Recording quantum queries - explained

Dominique Unruh

This draft was intended to give a formal treatment of Zhandry's results from [2], with all definitions and proofs worked out.

It is unfinished and there are currently no plans to finish it. See our paper "Compressed Permutation Oracles" [1] for an alternative.

However, since the manuscript has been cited in some places, we provide this incomplete draft as-is for reference.

Contents

1	Son	ne notation	1		
2			2		
	2.1	0	2		
	2.2	Random oracle	2		
	2.3	Standard oracle	3		
	2.4	Phase oracle	3		
	2.5		4		
	2.6	-	4		
	2.0		4		
3	Cor	npressed oracles	5		
	3.1	Compressed Fourier standard oracle	5		
	3.2	Compressed Fourier phase oracle	5		
	3.3		6		
	3.4		7		
	0.4		1		
4	Effi	cient compressed oracles	8		
5	5 Example: Hardness of finding collisions				
Sy	mbo	ol index	8		
In	dex		9		
Index					
References					

1 Some notation

We assume that \perp is a fixed symbol different from any bitstring in $\{0, 1\}^*$. Let $\{0, 1\}^n_{\perp} := \{0, 1\}^n \cup \{\perp\}$. In slight abuse of notation, we define $CNOT^{\otimes n}$ to be the unitary $CNOT^{\otimes n}|x,y\rangle := |x, y \oplus x\rangle$, and we write \frown for it (it will always be clear from the context that $CNOT^{\otimes n}$ is meant since CNOT can only be applied to single qubit wires).

Given a unitary transformation U that operates on $\mathbb{C}^{\{0,1\}^n}$, we naturally extend it to $\mathbb{C}^{\{0,1\}^n_{\perp}}$ by setting $U|\perp\rangle := |\perp\rangle$. For example, when applied to a quantum register with space $\mathbb{C}^{\{0,1\}^n_{\perp}}$, $H^{\otimes n}$ is the following matrix: $H^{\otimes n}|x\rangle := \sum_y 2^{-n/2}(-1)^{x \cdot y}|y\rangle$, $H^{\otimes n}|\perp\rangle := |\perp\rangle$.

This generalizes directly to unitaries that operate on more than one quantum register. For example, $CNOT^{\otimes n}$ operates on $\mathbb{C}^{\{0,1\}_{\perp}^{n}} \otimes \mathbb{C}^{\{0,1\}_{\perp}^{n}}$ as $CNOT^{\otimes n}|x,y\rangle := |x, y \oplus x\rangle$, $CNOT^{\otimes n}|\perp, y\rangle := |\perp, y\rangle$ and on $\mathbb{C}^{\{0,1\}_{\perp}^{n}} \otimes \mathbb{C}^{\{0,1\}_{\perp}^{n}}$ as $CNOT^{\otimes n}|x,y\rangle := |x, y \oplus x\rangle$, $CNOT^{\otimes n}|x, \bot\rangle := |x, \bot\rangle$. That is, when one wire contains $|\bot\rangle$, the unitary operates as the identity on all other wires.

2 Oracles

In our setting, an *oracle O* consists of the following:

- A state register S_O (described by the underlying Hilbert space).
- One or more query registers X_1, \ldots, X_n (described by the underlying Hilbert spaces).
- An initial state $|\Psi_O\rangle$ for the state register, or a probability distribution D_O^{Ψ} of initial states.
- A unitary operating U_O operating on S_O, X_1, \ldots, X_n .

An oracle algorithm A is an algorithm that can make queries to an oracle O. More specifically, an execution of A^O uses four registers, the state register S_A of A, the state register S_O of O, as well as the query registers X_1, \ldots, X_n of O. S_O is initialized with the initial state $|\Psi_O\rangle$ (or with a state sampled according to D_O^{Ψ}). Then A can perform arbitrary operations on S_A, X_1, \ldots, X_n but not on S_O . In addition, A can query O which means that the unitary U_O is applied to S_O, X_1, \ldots, X_n .

Definition 1: Perfectly indistinguishable

Two oracles O_1, O_2 are *perfectly indistinguishable* iff for any oracle algorithm A that outputs a classical bit b, $\Pr[b = 1 : b \leftarrow A^{O_1}] = \Pr[b = 1 : b \leftarrow A^{O_2}].$

We say O_1, O_2 are *perfectly indistinguishable within* q *queries* if the above holds for every q-query oracle algorithm A.

2.1 Growing oracles

Definition 2: Growing core oracles

Let O_{core} be an oracle with state register $S_{O_{core}}$ with Hilbert space \mathcal{H}_{core} and query register Y with Hilbert space \mathcal{H}_Y , and with initial state $|\Psi_{O_{core}}\rangle$ (not a distribution).

Fix some length n.

Then $\mathbf{Grow}(O_{\mathfrak{core}})$ is the following oracle:

- Its state register $S_{\mathbf{Grow}(O_{\mathfrak{core}})}$ consists of registers $(S_x)_{x \in \{0,1\}^n}$, each with Hilbert space $\mathcal{H}_{\mathfrak{core}}$.
- It has query registers X with Hilbert space $\mathbb{C}^{\{0,1\}^n}$ and Y with Hilbert space \mathcal{H}_Y .
- It has initial state $|\Psi_{\mathbf{Grow}(O_{\mathfrak{core}})}\rangle := \bigotimes_{x \in \{0,1\}^n} |\Psi_{O_{\mathfrak{core}}}\rangle.$
- Its unitary is $U_{\mathbf{Grow}(O_{\mathfrak{core}})} := \sum_{x \in \{0,1\}^n} U_x \otimes |x\rangle \langle x|$ where U_x stands for $U_{O_{\mathfrak{core}}}$ applied to S_x, Y .

Definition 3: Efficiently growing core oracles

Let O_{core} , n be as in Definition 2. Let q be an integer (query number). Then $FastGrow_q(O_{core})$ is defined as .

Lemma 4

 $\mathbf{Grow}(O_{\mathfrak{core}})$ and $\mathbf{Fast}\mathbf{Grow}_q(O_{\mathfrak{core}})$ are perfectly indistinguishable within q queries.

2.2 Random oracle

For this and the following subsections, fix two integers n, m (denoting the input / output size of the random oracle).

Definition 5: Random oracle

The random oracle RO has state register S_{RO} with Hilbert space $\mathbb{C}^{F_{un}}$ where Fun is the set of all functions $\{0,1\}^n \to \{0,1\}^m$. It has query registers X and Y with Hilbert spaces $\mathbb{C}^{\{0,1\}^n}$ and $\mathbb{C}^{\{0,1\}^m}$,

respectively. Its unitary is $U_{\mathsf{RO}} : |H\rangle|x\rangle|y\rangle \mapsto |H\rangle|x\rangle|y \oplus H(x)\rangle$. The initial state distribution D_{RO}^{Ψ} returns $|H\rangle$ for uniformly random $H \in Fun$.

2.3 Standard oracle

Definition 6: Standard oracle

The standard oracle StdO has state register S with Hilbert space $\bigotimes_{x \in \{0,1\}^n} \mathbb{C}^{\{0,1\}^m}$, query registers X and Y with Hilbert spaces $\mathbb{C}^{\{0,1\}^n}, \mathbb{C}^{\{0,1\}^m}$, respectively. The initial state is $\bigotimes_{x \in \{0,1\}^n} |0^m\rangle$ (i.e., $|0^{2^n m}\rangle$). The unitary operation is:

$$U_{\mathsf{StdO}} : |D\rangle|x\rangle|y\rangle := \begin{cases} |D\rangle|x\rangle|y \oplus D_x\rangle & \text{(if } D_x \neq \bot)\\ |D\rangle|x\rangle|y\rangle & \text{(if } D_x = \bot) \end{cases}$$

for $D \in \prod_{x \in \{0,1\}^n} \{0,1\}_{\perp}^m$.

Note: we could have easily defined the standard oracle to use state space $\bigotimes_{x \in \{0,1\}^n} \mathbb{C}^{\{0,1\}^m}$ (no \perp). This would be more natural. However, defining it this way makes it easier to derive the "compressed" oracles below.

Lemma 7

StdO and RO are perfectly indistinguishable.

We show how the standard oracle can be alternatively defined by just specifying its core:

Definition 8: Standard oracle core

The standard oracle core $\mathsf{StdO}_{\mathsf{core}}$ has state register $S_{\mathsf{StdO}_{\mathsf{core}}} =: S$ with Hilbert space $\mathbb{C}^{\{0,1\}_{\perp}^{m}}$, and query register Y with Hilbert space $\mathbb{C}^{\{0,1\}_{\perp}^{m}}$. The initial state is $|\Psi_{\mathsf{StdO}_{\mathsf{core}}}\rangle := |+\rangle^{\otimes m}$. The unitary operation is $U_{\mathsf{StdO}_{\mathsf{core}}} := CNOT^{\otimes m}$, i.e.,

$$U_{\mathsf{StdO}_{\mathfrak{core}}} \equiv \underbrace{\overset{S}{\underbrace{}}_{Y}}_{Y}$$

Lemma 9 $StdO = Grow(StdO_{core}).$

Since this definition is considerably more compact, we will define the following oracles simply by specifying their cores.

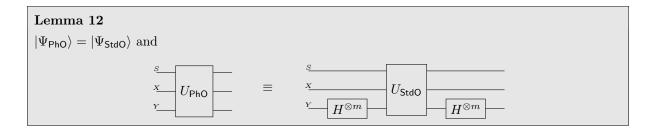
2.4 Phase oracle

Definition 10: Phase oracle core

The phase oracle core PhO_{core} has state register $S_{\mathsf{PhO}_{core}} =:$ with Hilbert space $\mathbb{C}^{\{0,1\}_{\perp}^{m}}$, and query register Y with Hilbert space $\mathbb{C}^{\{0,1\}_{\perp}^{m}}$. The initial state is $|\Psi_{\mathsf{PhO}_{core}}\rangle := |+\rangle^{\otimes m}$. The unitary operation $U_{\mathsf{PhO}_{core}}$ is given by the following quantum circuit:

$$U_{\mathsf{PhO}_{\mathfrak{core}}} \equiv \underbrace{\begin{array}{c} \overset{S}{\underbrace{}}\\ \overset{Y}{\underbrace{}} H^{\otimes m} \end{array}}_{Y} \underbrace{U_{\mathsf{StdO}_{\mathfrak{core}}}}_{H^{\otimes m}}$$

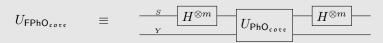
Lemma 11 $PhO := Grow(PhO_{core}).$



2.5 Fourier phase oracle

Definition 13: Fourier phase oracle core

The Fourier phase oracle core $\mathsf{FPhO}_{\mathsf{core}}$ has state register $S_{\mathsf{FPhO}_{\mathsf{core}}} =: S$ with Hilbert space $\mathbb{C}^{\{0,1\}_{\perp}^m}$, and query register Y with Hilbert space $\mathbb{C}^{\{0,1\}_{\perp}^m}$. The initial state is $|\Psi_{\mathsf{FPhO}_{\mathsf{core}}}\rangle := |0^m\rangle$. The unitary operation is given by the following quantum circuit:



Definition 14

 $FPhO := \mathbf{Grow}(FPhO_{\mathfrak{core}}).$

2.6 Fourier standard oracle

Definition 16: Fourier standard oracle core

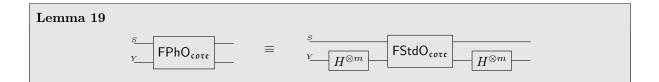
The Fourier standard oracle core $\mathsf{FStdO}_{\mathfrak{core}}$ has state register S with Hilbert space $\mathbb{C}^{\{0,1\}_{\perp}^{m}}$, and query register Y with Hilbert space $\mathbb{C}^{\{0,1\}^{m}}$. The initial state is $|0^{m}\rangle$. The unitary operation is given by the following quantum circuit:

$$\mathsf{FStdO}_{\mathsf{core}} \equiv |0^m\rangle \xrightarrow[Y]{S} H^{\otimes m} \mathsf{StdO}_{\mathsf{core}} H^{\otimes m}$$

Definition 17

 $\mathsf{FStdO} := \mathbf{Grow}(\mathsf{FStdO}_{\mathfrak{core}}).$

$\label{eq:lemma18} Lemma 18 $$FStdO_{core}$ is perfectly indistinguishable from StdO_{core}$. FStdO is perfectly indistinguishable from StdO.$



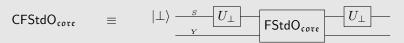
3 Compressed oracles

Let U_{\perp} be the unitary on $\mathbb{C}^{\{0,1\}_{\perp}^m}$ defined by: $U_{\perp}|0^m\rangle := \perp, U_{\perp}|\perp\rangle := |0^m\rangle, U_{\perp}|x\rangle := |x\rangle$ for $x \in \{0,1\}^m, x \neq 0^m$.

3.1 Compressed Fourier standard oracle

Definition 20: Compressed Fourier standard oracle core

The compressed Fourier standard oracle core $\mathsf{CFStdO}_{\mathfrak{core}}$ has state register S with Hilbert space $\mathbb{C}^{\{0,1\}_{\perp}^{m}}$, and query register Y with Hilbert space $\mathbb{C}^{\{0,1\}_{\perp}^{m}}$. The initial state is $|\perp\rangle$. The unitary operation is given by the following quantum circuit:



Definition 21: Compressed Fourier standard oracle

 $CFStdO := \mathbf{Grow}(CFStdO_{core}).$

Lemma 22

 $\mathsf{CFStdO}_{\mathfrak{core}},\,\mathsf{FStdO}_{\mathfrak{core}},\,\mathsf{and}\,\,\mathsf{StdO}_{\mathfrak{core}}\,\,\mathrm{are}\,\,\mathrm{perfectly}\,\,\mathrm{indistinguishable}.\,\,\mathsf{CFStdO},\,\mathsf{FStdO},\,\mathsf{and}\,\,\mathsf{StdO}\,\,\mathrm{are}\,\,\mathrm{perfectly}\,\,\mathrm{indistinguishable}.$

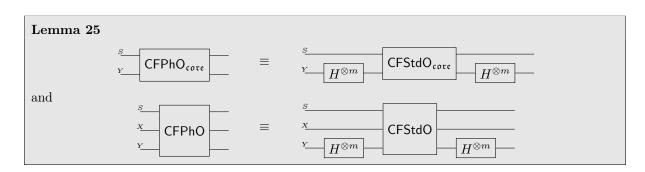
3.2 Compressed Fourier phase oracle

Definition 23: Compressed Fourier phase oracle core

The compressed Fourier phase oracle core CFPhO_{core} has state register S with Hilbert space $\mathbb{C}^{\{0,1\}_{\perp}^{m}}$, and query register Y with Hilbert space $\mathbb{C}^{\{0,1\}_{\perp}^{m}}$. The initial state is $|\perp\rangle$. The unitary operation is given by the following quantum circuit:

$$\mathsf{CFPhO}_{\mathfrak{core}} \equiv |\bot\rangle \underbrace{\xrightarrow{s} U_{\bot}}_{Y} \mathsf{FPhO}_{\mathfrak{core}} \underbrace{U_{\bot}}_{U_{\bot}}$$

Definition 24: Compressed Fourier phase oracle $CFPhO := Grow(CFPhO_{core}).$



Lemma 26

 $CFPhO_{core}$, $FPhO_{core}$, and PhO_{core} are perfectly indistinguishable. CFPhO, FPhO, and PhO are perfectly indistinguishable.

Lemma 27

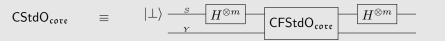
For all $d \in \{0, 1\}^m_+, y \in \{0, 1\}^m$:

Note: this differs from Zhandry's description in the "impossible" case $d = 0^m$, $y \neq d$.

3.3 Compressed standard oracle

Definition 28: Compressed standard oracle core

The compressed standard oracle core $\mathsf{CStdO}_{\mathfrak{core}}$ has state register S with Hilbert space $\mathbb{C}^{\{0,1\}_{\perp}^m}$, and query register Y with Hilbert space $\mathbb{C}^{\{0,1\}_{\perp}^m}$. The initial state is $|\perp\rangle$. The unitary operation is given by the following quantum circuit:



Definition 29

 $\mathsf{CStdO} := \mathbf{Grow}(\mathsf{CStdO}_{\mathfrak{core}}).$

Lemma 30

 $CStdO_{core}$, $CFStdO_{core}$, $FStdO_{core}$, and $StdO_{core}$ are perfectly indistinguishable. CStdO, CFStdO, FStdO, and StdO are perfectly indistinguishable.

Lemma 31: Some useful equations for working with CStdO

For clarity, the "error terms" are in gray.

$$H^{\otimes m}U_{\perp}H^{\otimes m}|d\rangle = |d\rangle - 2^{-m/2}|+^{m}\rangle + 2^{-m/2}|\perp\rangle \qquad (d \neq \perp)$$
$$H^{\otimes m}U_{\perp}H^{\otimes m}|\perp\rangle = |+^{m}\rangle$$

$$\mathsf{CStdO}_{\mathsf{core}}|d\rangle|y\rangle = |d\rangle|y \oplus d\rangle + 2^{-m/2}|\bot\rangle|y \oplus d\rangle - \sum_{e \in \{0,1\}^m} 2^{-m}|e\rangle|y \oplus e\rangle \qquad (d \neq \bot)$$

$$\mathsf{CStdO}_{\mathsf{core}}|\bot\rangle|y\rangle = \sum_{e \in \{0,1\}^m} 2^{-m/2}|e\rangle|y \oplus e\rangle - 2^{-m/2}|+^m\rangle|+^m\rangle + 2^{-m/2}|\bot\rangle|+^m\rangle$$

a - m + m + m = a - m + + m

Lemma 32

Let ψ be a vector in $\mathbb{C}^{\{0,1\}^m} \otimes \mathbb{C}^{\{0,1\}^m} \otimes \mathcal{H}$. Let $P := \sum_{d \in M} |d\rangle \langle d| \otimes I \otimes I$ for some $M \subseteq \{0,1\}^m$. Then

 $||P(\mathsf{CStdO}_{\mathsf{core}} \otimes I)\psi|| \leq 2^{-m/2+1} \sqrt{|M|} ||(1-P)\psi|| + ||P\psi||$

Lemma 33

Let ψ be a vector in . Fix a family $M_x \subseteq \{0,1\}^m$ with $x \in \{0,1\}^n$. Assume $|M_x| \leq B$ for all x. Let $P := 1 - \bigotimes_x (\sum_{d \notin M_x} |d\rangle \langle d|)$. Then

$$||P(\mathsf{CStdO} \otimes I)\psi|| \leq 2^{-m/2+1}\sqrt{B}||(1-P)\psi|| + ||P\psi||$$

Can we generalize this? This only allows us to talk about properties like "for each $x, D(x) \notin M_x$." But not about properties like "D has no collision".

Lemma 34

Let ψ be a vector in . Fix $M, N \subseteq (\{0,1\}^n \to \{0,1\}^m)$. Assume $N \subseteq M$. Assume that for all $x \in \{0,1\}^n$ and all $D \notin M$, we have that

$$\left| \left\{ d : d \in \{0, 1\}_{\perp}^{m}, D(x := d) \in N \right\} \right| \le B.$$

Let $P_M := \sum_{D \in M} |D\rangle \langle D| \otimes I \otimes I$ and P_N analogous. Then

$$|P_N \left(\mathsf{CStdO}_{\mathfrak{core}} \otimes I\right)\psi|| \leq 2^{-m/2+1} \sqrt{B} \left\| (1-P_M)\psi \right\| + \left\| P_M\psi \right\|$$

Example: For collision resistance, in the *i*-th query, M is the set of all D that have a collision or more than i - 1 non- \bot , and N is the set of all D that have a collision or more than i non- \bot . Then B = i - 1. Total success probability: $\left(2^{-m/2+1}\sum_{i=0}^{q-1}\sqrt{i-1}\right)^2 \leq 2^{-m+2}(q\sqrt{q})^2 = 4q^3/2^m$.

Lemma 35

Let A be an algorithm with oracle access to CStdO that outputs a list L of input/output pairs (i.e., a list $L = \{(x_1, y_1), \ldots, (x_n, y_n)\}$). Assume that if $(x, y) \in L$, then A has made a classical query with input x to CStdO and measured the output and gotten the result y.

Then, conditioned on output $L = \{(x_1, y_1), \ldots, (x_n, y_n)\}$, the final state of CStdO in register is of the form $\sum_D \alpha_D |D\rangle \langle D|$ ranging only over values D with $D(x_i) = y_i \forall i$.

For example, for analyzing Grover, we transform a search algorithm B into A which queries the final output of B and outputs the result. If B is successful, then A will have a zero-value in the D-register, and thus happens with small probability by analysis via Lemma 34. For collision-finder B, we let A query the collision and output the result. This reduces it to the probability that D contains a collision.

3.4 Compressed phase oracle

Definition 36: Compressed phase oracle core

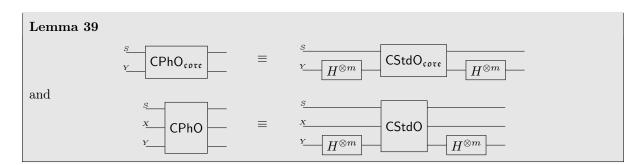
The compressed phase oracle core CPhO_{core} has state register S with Hilbert space $\mathbb{C}^{\{0,1\}_{\perp}^{m}}$, and query register Y with Hilbert space $\mathbb{C}^{\{0,1\}^{m}}$. The initial state is $|\perp\rangle$. The unitary operation is given by the following quantum circuit:

$$\mathsf{CPhO}_{\mathfrak{core}} \equiv |\bot\rangle \xrightarrow[Y]{s} H^{\otimes m} \mathsf{CFPhO}_{\mathfrak{core}} H^{\otimes m}$$

Definition 37 $CPhO := Grow(CPhO_{core}).$

Lemma 38

 $CPhO_{core}$, $CFPhO_{core}$, $FPhO_{core}$, and PhO_{core} are perfectly indistinguishable. CPhO, CFPhO, FPhO, and PhO are perfectly indistinguishable.



4 Efficient compressed oracles

Example: Hardness of finding collisions $\mathbf{5}$

Let A be an oracle quantum algorithm making at most q queries to a random oracle $H : \{0, 1\}^n \to \{0, 1\}^m$. Let $\varepsilon := \Pr[x \neq x' \land H(x) = H(x') : (x, x') \leftarrow A^H].$

Let B^H do: Run $(x, x') \leftarrow A^H$, query $y \leftarrow H(x), y' \leftarrow H(x')$. Return (x, y), (x', y'). We call the output of B good iff $x \neq x'$ and y = y'. Then $\Pr[out \text{ good} : out \leftarrow B^H] = \varepsilon$. By , $\Pr[out \text{ good} : out \leftarrow B^{\mathsf{CStdO}}] = \varepsilon$.

By Lemma 35, this implies that measuring the oracle's state register using P_M where M is the set of all D that contains a collision will succeed with probability $\geq \varepsilon$. (P_M is as in Lemma 34.)

Let ψ_i be the quantum state before the *i*-th query, and ψ'_i after the *i*-th query. Let M_i be the set of all D such that D contains a collision or contains $\geq i$ entries.

Note that for all $i \leq q+2$ and $D \notin M_{i-1}$, we have

$$\left| \left\{ d : d \in \{0, 1\}_{\perp}^{m}, D(x := d) \in M_{i} \right\} \right| \le q.$$

Since ψ_1 contains $D = \bot$, we have $||P_{M_0}\psi_1|| = 0$.

By Lemma 34, $\|P_{M_i}\psi'_i\| \leq 2^{-m/2+1}\sqrt{q} + \|P_{M_{i-1}}\psi_i\|$. Furthermore, since P_{M_i} operates only on the state register, $||P_{M_i}\psi'_i|| = ||P_{M_i}\psi_{i+1}||$. By induction, $||P_{M_{q+2}}\psi'_{q+2}|| \le (q+2)2^{-m/2+1}\sqrt{q}$.

$$\varepsilon = \|P_M \psi'_{q+2}\|^2 \le \|P_{M_{q+2}} \psi'_{q+2}\|^2 \le (q+2)^2 2^{-m+2} q.$$

Symbol index

CPhO	Compressed phase oracle	7
CPhO _{core}	Compressed phase oracle core	7
CStdO	Compressed standard oracle	6
CStdO _{core}	Compressed standard oracle core	6
FPhO	Fourier phase oracle	4
FPhO _{core}	Fourier phase oracle core	4
FStdO	Fourier standard oracle	4
FStdOcore	Fourier standard oracle core	4
U_{\perp}	Unitary swapping $ \perp\rangle$ and $ 0\rangle$	5
$\mathbf{Grow}(U_{\mathfrak{core}})$	"Growing" an oracle from its core oracle	2
S_O	State register of oracle O	
D_O^{Ψ}	Initial state distribution of oracle O	
$ \Psi_O angle$	Initial state of oracle O	
$\{0,1\}^n_\perp$	Bitstring of length n together with $\perp - \{0,1\}^n \cup \{\perp\}$	1

U_O	Unitary of oracle O		
n angle	Basis vector n		
\mathbb{C}	Complex numbers		
Н	Hadamard matrix		
$\langle n $	Adjoing of basis vector n		
RO	Random oracle		
CNOT	CNOT matrix	1	
StdO _{core}	Standard oracle core	3	
StdO	Standard oracle	3	
PhO _{core}	Phase oracle core	3	
PhO	Phase oracle	3	
CFPhO _{core}	Compressed Fourier phase oracle core	5	
CFPhO	Compressed Fourier phase oracle	5	
CFStdOcore	Compressed Fourier standard oracle core	5	
CFStdO	Compressed Fourier standard oracle	5	
$\ \psi\ $	(Hilbert space-)norm of vector ψ		
$\mathbf{Grow}(q)U_{\mathfrak{core}}$	"Growing" an oracle efficiently for q queries		
x	Absolute value / cardinality		

Index

indistinguishable perfectly, 2	perfectly indistinguishable,
oracle, 2 oracle algorithm, 2	random oracle, 2

References

[1] Dominique Unruh. Compressed Permutation Oracles (and the Collision-Resistance of Sponge/SHA3). IACR ePrint 2021/062. 2021.

 $\mathbf{2}$

[2] Mark Zhandry. "How to Record Quantum Queries, and Applications to Quantum Indifferentiability". In: Advances in Cryptology – CRYPTO 2019. Ed. by Alexandra Boldyreva and Daniele Micciancio. Eprint is IACR ePrint 2018/276. Cham: Springer International Publishing, 2019, pp. 239–268. ISBN: 978-3-030-26951-7.