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In order to show that a security protocol satisfies a security property P in the computational model,
cryptographers generally use proofs by sequences of games [4]. The first game G0 is the protocol to
prove. Each game Gi is transformed into the next one Gi+1 using game transformations, such that the
probability pi that an adversary distinguishes Gi from Gi+1 is bounded by a small value, for instance
the probability of solving a difficult computational problem. Finally, the last game Gn is such that
the desired security property P is obvious from the form of the game, so that the probability that an
adversary breaks P is 0 in this game. The probability that an adversary breaks P in the initial game is
then at most the sum p0 + · · · + pn−1.

Shoup’s lemma [4] is a technique frequently used in proofs by sequences of games. One transforms
the game Gi into Gi+1 by introducing some event e: Gi+1 behaves differently from Gi only when it
executes the event e. The probability pi of distinguishing Gi from Gi+1 is then the probability that
Gi+1 executes e. This probability is itself bounded by performing a proof by sequences of games starting
from Gi+1. Often, in order to bound the probability of e, we wait until a later game of the sequence
G1, . . . , Gn in which that probability is easier to bound, so that the proof that serves in bounding the
probability of e shares some or all game transformations with the proof of the initial security property
P : this is the “deferred analysis” technique [3]. Suppose that the sequence Gi+1, . . . , Gn ends with a
game Gn that never executes e and such that P is always true. Then the probability that Gi+1 executes
e is at most pi = pi+1 + . . . + pn−1. The probability that an adversary breaks P is then at most
p0 + · · · + pn−1 = p0 + · · · + pi−1 + 2(pi+1 + · · · + pn−1).

In this talk, we will show that the factor 2 in this formula can be avoided. (More generally, other
constant factors that appear when several events are introduced can also be avoided.) We prove this
result by considering the property “e is executed or P is broken” instead of considering separately the
event e and the property P .

This result has been shown in the context of the automatic protocol prover CryptoVerif [1]; it is
implemented in this prover, but it also applies to manual proofs. It allows us to obtain better prob-
ability bounds than with the standard computation of probabilities. For example, in the proof of the
password-based protocol One-Encryption Key Exchange [2], [2] shows that the adversary can test at
most 3 passwords per interaction with the protocol. By applying our improvement in the computation
of probabilities, we can show using the same sequence of games that the adversary can in fact test at
most one password per session of the protocol, which is the optimal result.
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