Cyclic Voltammetry and Electrochemical Impedance Studies of Electrolyte Characteristics on the Electrochemical Parameters of Supercapacitors

Alar Jänes^{1,2}, Liina Permann^{1,2}, Mati Arulepp², Enn Lust¹

¹Institute of Physical Chemistry, Tartu University, 51014, Tartu, Estonia

²Tartu Technologies Ltd., 185 Riia Str., 51014, Tartu, Estonia

E-mail: alar@chem.ut.ee

Electrical double layer capacitors (EDLC), so-called supercapacitors based on two ideally polarizable nanoporous carbon electrodes (NPCE) (BET surface area ~1300 m²/g, prepared from TiC precursor by chlorination method) in propylene carbonate (PC) as the solvent for the 1 M Me₃EtNBF₄, Me₂Et₂NBF₄, MeEt₃NBF₄, Et₄NBF₄, Et₃PrNBF₄ and Et₃BuNBF₄ electrolytes have been tested by cyclic voltammetry and electrochemical impedance spectroscopy methods [1]. The cyclic voltammograms show that the ideal capacitor behaviour has been established at potential scan rates $v \le 10 \text{ mV s}^{-1}$ and $\Delta E \le 2.3 \text{V}$ (ΔE is so-called cell potential or voltage). Using the impedance data it was found, that the relaxation time constant t_R , obtained from the relaxation frequency f_R , is practically independent of TAN⁺ cation molar mass in the region of cell potential $\Delta E \le 2.0 \text{ V}$. At $\Delta E > 2.0 \text{ V}$, t_R somewhat increases in the order of salts MeEt₃NBF₄ ≤ Me₂Et₂NBF₄ < Et₄NBF₄, i.e. with decreasing the molar conductivity of solution. At very low frequency f < 0.01 Hz, the nearly equilibrium values of the series C_s and parallel C_p capacitances have been established for the nanoporous carbon electrode (NPCE) | PC + TANBF₄ EDLC cells. However the coincidence of the C_s and C_p values at f < 0.005 Hz, as well as the phase angle values $d \le -75^{\circ}$ for NPCE | PC cells, to a first approximation, show that the adsorption equilibrium will be established only at very low frequencies [1,2].

The dependences of the normalized real P(w)/|S| and imaginary Q(w)/|S| parts of the complex power versus frequency and phase angle q versus frequency dependences show that the relaxation time constant is independent of the TAN⁺ cation characteristics and the low frequency behaviour of the NPCE | PC + TANBF₄ cell is mainly determined by the solvent characteristics [1,2].

Analysis of the experimental data for various systems shows that the Srinivasan and Weidner model [3] can be used to fit the Nyquist plots measured at fixed ΔE . It was found that the effective conductivity for the electrolyte ions in the nanoporous matrix, k, as well as the nanoporous carbon matrix conductivity, s, increase with ΔE . The increase of k and s with ΔE can be explained by the migration of ions. Analysis of the impedance data indicates that the separator resistance R_s increases somewhat with decreasing the molar conductivity of the electrolyte used in the electrical double layer capacitors [1,2].

References

- 1. E. Lust, A. Jä nes, M. Arulepp, Influence of electrolyte characteristics on the electrochemical parameters of electrical double layer capacitors, J. of Solid State Electrochem. (accepted).
- 2. E. Lust, A. Jä nes, M. Arulepp, Influence of solvent nature on the electrochemical parameters of electrical double layer capacitors, J. Electroanal. Chem. (accepted, available at www.sciencedirect.com).
- 3. V. Srinivasan, J. Weidner, J. Electrochem. Soc. 146 (1999) 1650.