heuristic algorithm rely on parameters pruneat
and pruneto to determine when should pruning occur and to what extent.
We tested different values of pruneat (50, 100, 200, etc.) and different ratios
pruneat/pruneto (0.1, 0.2, etc.). We found that a value of pruneat = 100 is suf-
ficient. Larger values do not improve the results significantly, but they degrade

" http://prom.sourceforge.net



performance. Similarly we found that a ratio pruneat/pruneto = 0.1 is sufficient,
larger ratios do not significantly improve the outcome. Accordingly, we settled
for pruneat = 100 and pruneto = 10.

The A-star algorithm relies on a parameter ledcutoff. Again, we experimented
with different values of this parameter and found that a value of 0.5 yields opti-
mal results among those that we were able to test. We could not experiment with
values significantly below 0.5, because if the threshold is too low, the memory
requirements of the A-star algorithm grow substantially and the performance
degrades to the point of making the technique impractical. This is the reason
why this parameter is important for the A-star algorithm, whereas the other
algorithms rely on pruning. A side-effect of using the ledcutoff parameter is that
the algorithm favours insertions and deletions over substitutions. To compen-
sate for this effect, the values of wskipn and wskipe need to be set higher than
wsubn, in other words, deletions/insertions need to be given higher weight than
substitutions. For the A-star algorithm, we noticed that all settings of wskipn,
wskipe and wsubn that satisfy this condition given high average precisions.

The A-star algorithm slightly outperforms the others in terms of mean av-
erage precision. Looking closer, we noticed that A-star outperforms all other
techniques in 6 out of 10 queries and yields equal results in a seventh query. It
slightly underperforms the others in queries 6, 8 and 10.

Table 1 also displays the average execution time of 5 runs of each algorithm.
For these measurements, we used the parameter settings giving the highest mean
average precision. In each run, we executed all 10 queries, i.e. 1000 pairwise
process model comparisons in total. All tests were conducted on a laptop with a
dual core Intel processor, 2.4 GHz, 4 GB memory, running Mac OSX and SUN
Java Virtual Machine version 1.6 (with 512MB of allocated memory).

Table 1. Summary of results

Algorithm wskipn|wsubn|wskipe| Mean avg. precision|Execution time
Greedy 0.1 0.9 0.4 0.84 3.8 sec.
Exhaustive 0.1 0.8 0.2 0.82 53.7 sec.

Process Heuristic|0.1 0.8 0.2 0.83 14.2 sec.

A-star 0.2 0.1 0.7 0.86 15.7 sec.

Not surprisingly, the greedy algorithm is considerably faster than all others.
Its execution time per search query is less than half a second. The A* and
the process heuristic algorithms have comparable execution times — around 1.5
seconds per query. The exhaustive algorithm is significantly slower.

5 Related Work

To the best of our knowledge there exist eight other initiatives that address algo-
rithms for measuring the similarity between business process models or similar
models [1,7,10-12, 15, 16, 21]. Of these initiatives five present algorithms to mea-
sure the similarity between business process models [7,10-12,15], two present



algorithms to measure the similarity between state machines [16,21] and one
presents algorithms to measure the similarity between a business process and a
set of execution traces [1]. Our algorithms are the only ones that are validated
for use in similarity search. Nejati et al. [16] validate their algorithms, but for
suitability as a technique for merging state machines. Wombacher [21] validates
the correlation of the similarity scores found by his technique with similarity
scores assigned according to human judgement. We have done a similar vali-
dation in previous work [19]. The different initiatives have very different bases
for computing the similarity. Nejati et al. [16] use a combination of label sim-
ilarity, comparison of the depth of a state-machine fragment in a hierarchical
state-machine and bi-similarity of the fragment. Wombacher [21] evaluates three
algorithms; one is based on conformance of a set of execution traces (first gener-
ated from a process model) to a business process, similar to the work by Van der
Aalst et al. [1]; the other two are based on comparison of the language that is
represented by a state machine. Li et al. [10] compare process models by ‘count-
ing’ the number of high-level change operations needed to transform one process
into another. This can be seen as a specialized case of edit distance, using a
specific set of transformation operations. Like this paper Minor et al. [15] use
graph edit distance as a basis for comparing process models. Lu and Sadiq [11]
measure the presence or absence of ‘features’ in proces models as a basis for
comparison. Madhusudan et al. [12] use an algorithm known as ‘similarity flood-
ing’ [13]. Ehrig et al. [7] use a combination of structural properties of process
models and similarity of labels of tasks, based on the distance of words in those
labels in terms of whether they are, for example, synonyms (which we called
‘semantic similarity’ in previous work [5]). Table 2 summarizes the related work
on business process model comparison.

Table 2. Comparison of related work

Paper Similarity of Validated Basis for similarity
This paper process models for similarity search|edit distance
Nejati et al. [16] state machines for merging bi-similarity
state machines
Wombacher [21] state machines for correlation with [process conformance
human judgement |language construction
Li et al. [10] process models  |no change patterns
Minor et al. [15] process models  |no edit distance
Lu and Sadiq [11] process models  |no featues
Madhusudan et al. [12]|process models no similarity flooding
Van der Aalst et al. [1]|process model and|no process conformance
execution traces
Ehrig et al. [7] process models  |no semantic similarity
Grigori et al. [8] service protocols |for similarity search|edit distance (A*)

The algorithms that we studied are based on graph edit distance [4]. How-
ever, the actual distance metric we used is different from traditional graph edit
distance metrics. Our metric considers the ratio between the actual graph edit



distance and the maximum possible distance. In addition, we added various pa-
rameters to the algorithms and fine-tuned these parameters for the computation
of similarity of business process models. Of the algorithms that we tested, the
greedy algorithm and the exhaustive algorithm with pruning are general algo-
rithms to solve recursive problems. The process heuristic algorithm is similar to
Neuhaus and Bunke’s planar graph matching algorithm [17]. The main difference
is that their algorithm starts with a random pair of graph nodes for comparison,
while we assume that business process models have source nodes and sink nodes
and we start by mapping source nodes. The A-star algorithm that we present
is due to Messmer [14]. We adapted it to exclude mappings of node pairs that
are deemed improbable based on the string edit distance of their labels. This
algorithm was also applied in [8] for similarity search of service protocol specifi-
cations captured in BPEL and WSCL. The authors showed that the algorithm
performs well on a small collection of service protocols (5 protocols and variants).

6 Conclusion

Among the four process similarity search techniques presented in this paper,
the greedy and the A-star ones offer the most interesting tradeoffs. The A-
star algorithm offers a slightly better mean average precision but is significantly
slower. Still, the execution times of the A-star algorithm can be acceptable for
repositories of a few hundred models. The other two techniques, based on an
exhaustive search with pruning, offer a less attractive quality /scalability tradeoff.

The graph matching algorithms studied in this paper attempt to establish
1-to-1 correspondences between nodes in the compared process models (i.e. a
node in a process model is related to at most one node in the other process
model). One can think of variants of these algorithms that would calculate 1-to-
N or N-to-M correspondences, e.g. algorithms that would consider the possibility
of a node being split into multiple ones or multiple nodes being merged into
one. Such graph matching algorithms have been considered in other application
domains [2]. We plan to investigate such variants in future work.

This paper focuses on similarity of business processes with respect to tasks
and control-flow relations between tasks. Other aspects of business processes can
be considered when determining similarity, e.g. data and resources. Also, process
models can be annotated with information that helps to determine the similarity
more precisely, such as ontological information [7] and textual documentation.
Exploiting such additional information is an avenue for future work.
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