
Recording quantum queries – explained

Dominique Unruh

This draft was intended to give a formal treatment of Zhandry’s
results from [2], with all definitions and proofs worked out.

It is unfinished and there are currently no plans to finish it. See
our paper “Compressed Permutation Oracles” [1] for an alter-
native.

However, since the manuscript has been cited in some places,
we provide this incomplete draft as-is for reference.

Contents
1 Some notation 1

2 Oracles 2
2.1 Growing oracles . 2
2.2 Random oracle . 2
2.3 Standard oracle . 3
2.4 Phase oracle . 3
2.5 Fourier phase oracle . 4
2.6 Fourier standard oracle . 4

3 Compressed oracles 5
3.1 Compressed Fourier standard oracle . 5
3.2 Compressed Fourier phase oracle . 5
3.3 Compressed standard oracle . 6
3.4 Compressed phase oracle . 7

4 Efficient compressed oracles 8

5 Example: Hardness of finding collisions 8

Symbol index 8

Index 9

References 9

1 Some notation
We assume that ⊥ is a fixed symbol different from any bitstring in {0, 1}∗. Let {0, 1}n⊥ := {0, 1}n ∪{⊥}.
In slight abuse of notation, we define CNOT⊗n to be the unitary CNOT⊗n|x, y〉 := |x, y ⊕ x〉, and we
write for it (it will always be clear from the context that CNOT⊗n is meant since CNOT can

only be applied to single qubit wires).
Given a unitary transformation U that operates on C{0,1}n , we naturally extend it to C{0,1}n⊥ by

setting U |⊥〉 := |⊥〉. For example, when applied to a quantum register with space C{0,1}n⊥ , H⊗n is the
following matrix: H⊗n|x〉 :=

∑
y 2−n/2(−1)x·y|y〉, H⊗n|⊥〉 := |⊥〉.

1

This generalizes directly to unitaries that operate on more than one quantum register. For example,
CNOT⊗n operates on C{0,1}n⊥ ⊗ C{0,1}n as CNOT⊗n|x, y〉 := |x, y ⊕ x〉, CNOT⊗n|⊥, y〉 := |⊥, y〉 and
on C{0,1}n ⊗ C{0,1}n⊥ as CNOT⊗n|x, y〉 := |x, y ⊕ x〉, CNOT⊗n|x,⊥〉 := |x,⊥〉. That is, when one wire
contains |⊥〉, the unitary operates as the identity on all other wires.

2 Oracles
In our setting, an oracle O consists of the following:

• A state register SO (described by the underlying Hilbert space).
• One or more query registers X1, . . . , Xn (described by the underlying Hilbert spaces).
• An initial state |ΨO〉 for the state register, or a probability distribution DΨ

O of initial states.
• A unitary operating UO operating on SO, X1, . . . , Xn.
An oracle algorithm A is an algorithm that can make queries to an oracle O. More specifically, an

execution of AO uses four registers, the state register SA of A, the state register SO of O, as well as the
query registers X1, . . . , Xn of O. SO is initialized with the initial state |ΨO〉 (or with a state sampled
according to DΨ

O). Then A can perform arbitrary operations on SA, X1, . . . , Xn but not on SO. In
addition, A can query O which means that the unitary UO is applied to SO, X1, . . . , Xn.

Definition 1: Perfectly indistinguishable
Two oracles O1, O2 are perfectly indistinguishable iff for any oracle algorithm A that outputs a classical
bit b, Pr[b = 1 : b← AO1] = Pr[b = 1 : b← AO2].

We say O1, O2 are perfectly indistinguishable within q queries if the above holds for every q-query
oracle algorithm A.

2.1 Growing oracles

Definition 2: Growing core oracles
Let Ocore be an oracle with state register SOcore

with Hilbert space Hcore and query register Y with
Hilbert space HY , and with initial state |ΨOcore

〉 (not a distribution).
Fix some length n.
Then Grow(Ocore) is the following oracle:
• Its state register SGrow(Ocore) consists of registers (Sx)x∈{0,1}n , each with Hilbert space Hcore.
• It has query registers X with Hilbert space C{0,1}n and Y with Hilbert space HY .
• It has initial state |ΨGrow(Ocore)〉 :=

⊗
x∈{0,1}n |ΨOcore

〉.
• Its unitary is UGrow(Ocore) :=

∑
x∈{0,1}n Ux⊗|x〉〈x| where Ux stands for UOcore

applied to Sx, Y .

Definition 3: Efficiently growing core oracles

Let Ocore, n be as in Definition 2. Let q be an integer (query number). Then FastGrowq(Ocore) is
defined as .

Lemma 4

Grow(Ocore) and FastGrowq(Ocore) are perfectly indistinguishable within q queries.

2.2 Random oracle
For this and the following subsections, fix two integers n,m (denoting the input / output size of the
random oracle).

Definition 5: Random oracle

The random oracle RO has state register SRO with Hilbert space CFun where Fun is the set of all
functions {0, 1}n → {0, 1}m. It has query registers X and Y with Hilbert spaces C{0,1}n and C{0,1}m ,

2

respectively. Its unitary is URO : |H〉|x〉|y〉 7→ |H〉|x〉|y ⊕H(x)〉. The initial state distribution DΨ
RO

returns |H〉 for uniformly random H ∈ Fun.

2.3 Standard oracle

Definition 6: Standard oracle

The standard oracle StdO has state register S with Hilbert space
⊗

x∈{0,1}n C{0,1}m⊥ , query registers
X and Y with Hilbert spaces C{0,1}n ,C{0,1}m , respectively. The initial state is

⊗
x∈{0,1}n |0m〉 (i.e.,

|02nm〉). The unitary operation is:

UStdO : |D〉|x〉|y〉 :=

{
|D〉|x〉|y ⊕Dx〉 (if Dx 6= ⊥)

|D〉|x〉|y〉 (if Dx = ⊥)

for D ∈
∏

x∈{0,1}n{0, 1}m⊥ .

Note: we could have easily defined the standard oracle to use state space
⊗

x∈{0,1}n C{0,1}m (no ⊥).
This would be more natural. However, defining it this way makes it easier to derive the “compressed”
oracles below.

Lemma 7
StdO and RO are perfectly indistinguishable.

We show how the standard oracle can be alternatively defined by just specifying its core:

Definition 8: Standard oracle core

The standard oracle core StdOcore has state register SStdOcore
=: S with Hilbert space C{0,1}m⊥ , and

query register Y with Hilbert space C{0,1}m . The initial state is |ΨStdOcore
〉 := |+〉⊗m. The unitary

operation is UStdOcore
:= CNOT⊗m, i.e.,

UStdOcore
≡

S

Y

Lemma 9

StdO = Grow(StdOcore).

Since this definition is considerably more compact, we will define the following oracles simply by
specifying their cores.

2.4 Phase oracle

Definition 10: Phase oracle core

The phase oracle core PhOcore has state register SPhOcore
=: with Hilbert space C{0,1}m⊥ , and query

register Y with Hilbert space C{0,1}m . The initial state is |ΨPhOcore
〉 := |+〉⊗m. The unitary operation

UPhOcore
is given by the following quantum circuit:

UPhOcore
≡

S

Y
H⊗m

UStdOcore

H⊗m

Lemma 11

PhO := Grow(PhOcore).

3

Lemma 12

|ΨPhO〉 = |ΨStdO〉 and

S

Y

X UPhO
≡

S

Y

X

H⊗m
UStdO

H⊗m

2.5 Fourier phase oracle

Definition 13: Fourier phase oracle core

The Fourier phase oracle core FPhOcore has state register SFPhOcore
=: S with Hilbert space C{0,1}m⊥ ,

and query register Y with Hilbert space C{0,1}m . The initial state is |ΨFPhOcore
〉 := |0m〉. The unitary

operation is given by the following quantum circuit:

UFPhOcore
≡

S

Y

H⊗m
UPhOcore

H⊗m

Definition 14

FPhO := Grow(FPhOcore).

Lemma 15
S

Y
FPhOcore

≡ S

Y

2.6 Fourier standard oracle

Definition 16: Fourier standard oracle core

The Fourier standard oracle core FStdOcore has state register S with Hilbert space C{0,1}m⊥ , and query
register Y with Hilbert space C{0,1}m . The initial state is |0m〉. The unitary operation is given by the
following quantum circuit:

FStdOcore ≡ |0m〉 S

Y

H⊗m
StdOcore

H⊗m

Definition 17

FStdO := Grow(FStdOcore).

Lemma 18
FStdOcore is perfectly indistinguishable from StdOcore. FStdO is perfectly indistinguishable from StdO.

Lemma 19
S

Y
FPhOcore

≡
S

Y
H⊗m

FStdOcore
H⊗m

4

and
S

Y

X FPhO ≡
S

Y

X

H⊗m
FStdO

H⊗m

3 Compressed oracles
Let U⊥ be the unitary on C{0,1}m⊥ defined by: U⊥|0m〉 := ⊥, U⊥|⊥〉 := |0m〉, U⊥|x〉 := |x〉 for x ∈ {0, 1}m,
x 6= 0m.

3.1 Compressed Fourier standard oracle

Definition 20: Compressed Fourier standard oracle core
The compressed Fourier standard oracle core CFStdOcore has state register S with Hilbert space
C{0,1}m⊥ , and query register Y with Hilbert space C{0,1}m . The initial state is |⊥〉. The unitary
operation is given by the following quantum circuit:

CFStdOcore ≡ |⊥〉 S

Y

U⊥
FStdOcore

U⊥

Definition 21: Compressed Fourier standard oracle

CFStdO := Grow(CFStdOcore).

Lemma 22
CFStdOcore, FStdOcore, and StdOcore are perfectly indistinguishable. CFStdO, FStdO, and StdO are
perfectly indistinguishable.

3.2 Compressed Fourier phase oracle

Definition 23: Compressed Fourier phase oracle core

The compressed Fourier phase oracle core CFPhOcore has state register S with Hilbert space C{0,1}m⊥ ,
and query register Y with Hilbert space C{0,1}m . The initial state is |⊥〉. The unitary operation is
given by the following quantum circuit:

CFPhOcore ≡ |⊥〉 S

Y

U⊥
FPhOcore

U⊥

Definition 24: Compressed Fourier phase oracle

CFPhO := Grow(CFPhOcore).

Lemma 25
S

Y
CFPhOcore

≡
S

Y
H⊗m

CFStdOcore
H⊗m

and
S

Y

X CFPhO ≡
S

Y

X

H⊗m
CFStdO

H⊗m

5

Lemma 26
CFPhOcore, FPhOcore, and PhOcore are perfectly indistinguishable. CFPhO, FPhO, and PhO are per-
fectly indistinguishable.

Lemma 27

For all d ∈ {0, 1}m⊥ , y ∈ {0, 1}m:

CFPhOcore : |⊥〉|y〉 7→ |y〉|y〉 (y 6= 0m)
|⊥〉|0m〉 7→ |⊥〉|0m〉
|d〉|y〉 7→ |d⊕ y〉|y〉 (d 6= 0m,⊥, y 6= d)
|y〉|y〉 7→ |⊥〉|y〉 (y 6= 0m)
|0〉|y〉 7→ |0〉|y〉

Note: this differs from Zhandry’s description in the “impossible” case d = 0m, y 6= d.

3.3 Compressed standard oracle

Definition 28: Compressed standard oracle core

The compressed standard oracle core CStdOcore has state register S with Hilbert space C{0,1}m⊥ , and
query register Y with Hilbert space C{0,1}m . The initial state is |⊥〉. The unitary operation is given
by the following quantum circuit:

CStdOcore ≡ |⊥〉 S

Y

H⊗m
CFStdOcore

H⊗m

Definition 29

CStdO := Grow(CStdOcore).

Lemma 30
CStdOcore, CFStdOcore, FStdOcore, and StdOcore are perfectly indistinguishable. CStdO, CFStdO,
FStdO, and StdO are perfectly indistinguishable.

Lemma 31: Some useful equations for working with CStdO

For clarity, the “error terms” are in gray.

H⊗mU⊥H
⊗m|d〉 = |d〉 − 2−m/2|+m〉+ 2−m/2|⊥〉 (d 6= ⊥)

H⊗mU⊥H
⊗m|⊥〉 = |+m〉

CStdOcore|d〉|y〉 = |d〉|y ⊕ d〉+ 2−m/2|⊥〉|y ⊕ d〉 −
∑

e∈{0,1}m
2−m|e〉|y ⊕ e〉 (d 6= ⊥)

+ 2−m|+m〉|+m〉 − 2−m|⊥〉|+m〉

CStdOcore|⊥〉|y〉 =
∑

e∈{0,1}m
2−m/2|e〉|y ⊕ e〉 − 2−m/2|+m〉|+m〉+ 2−m/2|⊥〉|+m〉

Lemma 32

Let ψ be a vector in C{0,1}m ⊗ C{0,1}m ⊗H. Let P :=
∑

d∈M |d〉〈d| ⊗ I ⊗ I for some M ⊆ {0, 1}m.
Then

‖P (CStdOcore ⊗ I)ψ‖ ≤ 2−m/2+1
√
|M | ‖(1− P)ψ‖ + ‖Pψ‖

6

Lemma 33

Let ψ be a vector in . Fix a family Mx ⊆ {0, 1}m with x ∈ {0, 1}n. Assume |Mx| ≤ B for all x. Let
P := 1−

⊗
x(
∑

d/∈Mx
|d〉〈d|). Then

‖P (CStdO⊗ I)ψ‖ ≤ 2−m/2+1
√
B ‖(1− P)ψ‖ + ‖Pψ‖

Can we generalize this? This only allows us to talk about properties like “for each x, D(x) /∈ Mx.”
But not about properties like “D has no collision”.

Lemma 34

Let ψ be a vector in . Fix M,N ⊆ ({0, 1}n → {0, 1}m⊥). Assume N ⊆ M . Assume that for all
x ∈ {0, 1}n and all D /∈M , we have that∣∣∣{d : d ∈ {0, 1}m⊥ , D(x := d) ∈ N

}∣∣∣ ≤ B.
Let PM :=

∑
D∈M |D〉〈D| ⊗ I ⊗ I and PN analogous.

Then

‖PN (CStdOcore ⊗ I)ψ‖ ≤ 2−m/2+1
√
B ‖(1− PM)ψ‖ + ‖PMψ‖

Example: For collision resistance, in the i-th query, M is the set of all D that have a collision or more
than i− 1 non-⊥, and N is the set of all D that have a collision or more than i non-⊥. Then B = i− 1.

Total success probability:
(

2−m/2+1
∑q−1

i=0

√
i− 1

)2

≤ 2−m+2(q
√
q)2 = 4q3/2m.

Lemma 35

Let A be an algorithm with oracle access to CStdO that outputs a list L of input/output pairs (i.e., a
list L = {(x1, y1), . . . , (xn, yn)}). Assume that if (x, y) ∈ L, then A has made a classical query with
input x to CStdO and measured the output and gotten the result y.

Then, conditioned on output L = {(x1, y1), . . . , (xn, yn)}, the final state of CStdO in register is of
the form

∑
D αD|D〉〈D| ranging only over values D with D(xi) = yi∀i.

For example, for analyzing Grover, we transform a search algorithm B into A which queries the final
output of B and outputs the result. If B is successful, then A will have a zero-value in the D-register,
and thus happens with small probability by analysis via Lemma 34. For collision-finder B, we let A
query the collision and output the result. This reduces it to the probability that D contains a collision.

3.4 Compressed phase oracle

Definition 36: Compressed phase oracle core

The compressed phase oracle core CPhOcore has state register S with Hilbert space C{0,1}m⊥ , and query
register Y with Hilbert space C{0,1}m . The initial state is |⊥〉. The unitary operation is given by the
following quantum circuit:

CPhOcore ≡ |⊥〉 S

Y

H⊗m
CFPhOcore

H⊗m

Definition 37

CPhO := Grow(CPhOcore).

7

Lemma 38
CPhOcore, CFPhOcore, FPhOcore, and PhOcore are perfectly indistinguishable. CPhO, CFPhO, FPhO,
and PhO are perfectly indistinguishable.

Lemma 39
S

Y
CPhOcore

≡
S

Y
H⊗m

CStdOcore
H⊗m

and
S

Y

X CPhO ≡
S

Y

X

H⊗m
CStdO

H⊗m

4 Efficient compressed oracles

5 Example: Hardness of finding collisions
LetA be an oracle quantum algorithm making at most q queries to a random oracleH : {0, 1}n → {0, 1}m.
Let ε := Pr[x 6= x′ ∧H(x) = H(x′) : (x, x′)← AH].

Let BH do: Run (x, x′) ← AH , query y ← H(x), y′ ← H(x′). Return (x, y), (x′, y′). We call the
output of B good iff x 6= x′ and y = y′. Then Pr[out good : out ← BH] = ε.

By , Pr[out good : out ← BCStdO] = ε.
By Lemma 35, this implies that measuring the oracle’s state register using PM where M is the set of

all D that contains a collision will succeed with probability ≥ ε. (PM is as in Lemma 34.)
Let ψi be the quantum state before the i-th query, and ψ′i after the i-th query. Let Mi be the set of

all D such that D contains a collision or contains ≥ i entries.
Note that for all i ≤ q + 2 and D /∈Mi−1, we have∣∣∣{d : d ∈ {0, 1}m⊥ , D(x := d) ∈Mi

}∣∣∣ ≤ q.
Since ψ1 contains D = ⊥, we have ‖PM0

ψ1‖ = 0.
By Lemma 34, ‖PMi

ψ′i‖ ≤ 2−m/2+1√q + ‖PMi−1
ψi‖. Furthermore, since PMi

operates only on the
state register, ‖PMi

ψ′i‖ = ‖PMi
ψi+1‖. By induction, ‖PMq+2

ψ′q+2‖ ≤ (q + 2)2−m/2+1√q.
Then

ε = ‖PMψ
′
q+2‖2 ≤ ‖PMq+2

ψ′q+2‖2 ≤ (q + 2)22−m+2q.

Symbol index
CPhO Compressed phase oracle 7
CPhOcore Compressed phase oracle core 7
CStdO Compressed standard oracle 6
CStdOcore Compressed standard oracle core 6
FPhO Fourier phase oracle 4
FPhOcore Fourier phase oracle core 4
FStdO Fourier standard oracle 4
FStdOcore Fourier standard oracle core 4
U⊥ Unitary swapping |⊥〉 and |0〉 5
Grow(Ucore) “Growing” an oracle from its core oracle 2
SO State register of oracle O
DΨ

O Initial state distribution of oracle O
|ΨO〉 Initial state of oracle O
{0, 1}n⊥ Bitstring of length n together with ⊥ – {0, 1}n ∪ {⊥} 1

8

UO Unitary of oracle O
|n〉 Basis vector n
C Complex numbers
H Hadamard matrix
〈n| Adjoing of basis vector n
RO Random oracle
CNOT CNOT matrix 1
StdOcore Standard oracle core 3
StdO Standard oracle 3
PhOcore Phase oracle core 3
PhO Phase oracle 3
CFPhOcore Compressed Fourier phase oracle core 5
CFPhO Compressed Fourier phase oracle 5
CFStdOcore Compressed Fourier standard oracle core 5
CFStdO Compressed Fourier standard oracle 5
‖ψ‖ (Hilbert space-)norm of vector ψ
Grow(q)Ucore “Growing” an oracle efficiently for q queries
|x| Absolute value / cardinality

Index
indistinguishable

perfectly, 2

oracle, 2
oracle algorithm, 2

perfectly indistinguishable, 2

random oracle, 2

References
[1] Dominique Unruh. Compressed Permutation Oracles (and the Collision-Resistance of

Sponge/SHA3). IACR ePrint 2021/062. 2021.

[2] Mark Zhandry. “How to Record Quantum Queries, and Applications to Quantum Indifferentiability”.
In: Advances in Cryptology – CRYPTO 2019. Ed. by Alexandra Boldyreva and Daniele Micciancio.
Eprint is IACR ePrint 2018/276. Cham: Springer International Publishing, 2019, pp. 239–268. isbn:
978-3-030-26951-7.

9

https://eprint.iacr.org/2021/062.pdf
https://eprint.iacr.org/2018/276.pdf

	Some notation
	Oracles
	Growing oracles
	Random oracle
	Standard oracle
	Phase oracle
	Fourier phase oracle
	Fourier standard oracle

	Compressed oracles
	Compressed Fourier standard oracle
	Compressed Fourier phase oracle
	Compressed standard oracle
	Compressed phase oracle

	Efficient compressed oracles
	Example: Hardness of finding collisions
	Symbol index
	Index
	References

