
Detecting behavioural incompatibilities
between pairs of services?

Ali Aı̈t-Bachir1??, Marlon Dumas2? ? ?, Marie-Christine Fauvet1

1 LIG, University of Grenoble, France
{Ali.Ait-Bachir, Marie-Christine.Fauvet}@imag.fr

2 University of Tartu, Estonia
Marlon.Dumas@ut.ee

Abstract. We present a technique to analyse successive versions of a
service interface in order to detect changes that cause clients using an
earlier version not to interact properly with a later version. We focus
on behavioural incompatibilities and adopt the notion of simulation as a
basis for determining if a new version of a service is behaviourally com-
patible with a previous one. Unlike prior work, our technique does not
simply check if the new version of the service simulates the previous one.
Instead, in the case of incompatible versions, the technique provides de-
tailed diagnostics, including a list of incompatibilities and specific states
in which these incompatibilities occur. The technique has been imple-
mented in a tool that visually pinpoints a set of changes that cause one
behavioural interface not to simulate another one.

1 Introduction

Throughout its lifecycle, the interface of a software service is likely to undergo
changes. Some of these changes do not cause existing clients or peers to stop
interacting properly with the service. Other changes give rise to incompatibilities.
This paper is concerned with the identification of these latter changes.

Service interfaces can be seen from at least three perspectives: structural,
behavioural and non-functional. The structural interface of a service describes
the schemas of the messages that the service produces or consumes and the
operations underpinning these message exchanges. In the case of Web services,
the structural interface of a service can be described for example in WSDL [14].
The behavioural interface describes the order in which the service produces or
consumes messages. This can be described for example using BPEL [14] business
protocols, or more simply using state machines as discussed in this paper. The
work presented here focuses on behavioural interfaces and is complementary to
other work dealing with structural interface incompatibility [12].

In this paper, we present a technique for comparing two service interfaces in
order to detect a series of changes that cause them not to be compatible from
? Work partly funded by the Web Intelligence Project, Rhône-Alpes French Region

?? The author was supported by a visiting PhD scholarship at University of Tartu.
? ? ? The author is also affiliated with Queensland University of Technology, Australia

a behavioural viewpoint. We consider three types of differences between two
services S1 and S2: an operation that produces a message is enabled in a state
of service S2 but not in the equivalent state in S1; an operation that consumes
a message is enabled in a state in S1 but not in the equivalent state in S2; and
and operation enabled in a state of S1 is replaced by another operation in the
equivalent state in S2. It may be that S2 allows operation Op to be invoked, but
at a different point in time than S1 does. So the diagnosis our technique provides
goes beyond what can be provided based purely on structural interfaces.

The paper is structured as follows. Section 2 frames the problem and in-
troduces an example. Section 3 defines a notion of behavioural interface while
Section 4 presents the incompatibility detection algorithm. Section 5 compares
the proposal with related ones and Section 6 concludes and sketches future work.

2 Motivation

As a running example, we consider a service that handles purchase orders pro-
cessed either online or offline. Figure 1 depicts three behavioural interfaces re-
lated to this example. These behavioural interfaces are described using UML
activity diagrams notations that capture control-flow dependencies between mes-
sage exchanges (i.e. activities for sending or receiving messages). The figure dis-
tinguishes between the provided interface that a service exposes, and its required
interface as it is expected by its clients or peers. Specifically, the figure shows the
provided interface P of an existing service (see left-hand side of the figure). This
service interacts with a client application that requires an interface R (shown in
the centre of the figure). We consider the scenario where another service which
satisfies similar needs, but whose interface is P ′ (shown in the right-side of the
figure). In this setting, the questions that we address are: (i) does the differences
between P and P ′ cause incompatibilities between P ′ and P ’s existing client(s);
and (ii) if so, which specific changes lead to these incompatibilities. As mentioned
above, we consider three types of changes: addition and deletion of an operation
enabled in a given state of P , and replacement of an operation enabled in a state
of P with a different operation enabled in a corresponding state in P ′.3

In Figure 1, we observe that the flow that loops from Receive OfflineOrder
back to itself in P does not appear in P ′. In other words, according to P ′’s
interface, customers are not allowed to alter offline orders. This is a source of
incompatibility since clients that rely on interface P may attempt to send mes-
sages to alter their offline order but the service (with interface P ′) does not
expect a new order after the first order. On the other hand, message Shipment
Tracking Number (STN) has been replaced in P ′ by message Advance Shipment
Notice (ASN). This difference will certainly cause an incompatibility vis-a-vis
of existing client applications and peer services. Note also that the possibility
of paying by bank transfer has been added to the branch of the behavioural
interface that deals with online orders. However, this addition does not lead
3 We use the terms operation and message interchangeably, while noting that strictly

speaking, messages are events that initiate or result from operations.

?

Provided interface of P Required interface

*Send

Send

*

Send

Send

?

Receive
OnlineOrder

OnlineInvoice

Receive
CreditCard

Details

ShipmentTrackingNumber
(STN)

Send

OfflineInvoice

OfflineOrder
Receive

Transfer
Receive Receive

Send

Send

Receive

CC Details

Send

OnlineOrder

Transfer

OfflineInvoice

AdvanceShipmentNotice
(ASN)

OfflineOrder

Receive

OnlineInvoice

Receive
STN

OfflineInvoice
Receive

OfflineOrder

Receive
Transfer

Provided interface of P’

Fig. 1. P and P ′ provided interfaces.

to an incompatibility since existing client applications or peer services are not
designed to use this option. This later case shows that an incompatibility only
arises when P ′ offers less options than P . In technical terms, a change between
P ′ and P only leads to an incompatibility if it causes P ′ not to simulate P .

3 Modeling service behaviour

The proposed technique for detecting incompatibilities is based on the compar-
ison of behavioural interfaces capturing order dependencies between messages
sent and received by a service. We only consider message names, without in-
specting the schema of these messages.

Following [3,10], we adopt a simple yet effective approach to model service
behaviour using Finite State Machines (FSMs). Techniques exist to transform
behavioural service interfaces defined in other languages (e.g. BPEL) into FSMs
(see for example the WS-Engineer tool [7]), and therefore the choice of FSM
should not be seen as a restriction. What we can note is that during the trans-
formation from behaviour description languages that support parallelism (e.g.
BPEL) into FSMs, parallelism is encoded in the form of interleaving of actions.
For example, the parallel execution of activities a and b is encoded as a choice
between ‘a followed by b’ and ‘b followed by a’. In the FSMs we consider, tran-
sitions are labelled with message exchanges. When a message is sent or received,
the corresponding transition is fired. Figure 2 depicts FSMs of provided inter-
faces P and P ′ of the running example presented in Section 2. The message m
is denoted by >m (resp. <m) when it is sent (resp. received). Each conversation
initiated by a client starts an execution of the corresponding FSM.

Definitions and notations: An FSM is a tuple (S, L, T, s0, F) where: S
is a finite set of states, L a set of events (actions), T the transition function
(T : S × L −→ S). s0 is the initial state such that s0 ∈ S, and F the set of
final states such that F ⊂ S. The transition function T associates a source state

Shipped

>ASN

Order

Shipped

>STN

<OnlineOrder

Paid

Order

OfflineOrdered

GoodsInvoiced

OnlineOrdered

OnlineInvoiced

<OfflineOrder

>OfflineInvoice
<OnlineOrder

<Transfer

<CCDetails
<Transfer

>OnlineInvoice

P’ FSM

<OnlineOrder <OfflineOrder

Paid

OnlineOrdered OfflineOrdered

OfflineInvoiced

<Transfer<CCDetails

>OfflineInvoice

<OfflineOrder

<OnlineOrder

OnlineInvoiced

>OnlineInvoice

P FSM

Fig. 2. FSMs of two provided interfaces.

s1 ∈ S and an event l1 ∈ L to a target state s2 ∈ S. In this model, a transition
is defined as a tuple containing a source state, a label and a target state.

We assume synchronous communication. While in reality Web service com-
munication is not always synchronous, synchronous communication provides, to
a certain extent, a suitable basis for analysing service behaviour. First of all,
synchronous communication is more restrictive than asynchronous communica-
tion. Therefore, incompatibilities that arise within the asynchronous case arise
in the synchronous case as well. Second, for a relatively large class of interfaces,
it has been shown that adopting the synchronous communication model leads
to the same analysis results than adopting the asynchronous model [6].

Another assumption is that we focus on interfaces that expose only externally
visible behaviour. In particular, internal actions or timeouts do not appear in
the service interface unless they are externalized as messages.

Below, we use the following notations (examples refer to the FSM P depicted
in the left side in Figure 2):

− s• is the set of outgoing transitions from s.
(e.g. OnlineInvoiced• = {(OnlineInvoiced,<CCDetails,Paid),(OnlineInvoiced,
<OnlineOrder,OnlineOrdered) }).

− t◦ is the target state of the transition t.
(e.g. (OnlineInvoiced,<CCDetails,Paid)◦ =Paid).

− Label(t) is the label of the transition t.
(e.g. Label((OnlineInvoiced,<CCDetails,Paid))=<CCDetails)

− ‖ X ‖: set cardinality of a set X.
− The ◦ operator (respectively •) is generalised to a set of transitions (respec-

tively states). For example, if T =
⋃n

i=1{ti} then T◦ =
⋃n

i=1{ti◦}; where
n =‖ T ‖. Similarly, operator Label is generalized to a set of transitions.

4 Detection of changes

To detect changes, P and P ′ are traversed synchronously starting from their
respective initial states s0 and s′0. The traversal seeks for two states s and s′

(belonging respectively to P and P ′) such that the sub-automaton starting from

s in P and the one starting from s′ in P ′ are incompatible. The traversal algorithm
is described in section 4.4. But first, we discuss the conditions that need to be
evaluated to diagnose each type of change: deletion (see Section 4.1), addition
(see Section 4.2) and modification of an operation (see Section 4.3).

4.1 Deletion of an operation

Figure 3 illustrates a situation where a deletion can be diagnosed. It shows two
FSMs: one corresponding to a service (P) and the other to another service P ′.
We observe that all operations enabled in state S1′ are also enabled in state S.
On the other hand, there is an operation (namely >R(m)) enabled in state S
that has no match in state S1′. So we can conclude that operation >R(m) has
been deleted from this particular state.

S1 S1’

S3’S2’S2 S3

>R(m)

<Z(m)

<Z(m)>X(m)
>X(m)deletion

Interface of P Interface of P’

Fig. 3. First case where a deletion is diagnosed

Figure 4 depicts a second scenario where a deletion can be diagnosed. We
first note that the above condition does not hold: not all operations enabled in
S1′ are enabled in S1. Indeed, operation <Z(m) is enabled in S1′ but not in S1.
At the same time, operation >X(m) is enabled in S1 but it is not enabled in
S1′. There are two possibilities for this mismatch: either operation >X(m) has
been modified and has become <Z(m), or operation >X(m) has been deleted
altogether. In this example, we can discard the former possibility because <Z(m)
appears downstream in the interface FSM of P (it is the label of the outgoing
transition of state S2). Thus, <Z(m) can not be considered to be a replacement
for >X(m). So we conclude that >X(m) has been deleted.

S1 S1’

S2

S3

<Z(m)

S2’

S3’

>R(m)

<Z(m)>X(m) deletion

Interface of P Interface of P’

Fig. 4. Second case where a deletion is diagnosed

Once this deletion is detected, the state pair to be examined next in the
comparison of P and P ′ is (S2, S1′). In other words, when deleting a transition,
we jump to its target state and continue looking for other changes that may be

sources of incompatibilities. For reporting purposes, the deletion is denoted by
a tuple (S1, >X(m), S1′, null), meaning that operation >X(m) enabled in S1
is replaced by the ‘null’ value in S1′. Formally, when comparing two interface
FSMs P and P ′, a deletion is diagnosed in a pair of states s and s′ (respec-
tively belonging to P and P ′) if the following condition holds (each part of this
condition is explained below):

‖Label(s•)− Label(s′•)‖ > 1 ∧ ‖Label(s′•)− Label(s•)‖ = 0 (1)
∨ ∃t ∈ s•,∃t′ ∈ s′• : Label(t) 6∈ Label(s′•) ∧ ExtIn(t′, (t◦)•) (2)

A deletion is detected in state pair (s, s′) in two cases. The first one (line 1)
is when every outgoing transition of s′ can be matched to an outgoing tran-
sition of s, but on the other hand, there is an outgoing transition of s that
can not be matched to a transition of s′. A second case is when there exists
a pair of outgoing transitions t and t′ (of states s and s′ respectively) such
that: (i) transition t can not be matched to any outgoing transition of s′; and
(ii) the label of t′ occurs somewhere in the FSM rooted at the target state
of t (line 2).4 This second condition is tested in order to determine whether
the non-occurrence of t’s label among the outgoing transitions of s′ should in-
deed be interpreted as a deletion, as opposed to a modification or an addi-
tion. To check if a transition label occurs somewhere in the FSM rooted at the
target of a given transition, we use the following recursive boolean function:
ExtIn(t, T) ≡ T 6= ∅ ∧ (Label(t) ∈ Label(T) ∨

⋃‖T‖
i=1 ExtIn(t, (Ti◦)•)). In other

words, ExtIn(t, T) (where t is a transition and T is a set of transitions) evaluates
to true if either transition t’s label appears among the labels of transitions in T
(Label(t) ∈ Label(T)) or, there exists a transition taken in T which has a target
state whose set of outgoing transitions (namely T1) is such that ExtIn(t, T1)
evaluates to true. The way it is defined, this recursive function does not converge
if the FSM has cycles, but it can be trivially extended to converge by adding an
input parameter to store the set of visited states and to ensure that each state
is only visited once.

4.2 Addition of an operation

We now consider the diagnosis of an incompatibility resulting from the addition
of an operation in state pair (S1, S1′). The simplest case is when all the opera-
tions enabled in state S1 are also enabled in S1′ but not the opposite. This is the
case for example of <Z(m) in Figure 5. This particular addition however does
not lead to an incompatibility because what it does is that it allows a service
implementing P ′ to accept an additional message that a service implementing
P would not accept. An existing client of P would simply not send this mes-
sage. Thus, existing clients of P can interact with P ′, even though such clients
would never use the branch starting with transition labelled <Z(m). On the

4 By FSM P rooted at s we mean FSM P in which the initial state is set to be s. This
means that we ignore any state or transition that is not reachable from s.

other hand, if we replaced <Z(m) with >Z(m), the addition would give rise to
an incompatibility, because the service implementing P ′ may try to produce a
message Z(m) that a client of P would not accept.

S1 S1’

S3’ S2’S2

addition
<Z(m)

>X(m) >X(m)

Interface of P Interface of P’

Fig. 5. First case where an addition is diagnosed

Figure 6 illustrates another case where an addition can be diagnosed. Opera-
tion >X(m) is enabled in state S1 and is not enabled in S1′. On the other hand,
operation <Y(m) is enabled in state S1′ but not in S1 and operation >X(m)
is enabled in a state downstream along the transition labelled <Y(m). Thus we
can conclude that operation <Y(m) has been added. This addition constitutes
an incompatibility regardless of whether Y(m) is sent or received, because the
non-occurrence of Y(m) would prevent the execution of a service implementing
P ′ to progress along the branch leading to the state where >X(m) can occur.

S1 S1’

S2

S3

<Z(m)

S2’

S3’

>X(m)

addition
>X(m) <Y(m)

Interface of P Interface of P’

Fig. 6. Second case where an addition is diagnosed

When an addition is detected in a state pair (S, S′), the synchronous traversal
of the two FSMs advances along the added transition. In the case of Figure 5
this means that (S1, S2′) should be visited next, while in the case of Figure 6,
state pair (S1, S3′) should be visited next – in addition to (S2, S2′) since this
latter state pair can be reached by taking transitions >X(m) synchronously.
For reporting purposes, the addition of an operation <Y (m) is denoted by a
tuple (S1, null, S1′, <Y (m)). Formally, an addition of an operation is diagnosed
in state pair (s,s′) if the following condition holds:

(‖Label(s•)− Label(s′•)‖ = 0 ∧ ‖Label(s′•)− Label(s•)‖ > 1) (3)
∨ ∃t ∈ s•,∃t′ ∈ s′• : Label(t′) 6∈ Label(s•) ∧ ExtIn(t, (t′◦)•) (4)

An addition is detected in two cases. The first case (line 3) is when there
exists an outgoing transition of s′ whose label does not match any of the labels of
the outgoing transitions of s, while at the same time, every outgoing transition
of s can be matched to an outgoing transition of s′. In this case, we need to

additionally check whether the added operation corresponds to a “send” or a
“receive”, since an added “receive” does not constitute an incompatibility in this
case. The second case (line 4) is when there exists a pair of outgoing transitions
t and t′ (of states s and s′ respectively) with different labels and such that the
label of t appears in the FSM rooted at the target of transition t′.

4.3 Modification of an operation

Figure 7 shows a situation where we can diagnose that operation >X(m) has
been replaced by operation >Y(m) (i.e. a modification). We can make this diag-
nosis because operation >X(m) is enabled in S1 but not in S1′, and conversely
>Y(m) is enabled in S1′ but not in S1. Moreover, the transition labelled >X(m)
can not be matched to a transition t′ in state S1′ such that operation >X(m) oc-
curs downstream along the branch starting with t′, and symmetrically, >Y(m)
can not be matched with a transition t of state S1 such that >Y(m) occurs
downstream along the branch starting with t. Thus we can not diagnose that
>X(m) has been deleted, nor can we diagnose that >Y(m) has been added.

In this case, the pairing of transition >X(m) with transition >Y(m) is arbi-
trary. If state S1′ had a second outgoing transition labelled >Z(m), we would
equally well diagnose that >X(m) has been replaced by >Z(m). Thus, when we
diagnose that >X(m) has been replaced by >Y(m), all that we capture is that
>X(m) has been replaced by another operation, possibly >Y(m). The output
produced by the proposed technique should be interpreted in light of this.

S1 S1’

S2’

S3’

<Z(m)

S2

S3

<Z(m)

>Y(m)>X(m)
modification

Interface of P Interface of P’

Fig. 7. Diagnosis of a modification/replacement

For reporting purposes, a modification (replacement) of >X(m) into >Y (m))
is denoted by tuple (S1, >X(m), S1′, >Y (m)). The state pair to be visited next
in the synchronous traversal of P and P ′ is such that both transitions involved in
the modification are traversed simultaneously. In this example, (S2, S2′) should
be visited next. Formally, a modification is diagnosed in state pair (s,s′) if the
following condition holds:

∃t1 ∈ s•,∃t1′ ∈ s′• : Label(t1) 6∈ Label(s′•) ∧ Label(t1′) 6∈ Label(s•) (5)
∧¬∃t2 ∈ s• : ExtIn(t1′, (t2◦)•)) ∧ ¬∃t2′ ∈ s′• : ExtIn(t1, (t2′◦)•)) (6)

4.4 Detection algorithm

The algorithm implementing the detection of changes is detailed in Figure 8.
Given two interface FSMs P and P ′, the algorithm traverses P and P ′ syn-

chronously starting from their respective initial states s0 and s′0. At each step,
the algorithm visits a state pair consisting of one state from each of the two
FSMs. Given a state pair, the algorithm determines if an incompatibility exists
and if so, it classifies it as an addition, deletion or modification. If an addition is
detected the algorithm progresses along the transition of the added operation in
P ′ only. Conversely, if the change is a deletion, the algorithm progresses along
the transition of the deleted operation in P only. However, if a modification
is detected, the algorithm progresses along both FSMs simultaneously. While
traversing the two input FSMs, the algorithm accumulates a set of changes rep-
resented as tuples of the form (s, t, s′, t′), as explained previously.

1 Detection (Pi: FSM; Pj: FSM): {Change}
2 { Detection(Pi,Pj) returns a set of tuples of changes represented as tuple of the form < si, ti, sj, tj >

where si and sj are states of Pi and Pj respectively, while ti and tj are either null values or outgoing
transitions of si and sj respectively }

3 setRes: {Change}; { result variable }
4 si,sj: State ; { auxiliary variables }
5 visited, toBeVisited : Stack of statePair; { pairs of states that have been visited / must be visited }
6 si ← initState(Pi) ; sj ← initState(Pj)
7 toBeVisited.push((si,sj))
8 while notEmpty(toBeVisited)
9 (si, sj) ← toBeVisited.pop();
10 visited.push((si, sj)) { add the current state pair to the visited stack }
11 combEqual ← {(ti, tj) ∈ si• × sj• | Label(ti) = Label(tj)} { pairs of matching transitions }
12 difPiPj ← {ti ∈ si• | Label(ti) 6∈ Label(sj•)}; difPjPi ← {tj ∈ sj• | Label(tj) 6∈ Label(si•)}
13 combPiPj ← difPiPj × difPjPi; { all pairs of outgoing transitions of si and sj that do not have a

match }
14 If ‖difPiPj‖ > 1 and ‖difPjPi‖ = 0 then { deletion }
15 For each t in difPiPj do setRes.add(< si, t, sj, null>)
16 If((t◦, sj) /∈ visited) then toBeVisited.push((t◦, sj))
17 If ‖difPjPi‖ > 1 and ‖difPiPj‖ = 0 then { addition }
18 For each t in difPjPi do
19 If (polarity(t) = ‘send’) then setRes.add(< si, null, sj, t>) { otherwise this addition does not

lead to incompatibility }
20 If ((si, t◦) /∈ visited) then toBeVisited.push((si, t◦))
21 For each (ti, tj) in combPiPj do
22 If ExtIn(ti, (tj◦)•) then { addition }
23 setRes.add(< si, null, sj, tj>)
24 If ((si, tj◦) /∈ visited) then toBeVisited.push((si, tj◦))
25 If ExtIn(tj, (ti◦)•) then { deletion }
26 setRes.add(< si, ti, sj, null,’deletion’>)
27 If ((ti◦, sj) /∈ visited) then toBeVisited.push((ti◦, sj))
28 If ((¬∃tj′ ∈ sj• : ExtIn(ti, (tj′◦)•)) ∧ (¬∃ti′ ∈ si• : ExtIn(tj, (ti′◦)•))) then { modif. }
29 setRes.add(< si, ti, sj, tj>)
30 if((ti◦, tj◦) /∈ visited) then toBeVisited.push((ti◦, tj◦))
31 For each (ti, tj) in combEqual do If ((ti◦, tj◦) /∈ visited) then toBeVisited.push((ti◦, tj◦))
32 Return setRes

Fig. 8. Detection algorithm

The algorithm proceeds as a depth-first algorithm over state pairs of the
compared FSMs. Two stacks are maintained: one with the visited state pairs
and another with state pairs to be visited (line 5). These state pairs are such
that the first state belongs to the FSM of Pi while the second state belongs to
the one of Pj. The first state pair to be visited is the one containing the initial
states of Pi and Pj (line 6). Once a pair of states is visited it will not be visited

again. To ensure this, the algorithm uses the variable visited to memorize the
already visited state pairs (line 10).

Labels that appear both in the outgoing transitions of si and in the outgoing
transitions of sj are considered as unchanged. Thus, a set of state pairs is built
where states are target states of common labels (line 11). Also, the algorithm
reports all differences between the outgoing transitions of si and the outgoing
transitions of sj (line 12). The two set differences of transitions are put in two
variables difPiPj (transitions whose labels belong to Label(si•) but do not belong
to Label(sj•)) an difPjPi (transitions whose labels belong to Label(sj•) but do
not belong to Label(si•)). Line 13 calculates all combinations of transitions whose
labels are not in common among Label(si•) and Label(sj•).

Lines 14 to 16 detect a deletion when an outgoing transition of si does not
match any transition in sj•. The result is a set of tuples < si, t, sj, null > where
t is one of the outgoing transitions of si whose label does not appear in any of
sj’s outgoing transitions. The detection of an addition is quite similar to the
detection of a deletion (lines 17 to 20).

Variable combPiPj contains transition pairs such that the label of the first
transition ti belongs to si• but does not belong to Label(sj•) while the label
of the second transition tj belongs to sj• but not to Label(si•). For each such
transition pair, the algorithm checks the conditions for diagnosing an addition
(lines 22 to 24), a deletion (lines 25 to 27) or a modification (lines 28 to 30).
Finally, the algorithm progresses along pairs of matching transitions, i.e. pairs
of transitions with identical labels (line 31). The algorithm has a worst-case
complexity quadratic on the total number of transitions in both FSMs.

The detection algorithm is implemented in a tool called BESERIAL [1]
available at http://www-clips.imag.fr/mrim/User/ali.ait-bachir/
webServices/webServices.html. Figure 9 shows the output of the compatibil-
ity analysis performed by BESERIAL on the example introduced in Section 2.
Here, Process2 is the more recent version of the interface. The operation that
allows clients to update an offline order has been deleted (<OfflineOrder). We
can see a state pair (offlineOrdered, offlineOrdered) linked by a dashed edge
labelled with the change deletion. The deleted operation is <OfflineOrder shown
by a dotted arrow. Other changes (addition of <Transfer and modification of
>STN by >ASN) are pinpointed as well.

5 Related work

Compatibility test of interfaces has been widely studied in the context of Web
service composition. Most approaches that deal with the behavioural dimension
of interfaces rely on equivalence and similarity techniques to check, at design
time, whether or not interfaces described for instance by automata are compat-
ible [4,2]. These techniques usually rely either on trace equivalence checking or
on (bi-)simulation algorithms [9]. However, these approaches do not deal with
pinpointing exact locations of incompatibilities. In [13], the authors address the
issue of runtime replaceability of services by extending the notions of design-

http://www-clips.imag.fr/mrim/User/ali.ait-bachir/webServices/webServices.html
http://www-clips.imag.fr/mrim/User/ali.ait-bachir/webServices/webServices.html

Fig. 9. Graphical output of BESERIAL on the running example.

time replaceability defined in [2] which are based on trace comparison. Again,
this work does not aim at pinpointing a complete set of differences between
service behaviours as we do in our work.

Recent research has addressed interface similarity measures issues. In [8], the
author presents a similarity measure for labeled directed graphs inspired by the
simulation and bi-simulation relations on labeled transition systems. The author
applies this technique to detect and correct deadlocks. Other algorithms based
on graph-edit distances have been applied to service discovery in [5], but do not
pinpoint behavioural differences between services as our work does.

In [11], the authors propose an operator match which is a similarity func-
tion comparing two interfaces by finding correspondences between models. The
similarity measure is a heuristics which returns a value calculated according to
changes involving the addition or the deletion of an operation. However, the re-
sult does not pinpoint the exact location of these changes. In [15], the authors
propose an approach to business process matchmaking based on automata ex-
tended with logical expressions associated to states. Their algorithm determines
if the languages of two automata (which model two business processes) have a
non-empty intersection. This technique for detecting process differences returns
a boolean output. It does not provide detailed diagnostics such as pinpointing
specific states of the two services are different, which is the goal of our work.

6 Conclusion and future work

We presented a technique to detect changes (addition, deletion or modification
of an operation) that give rise to behavioural incompatibilities between two
services. The originality of this technique is that the detection algorithm does
not stop at the first incompatibility encountered but tries to seek further to
identify a series of incompatibilities between two services.

Ongoing work aims at extending BESERIAL towards two directions: (i) de-
tecting complex types of incompatibilities (e.g. the order of two operations is
swapped or an entire branch is deleted); and (ii) assisting service designers in
determining how to address an incompatibility. Also, BESERIAL currently as-

sumes synchronous communication. Future work will aim at supporting asyn-
chronous communication. We foresee that the incompatibility detection algo-
rithm can be extended in this direction by maintaining a buffer of unconsumed
messages during the traversal, along the lines of [10].

References

1. A. Aı̈t-Bachir, M. Dumas, and M.-C. Fauvet. BESERIAL: Behavioural Service In-
terface Analyser. In Proc. of the 6th International Conference on Business Process
Management (BPM) – Prototype Demonstration Track, Italy. Springer, 2008.

2. B. Benatallah, F. Casati, and F. Toumani. Representing, analysing and managing
web service protocols. Data and Knowledge Engineering, Elsevier, 58(3):327–357,
September 2006.

3. D. Beyer, A. Chakrabarti, and T. A. Henzinger. Web service interfaces. In Proc.
of the 14th WWW int. conf., Japan, 2005. ACM, New York, USA.

4. L. Bordeaux, G. Salan, D. Berardi, and M. Mecella. When are two web ser-
vices compatible? In Proc. 5th Int. Conf. on Technologies for E-Services (LNCS),
Canada, 2004. Springer Verlag.

5. J. C. Corrales, D. Grigori, and M. Bouzeghoub. BPEL processes matchmaking for
service discovery. In OTM Conferences, LNCS 4275, France, 2006. Springer.

6. X. Fu, T. Bultan, and J. Su. Synchronizability of conversations among web services.
IEEE Transactions on Software Engineering, 31(12), 2005.

7. H.Foster, S.Uchitel, J.Magee, and J.Kramer. Ws-engineer: A tool for model-based
verification of web service compositions and choreography. In Proc. of the IEEE
Int. Conf. on Software Engineering, China, 2006.

8. N. Lohmann. Correcting deadlocking service choreographies using a simulation-
based graph edit distance. In Proc. of the Int. Conf. on BPM, number 5240 in
LNCS, Milano, Italy, September 2008. Springer.

9. A. Martens, S. Moser, A. Gerhardt, and K. Funk. Analyzing compatibility of bpel
processes. In Proc. of the Advanced Int. Conf. on Telecom. and Int. Conf. on
Internet and Web Applications and Services, French Caribbean, 2006. IEEE.

10. H. R. Motahari-Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati.
Semi-automated adaptation of service interactions. In Proc. of the 16th WWW
Int. Conf., Canada, 2007. ACM.

11. S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave. Matching and
merging of statecharts specifications. In Proc. of the 29th Int Conf on Software
Engineering, USA, 2007. IEEE Computer Society.

12. S. R. Ponnekanti and A. Fox. Interoperability among independently evolving web
services. In Proc. of 5th the Int. Middleware Conf. on Middleware, LNCS 3231,
Canada, 2004. Springer Verlag.

13. S. H. Ryu, F. Casati, H. Skogsrud, B. Benatallah, and R. Saint-Paul. Supporting
the dynamic evolution of web service protocols in service-oriented architectures.
ACM Transactions on the Web, 2(2):46, April 2008.

14. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. Ferguson. Web Ser-
vices Platform Architecture. Prentice Hall, 2005.

15. A. Wombacher, P. Fankhauser, B. Mahleko, and E. Neuhold. Matchmaking for
business processes based on choreographies. In Proc. of the Int. Conf. on Multi-
media and Expo, Taipei, Taiwan, March 2004. IEEE Computer Society Press.

	Detecting behavioural incompatibilities between pairs of services
	Ali Aït-Bachir, Marlon Dumas, Marie-Christine Fauvet

