
UNIVERSITY OF TARTU
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science
Computer Science

Aleksei Gorny

Analysis of Chip-card Based Authentication

Bachelor’s thesis (6 EAP)

Supervisor: Sven Laur, PhD

Author: .................................................................... ”........” June 2009
Supervisor: ............................................................... ”........” June 2009

Admitted to thesis defense

Professor ................................................................... ”........” June 2009

Tartu 2009



Contents

Introduction 3

1 Background and technical details 4
1.1 ID-card hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 The Transport Layer Security protocol . . . . . . . . . . . . . . . . . . 6
1.3 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Attacking the authentication process 11
2.1 Logging authentication codes . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Logging authentication codes: implementation . . . . . . . . . . . . . . 11
2.3 Phishing and substituting certificates . . . . . . . . . . . . . . . . . . . 12
2.4 Phishing and substituting certificates: implementation . . . . . . . . . 15
2.5 Session hijacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Session hijacking: implementation . . . . . . . . . . . . . . . . . . . . . 17

3 Building a better driver 19
3.1 Security model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Suggested solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

References 21
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Introduction

Most chip card solutions for personal computers assume they are used in a secure en-
vironment and that the communication between the card and applications cannot be
modified. This assumption is largely unjustified, since most users lack technical knowl-
edge to have sufficient control over their machines. Indeed, as yet another attestation
of the fact, earlier this year, a botnet comprising of approximately 1.9 million infected
devices, of which many belonged to government and business institutions, was discov-
ered [15]. The scope of this work is the use of chip cards in untrusted environments.
The research has been conducted in accordance with the agreement between the author
and AS Cybernetica and some findings may have been left out from this paper version
due to contractual obligations.

For simplicity, we explain the basic concepts of chip card use by the example of the
Estonian ID-card. ID-card is the Estonian primary personal identification document,
issued by the national Citizenship and Migration board. As it is the case with national
chip cards of most countries, the card enables its holder to create digital signatures
and to authenticate to both state and private enterprise services. This functionality
can also be used online from a personal computer equipped with a smart card reader,
some third-party software and an internet connection. Important web-based services
accessible this way include electronic banks, e-voting polls, health and education re-
lated information systems etc.

In this work, we review the situation where a cardholder authenticates to a remote
server over a network. We show that due to implementation issues there currently
exists a way for a malevolent party with temporary user-privileged access to the card-
holder’s computer to effectively tamper with the process. This may potentially result
in the honest user unintentionally authenticating to some other entity instead or the
server believing that the client resides at a different IP address. The consequences of
this may in turn include loss of privacy and personal data, financial losses and incorrect
depiction of the cardholder’s opinions and preferences to other entities.

In the following chapters we present a detailed overview of the authentication process
with the currently employed chip card software, describe possible attacks, evaluate
their feasibility and conclude by introducing obvious security-enhancing modifications
to the affected components. We also comment on the exploits as we implemented them
on the Ubuntu Linux operating system for demonstration purposes. The code itself
does not accompany this work, but is available on request from AS Cybernetica.
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1 Background and technical details

Though the basic design principles of different chip cards are similar, specific cards
often have technical peculiarities and are subject to different standards and legislation.
In this section, we review the concepts by an example national chip card, the Estonian
ID-card. The development process of the card has been mostly open for public inspec-
tion and information found here can also be gathered from online sources.

Since the introduction of the ID-card to the public in 2002, the number of cardholders
and applications for the card has been steadily increasing. The Citizenship and Mi-
gration board reported that by the first of April 2009, there were 854 675 registered
ID-card owners, a large number, considering the population of Estonia. It is expected
that more than half of the cardholders use the card to access online services.

The reason ID-cards exist and are increasingly popular is the joint efforts of gov-
ernment institutions, security researchers and businesses. At the same time when the
Citizenship and Migration board became interested in replacing the passport with
a simpler modern identification document in 1997, researchers from AS Cybernetica
and Hansapank were working towards developing a solution for digital authentication
and signing. Eventually, the goals of both interest groups were united in the ID-card
and legislation was modified to accommodate electronic authentication mechanisms [5]
and acceptance of digital signatures [6]. Businesses and institutions were encouraged
to adopt ID-card based authentication methods and use digital signatures to reduce
paperwork and allow simple and secure digital access to various services, making it
favorable for citizens to switch to the new technology. The full timeline and the devel-
opment story can be found at the ID-card support site [1].

As now, the card can be physically used for authentication in place of the passport
for travel in the European Union, customer cards of several Estonian shops and store
chains, library cards of most of the Estonian libraries, etc. A large list of web ser-
vice providers allowing ID-card based authentication is maintained online [1]. The list
includes but is not limited to the following:

• Financial institutions: Swedbank, The SEB Group, Eesti Krediidipank, Sampo
Pank, Nordea Bank, BIG Bank, Parex Bank, Nasdaq OMX Estonian securities
market,

• Government services: the National Electoral Commitee, Estonian Motor Vehicle
Registration Centre, the Commercial Register, Estonian Tax and Customs Board,

• Education services: study information systems of the Tartu University and Mainor
Business school, the eKool system,

• Medical services: patient information systems of the East Tallinn Central Hospi-
tal and the Medicum health center.

For a cardholder, accessing these services from a personal computer is as easy as pur-
chasing a smart card reader and installing software from the ID-card support page. The
necessary software consists of drivers for the card and the reader and extensions for the
browser that allow it to query the drivers to access the card functionality when needed.
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What would happen if a vulnerability in the authentication process was found? Some
services like e-banks and e-voting polls would remain relatively secure from the func-
tional standpoint, as they require digital signatures for finalizing critical transactions
like money transfer or vote casting. However, an attacker able to exploit such a vul-
nerability could still perform many potentially damaging, but non-critical operations
without the cardholder’s knowledge. Additionally, one could gain unauthorized access
to personally identifiable sensitive information contained in above-mentioned informa-
tion systems, like financial status, health conditions, study grades, electoral preferences
etc. A possibility of large scale exploitation, for example, if the vulnerability was com-
mon to national chip cards of multiple countries, would serve as motivation for cyber
criminals and bear drastic consequences to card users.

In this chapter, we review the prerequisites for understanding the current state of
ID-card based online authentication. We look at the functionality the chip of the card
provides, the specification of the authentication protocol that is used and at how this
protocol is implemented in software.

1.1 ID-card hardware

From the hardware perspective, the Estonian ID-card is a chip card conforming to the
ISO-7816 standard [9] and based on the Orga Micardo Public 2.1 chip [7]. It hosts some
minor technical modifications that allow it to be used with a larger variety of smart
card readers and changes to the instruction set that forbid formatting and EEPROM
memory initialization. This way the card is better suited for wide-scale public use and
prevents users from deleting or improperly modifying important data it contains.

The data stored on the card and available operations are subject to a strict immutable
access policy. Significant objects accessible to a common user constitute of the card-
holder’s personal information file, signing certificate and authentication certificate.

Figure 1: Objects on the ID-card. Translated from [3].
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In addition to the operations for reading these objects, the card provides cryptographic
operations with internal secret keys – in the case of authentication, computing a re-
sponse to a SSL/TLS challenge [13] using RSA or SHA1 with RSA. Cryptographic
operations require the cardholder to set different security environments on the card
by supplying appropriate PIN codes. Optionally, additional codes may be entered to
enforce the interaction between the card and host applications to be encrypted using
3DES.

PIN codes are protected from brute force attacks by counters of consecutive incorrect
entries. After three unsuccessful entries, a PIN is blocked and has to be revalidated
or replaced using the PUK code, that is itself subject to an analogous counter. The
PUK code can, however, be unblocked only at accredited Token Management Centers -
bank offices and the service offices of the Citizenship and Migration board. Other card
management operations, like updating user data and certificates, are also performed
under official supervision - either on-site and the centers or remotely over the network,
secured via cryptographic means. This again is beneficial for protection against unau-
thorized or accidental data modification and deletion.

For a full list of objects and operations supplied by the card, one may refer to its
reference manual [3].

1.2 The Transport Layer Security protocol

Transport Layer Security (TLS) [13], the successor of Secure Socket Layer (SSL) [14],
is a popular protocol for providing communication confidentiality and integrity by es-
tablishing a reliable private channel between two peers. TLS achieves its security goals
by using symmetric cryptography with unique keys generated for each connection and
message authentication codes. The TLS handshake sub-protocol provides a secure and
reliable way to negotiate the parameters of a connection and allows peers to authenti-
cate to each other using asymmetric or public key cryptography. In a typical setting,
TLS dwells on an available public key infrastructure and is unilateral, meaning that
the server gets authenticated to the client, while the latter may remain anonymous.

Figure 2: Negotiation of anonymous or unilaterally authenticated TLS

In the first part of the TLS handshake, the negotiation phase (Fig. 2), the client and
the server agree on the strongest cipher suite and hash functions they both support,
exchange random values and agree on a common secret. During this phase, the server
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usually shares its certificate with the user, who is expected to verify the server’s iden-
tity. If necessary, the server sends an additional message containing cryptographic data
allowing the client to communicate the premaster secret. Both parties then compute a
master secret key based on the premaster secret and random values. This key is used
for symmetric encryption of the final handshake messages and communication later on.

The handshake finishes with the peers validating its correctness. First, the client
informs the server that all of its following communication shall be sent encrypted using
the freshly computed symmetric key. Next, it sends an encrypted message containing
a MAC over the protocol transcript (Fig. 3). The server decrypts the message, verifies
the hash and responds with two analogous messages. Now, if either party fails to de-
crypt the received final message or verify the MAC inside, the connection is terminated
and has to be renegotiated. This ensures both peers agree on the generated security
parameters and keys and that the handshake has not been tampered with.

Figure 3: TLS handshake final messages

TLS also supports a bilateral mode, known as mutual authentication. In this case, the
client also sends out a certificate and afterwards proves that one indeed owns it by
showing one has access to the corresponding private key (Fig. 4). For this, the client
sends a certificate verification message, containing the concatenation of all previous
handshake interaction signed with the key. If the protocol is successful, then unlike
the unilateral case, both parties are assured of each other’s identity.

Figure 4: Negotiation of mutually authenticated TLS

After the handshake is finished, relevant data messages can be transferred in a way
similar to the final handshake message - encrypted with the negotiated symmetric key
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and verified with a message authentication code.

TLS is one of the most common protocols for securing application layer data when
communicating over customized networks or the Internet. It can run on top of a reli-
able transport protocol such as TCP and beneath application layer protocols such as
HTTP, FTP, SMTP etc. TLS can also be used for creating virtual private networks
by tunneling the entire network stack. For our purposes, we are mostly interested in
the scenario where mutually authenticated TLS is used in combination with HTTP for
accessing various web services.

1.3 Software architecture

In practice, communication between a web service and a chip card passes through
multiple modularly composed software layers. The layers are similar for all operating
systems, so for conciseness we describe the detailed architecture as it is common for
Ubuntu Linux. Low-level operations, like communicating bits to and from the card, are
handled by a low-level driver for smart card readers, typically OpenCT [11] or PC/SC
Lite [12]. On top of the driver resides OpenSC [10], an open-source framework for
high-level operations with smart card tokens. It implements methods for recognizing
different card hardware and vendor-specific hexcode instructions.

For integration into existing applications, OpenSC compiles a dynamic library based
on the PKCS#11 standard [8]. PKCS#11, also known as Cryptoki, is a widely-used
standard for cryptographic token libraries that specifies common names for objects
and operations. This dynamic library interface is, for example, used by most of the
popular browsers, so that when the token is initialized, they are able to request data
and perform card-assisted cryptographic operations by communicating with the driver.

As an illustration, let us see how these components interact when a user attempts
to authenticate to a server using a capable chip card and TLS mutual authentication
(Fig. 5). In this case, the user’s browser takes care of the TLS protocol messages and
makes two requests to the driver. The purpose of the first request is to retrieve the
authentication certificate and the purpose of the second is to compute the response to
the protocol challenge using the secret key stored on the card and corresponding to
the certificate. As computing the response requires toggling the security environment
on the card, the driver expects the browser to obtain the PIN code from the user.
This architecture is secure under the assumption the user actually has full control over
the client machine. Indeed, an adversary is then unable to eavesdrop or modify the
communication between both the software and hardware components - effectively be-
tween the browser and the smart card. Also, properly executed mutually authenticated
TLS, as reviewed earlier, eliminates the possibility of client- and server-side identity
switching on the network.

The authentication process becomes insecure once we assume the adversary has tem-
porary user-rights level logical access to the machine. Note, that on modern operating
systems, this type of access is sufficient for local installation of software packages and
browser extensions, but does not allow to change preferences of the system itself or
files of drivers and properly installed applications.
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Figure 5: Authentication with a chip card

The main problem lays in the fact that the relation between the TLS session the
user is attempting to establish and the challenge message send to the driver is never
verified. This implies that in customized software, the PIN code of the user may actu-
ally be used for computing the a challenge response for another session. This problem
is not unique to any particular chip card, but common to all chip cards used with this
software framework.

An example exploit for this would be a custom browser extension that hijacks chip
card based authentication sessions by sending the driver challenges that are different
from the intended ones (Fig. 6).

Figure 6: A malicious browser extension

For a second example exploit, temporary access can be used for local installation of a
malicious Cryptoki-based library. Here the attacker can rely on the fact that pointing
out the location of OpenSC to the browser needs user rights only. The substitute
library could then act as a mediator between the browser and the chip card and perform
operations like publishing PIN codes, modifying user queries or establishing unwanted
TLS sessions (Fig. 7).
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Figure 7: OpenCT is substituted for a malicious library in the browser

For the cardholder, the consequences of these exploits may be as severe as mentioned
in the beginning of this chapter. Note that active presence of the adversary that in-
troduces software modifications is not necessary in either case. After the software is
changed, session hijacking and other activities, for example using the hijacked session
for gathering personal data, can happen in an automated fashion.
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2 Attacking the authentication process

In this chapter, we review some attacks associated with authentication and evaluate
their successfulness and feasibility against chip-card based authentication. These at-
tacks can be conducted by cyber criminals or otherwise malevolent individuals against
honest users using chip cards or other methods to authenticate to some entity over a
network. For each attack, we first give its general description and explain its back-
ground and then reflect on our experiments with it in practice.

2.1 Logging authentication codes

Keystroke logging in general refers to a practice of noting the keys pressed on the
keyboard, often without the computer user’s knowledge. It is a common method for
obtaining sensitive data from a user when the adversary has physical access to the ma-
chine or is able to either install or convince the user to install custom software. There
are various mechanisms for logging keystrokes, ranging from software based solutions,
for example hook based loggers that utilize the operating system functionality to sub-
scribe to keyboard events, to acoustic and electromagnetic loggers that log the pressed
keys based on the physical behavior of the keyboard.

Countermeasures against this attack include drivers with signed code, anti-spyware
applications able to detect loggers either by their activity or resident files and alterna-
tive data input methods like speech-to-text applications or on-screen keyboards.

Key logging is effective against standard username and password combination authen-
tication, but does not, for example, work against one-time-password methods, where
a password is rendered obsolete once it is used. Against two-factor authentication
methods, like the chip card based approach, key logging does succeed in collecting
PIN codes. However, the codes on their own are useless without the ownership of the
physical token.

One can circumvent the additional protection added by two-factor authentication, if
one knows the PIN code and is able to partially control the machine at the time the
chip card is inserted. Large scale attacks of this type, where the adversary has collected
several PINs and has control over the user machines, are, however, rather unlikely due
to the need for synchronization and in any case much more difficult then simple pass-
word logging. Session hijacking, an approach discussed later on, is a variation of an
automated attack against chip-card authentication, which does not rely on logging the
PINs, but instead utilizing them for chosen operations in real-time when the user is
trying to access some of the card’s functionality.

2.2 Logging authentication codes: implementation

For implementing a PIN logger, we wrote a simple patch to the OpenSC library. The
patch modified the function for forwarding the codes to Micardo cards. When the
function was accessed, it wrote down the PIN to a file on the hard drive (Fig. 8).
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Figure 8: The PIN logging setup

Summary. This modification was trivial to write, once the correct place in the driver
code was located and the custom C structures used understood. Both tasks require
minimal knowledge of the C language. For setting up the logger up on the client com-
puter, it is necessary to have temporary user- privileged access to either locally compile
or transfer a pre-compiled modified version of OpenSC to some chosen location on the
machine and point the Firefox browser to use it. This can be done via adding the
library directly to the secmod.db file stored in the browser user profile folder, adding it
via the browser graphical interface or adding it from a webpage using Javascript hooks
for handling PKCS#11 libraries.

The exploit enables an attacker to gather chip card PIN codes entered by the users of
the infected machines. To guard against this, the browser should secure the secmod.db
file storing the locations of token libraries by requiring administrative rights or alter-
native authorization for its modification. However, this might be hard to implement
and maintain in practice, as in multi-user machines it often makes sense for users to
have different token libraries installed.

2.3 Phishing and substituting certificates

The term phishing describes the process of a malicious entity masquerading as a trust-
worthy one in electronic communication, in attempt to acquire sensitive information
or involve an unsuspecting user in unsafe transactions.

For example, a user may receive an email or an instant message claiming to be from a
bank and requesting for some reason to reply with the password to the e-banking service
or follow a link to a webpage hosting a fraudulent password entry form. Alternatively,
a user browsing the web may, due to network anomalies or webpage vulnerabilities, be
redirected to a fake website that visually resembles some legitimate site, but employs
different functionality. The general mechanisms of phishing are well explained in [19].

Due to its relative technical simplicity and high success rates, phishing is a popular
form of electronic crime. PhishTank [17], one of the major phishing-report collators,
reported a monthly average of 6000-8000 websites positively identified as phishing sites
in the first months of 2009. Preventive measures to combat phishing include user educa-
tion, spam filters that filter out phishing emails by general characteristics and publicly
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maintained blacklists of servers that often host fraudulent websites. The prevalent re-
active approach is issuing site take-down notices based on verified used reports.

One of the solutions browsers provide to remedy the problem is employing public
key infrastructure (PKI) to verify the server’s identity. PKI refers to a binding be-
tween the public key of a host and the host’s identity, established by the means of
a trusted authority. The authority verifies the authenticity of the binding claim and
issues a certificate to confirm it. In practice, an individual or a company interested
in obtaining a verified certificate for one’s webpage typically generates an appropriate
certificate request and forwards it to a commercial authority. The authority then takes
the necessary steps to verify that the webpage really belongs to the claimant, charges
for the service, and signs the request with its private key. For other parties to be sure of
the authenticity of the signature, the authority provides a self-signed certificate issued
to its own name. It is obvious, that these self-signed certificates have to be distributed
to the users in a secure manner, since if a malicious authority gets to be trusted, all
webpages certified by it will be seen as trusted as well. Modern browsers ship with a
built-in list of audited popular certificate authorities, so webpages certified by these
authorities are trusted by default. Trusted pages are typically identified by a padlock
displayed in a dedicated area of the browser’s graphical user interface (Fig. 9).

Figure 9: A padlock displayed in the lower right corner of the Firefox browser when
connected to a webpage with a trusted certificate

Firefox makes a clear distinction between authority certificates, private keys corre-
sponding to which can be used for signing other certificates, and simple server certifi-
cates and has default assumptions about their trustworthiness. If a webpage aiming
to establish a secure connection presents a certificate signed by an authority unknown
to the browser, the user is shown an option to mark the domain name as a security
exception. An exception like this does not, however, grant trust to the certificate au-
thority that had signed the freshly accepted certificate. This means exceptions set this
way are valid on per-domain basis only and cannot be used for gaining implicit trust
for websites not visited by the user.

Certificates still leave several problems open. First of all, due to organizational hur-
dles, browsers often contain certificates crafted using encryption or hashes that have
been rendered insecure by recent cryptographic research. For example, at the time of
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writing, the latest version of Firefox for Mac OSX, Firefox 3.0.10, still had ca. 15%
of its about 150 built-in certificates using the MD5 hash function. MD5 was proved
not to be collision resistant by 2004 by the latest [20] and the fact was exploited to
fake certificate validity in practice in 2008 [21]. Firefox also holds several MD2-based
certificates, although MD2 is considered broken as well [25]. Second, as the number
of certificate authorities has grown, it has become increasingly easy and cheap to get
a domain name certified. There have been reported cases of well-known authorities
issuing certificates for arbitrary domain names without proper ownership verification.
As a result, a certificate alone cannot serve as an adequate indication of the website’s
identity.

Extended validation certificates, a concept developed by the certificate authority and
browser forum [16], add additional visual cues (Fig. 10) for convincing browser users
that the viewed page can be trusted. Before issuing such a certificate, the authority
has to take extra steps to verify the trustworthiness of the requesting party. The steps
include establishing the legal identity and the operational and physical presence of the
website owner, verifying ownership and control status for the domain name in question
and confirming the identity and authority of the individual representing the website
owner. The list of EV certificate authorities in the browsers cannot be modified using
trivial means.

Figure 10: A green address bar and additional information on a webpage with an EV
certificate

Studies of the effectiveness of visual notifiers of both common and EV certificates seem
to indicate, however, that uneducated users still find it hard to distinguish between
legitimate and untrustworthy sites and tend to ignore security warnings. For example,
see [18].

In our model, where we assume the adversary to have user-priveleged access to the
machine, all browser-related anti-phishing protection can be effectively circumvented.
The adversary can, for example, add self-generated certificates for arbitrary domains or
untrusted certificate authorities to the browser’s safe list, so chosen webpages would ap-
pear secure to the user. Alternatively, the adversary can just install a browser extension
that changes the graphical user interface of the browser so visual cues corresponding
to certified or EV-certified webpages would appear without actual grounds.

In regard to phishing, two-factor authentication methods like chip-card based authen-
tication seem to have an obvious advantage over simple knowledge factor methods like
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username and password combinations. By this we mean that since authenticating with
a chip-card requires both ownership of the physical chip card and the knowledge of the
PIN codes, then even if an adversary learns the PINs, one will not be able to establish
an authentication session to a third entity. The best one can achieve is to present a
user with fake functionality, which either simply deters the user from accessing some
real system or prompts the user to disclose further sensitive data and perform unsafe
transactions, for example issuing digital signatures for documents created by the ad-
versary.

Some security experts have argued that two-factor authentication methods are inher-
ently insecure against man-in-the-middle phishing attacks, where the malicious server
simply forwards the changing part of the authentication credentials is to the legitimate
server in real-time [22]. This may be true for one-time-passwords, but does not hold
for chip cards. Indeed, here the changing credential, namely the response to the TLS
challenge, depends on the identities of the peers participating in the protocol, as it is a
signature over all protocol messages, including the certificate messages of both peers.
Now, the adversary does not know the secret keys of the legitimate server and the chip
card, so if it forwards the certificate of the legitimate server to the client, one will not
be able to decrypt later communication. On the other hand, if the client is presented
with a different certificate, one will not be able to respond to the TLS challenge of the
legitimate server based on the user’s response. This again shows that in the case of
chip cards, phishing itself does not allow the adversary to authenticate to a third party
using the client’s credentials.

2.4 Phishing and substituting certificates: implementation

As a target website, we chose a site of a widely used information system. The par-
ticular choice was motivated by several reasons. First of all, the site has acquired its
certificate from AS Sertifitseerimiskeskus, an Estonian certificate authority not trusted
by default in Firefox. This implies, that for a first-time user, the webpage displays an
appropriate warning anyway, prompting to add a security exception for its certificate.
Sertifitseerimiskeskus does not issue EV certificates, so there is no visual indication of
the connection being secure, except for the standard padlock. Second, the informa-
tion system offers optional chip-card based log-in, so we were able to play through the
phishing scenario with card based authentication.

Note, that as described in an earlier section, phishing alone is not sufficient to mount
a man-in-the-middle attack against the chip-card based authentication. Still, it can be
successfully used to provide fake functionality, deter the user from accessing the actual
system and obtain sensitive data via web-forms. In the case of our information system,
the attacker could use the fake website to request the user to update personal details
or preferences and prevent the user from accessing the time-critical functionality of the
legitimate system.

For the set-up, we generated a certificate chain consisting of three certificates hav-
ing the same human-readable parameters as in the original chain using the OpenSSL
console utility. We then set up a wireless router with a fixed DNS entry for the domain
of the information system, pointing to a dedicated server computer, a Ubuntu desk-
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top with the Apache 2.2.8 web server extended by mod ssl 2.28 and OpenSSL 0.9.8g
modules (Fig. 11). The server was configured to require a secure connection with
optional client authentication accepting chip cards, display a page visually similar to
the original and present the fake certificate chain.

Figure 11: The phishing setup

This situation corresponds to a scenario where the adversary gets hold of the config-
uration of a public WiFi access point or sets up a rogue access point. In most local
switched networks, the situation can also be achieved by successful ARP or DNS at-
tacks that grant a man-in-the-middle status to the attacker. Based on the resulting
user view, we believe an incorrectly installed certificate makes it fairly easy to fool even
a technically competent user into thinking a connection to be legitimate.

As a side-note, during the course of our work we discovered that the server of the
information system was vulnerable to the automated HTTPS cookie hijacking attack
[24] and notified its adminstrators.

Summary. The attack requires the experience of generating and manipulating OpenSSL
certificates with various parameters, configuring a web server and creating simple web-
pages. It also requires the ability to lure the user to the set-up page, either by effectively
gaining man-in-the-middle status on the local network, poisoning entries of DNS servers
or using standard phishing practices like spam and social engineering. For creating an
illusion of a secure interaction, the attacker needs user-privileged access for adding
certificates to the victim’s browser.

Typical methods to combat phishing are described in the previous section. However,
even with good user training, it can be difficult to recognize that a fake webpage is
being served instead of the original one, when the look-and-feel are almost identical and
the browser displays visual security cues. In addition to using standard methods, one
can install additional extensions to the Firefox browser, that try to correctly identify
websites based on secondary parameters like behavioral differences in different sessions
etc.

2.5 Session hijacking

Session hijacking refers to the scenario, where a party attempts to establish a commu-
nication session with a certain entity, but an adversary-controlled session under the
name of this party is established with some other entity instead, possibly without the
victim party’s knowledge.
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Session hijacking scenarios vary depending on the underlying technologies, in this sec-
tion we will concentrate specifically on chip-card based authentication.

2.6 Session hijacking: implementation

The general idea of our exploit was to modify the OpenSC driver or specifically the
part of it that handles the functionality of Micardo cards to turn to an external script
when the challenge response computing operation was called. The script would then
initiate a TLS connection to some chosen remote server and switch the challenge bytes
sent to the card (Fig. 12).

Figure 12: Hijacking the TLS challenge request

The implementation process worked out as follows. We wrote a simple python script
that created a HTTP connection over TLS. For handling the TLS protocol, we used
a public domain python library tlslite [23], which we had to modify in order to
accommodate token-based client authentication. It was worth the effort though, as in
addition to taking care of the protocol, the library provided our sample script a con-
venient interface for later requests to the server. We then introduced changes to the
part of OpenSC concerned with the challenge response computation of Micardo cards.
The changes consisted of bindings using python/C API, so that our script was called
once the operation was accessed. The script initialized a connection to a chosen server
and returned the bytes needed to be signed to the driver, which took advantage of the
user’s authorized status to obtain a valid response from the chip card. The script then
used this response to complete the authentication to the server.

For testing the implementation, we used the same server software setup as in the
previous section. This time, the server was assigned a self-signed certificate and con-
figured to require client-authenticated SSL/TLS on the index page and log all visits.
After the setup, we opened Firefox, linked it to the modified OpenSC and tried to
access the information system introduced in the phishing section. Indeed, our server
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logged a successfully established secure connection and a HTTP-GET request to the
index page.

Summary. In theory, the attack requires only superficial understanding of the struc-
ture of the OpenSC driver suite and sufficient programming skill to write a script
interacting with a webpage via HTTP queries and to bind this script with an appro-
priate TLS library. In our case, some time was spent on linking the script and OpenSC
and on extending tlslite. As this was a proof-of-concept implementation, we also
made some simplifications: the script would only react to the signing event of Micardo
cards and a specific subset of possible cipher suites and fixed TLS protocol behavior was
chosen, so that the script would work with our server. These technical restrictions can
be overcome by spending more time on testing the TLS library with different servers
and testing OpenSC with different chip cards. For deploying the modified library, the
same methods can be used as in the case of the logging application. For users to guard
against the attack, we again recommend the current situation with the database file
storing locations of dynamic token libraries to be reviewed.

All in all, we believe it is moderately easy for an experienced programmer to develop
a session- hijacking module for all OpenSC-supported chip cards that can be extended
to communicate with chosen servers. This module could work in a covert manner and
activate with a certain probability, so that the only indication of its presence would
be the once in a while increased latency and connection failures when authenticating
online. The latency obviously results from the need to establish a new connection af-
ter the browser has contacted the driver. For additional stealth, the script could act
depending on the speed of the internet connection and seize its operations after a fixed
timeout. In our test case, the internet connection was fast enough for the script to go
unnoticed to a typical user.

The shortfalls of our current approach are the need for local compilation and the result-
ing dependence on the environment. Implementing the session hijacker as a browser
extension, as described in the first chapter, would solve these problems, as Firefox aims
to be a cross-platform browser. We started developing such an extension, but the task
grew rather complex. This came from the fact that Firefox provides many options for
extending browser functionality, but not always for modifying the existing one. For
example, graphical user interface components and their behavior can be easily replaced
or overloaded, but determining whether the next connection shall be mutually authen-
ticated TLS is non-trivial. Nevertheless, such an extension can surely be engineered,
for example if it is to target authentication attempts to specific websites based on the
URL address. With the current policies for developing browser extensions, there would
be no way to guard against the attack but to monitor the list of the activated exten-
sions in the browser. This list is implicitly stored in the user’s browser profile folder,
so an example solution would be an automated administrative process monitoring this
folder.
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3 Building a better driver

By now we have shown, that the solution for smart card based authentication employed
as now may be vulnerable to certain types of misuse, most notably, session hijacking.
In this section, we investigate whether it is possible to change the current software and
hardware architecture so the implementation improves with respect to security against
the above-mentioned attacks. For this, we first formalize the strongest security we can
achieve assuming the operating system core and drivers cannot be compromised. We
then discuss the feasibility of changes that bring the architecture closer to the defined
security goal.

3.1 Security model

One can view a computer network as consisting of physical entities - network nodes
and computers - and logical entities, the users of physical devices (Fig. 13). We assume
that each physical entity is used by a single logical entity at a time. If necessary, servers
and other multi-user devices can be seen as groups of multiple network nodes. In our
model, the adversary is mobile, meaning it is able to dynamically corrupt any number
physical entities for arbitrary periods of time. The adversary is also assumed to have
full control of the network traffic.

Figure 13: A computer network abstraction

The goal of entity authentication protocols is to establish an association between phys-
ical and logical entities. In practice, if a protocol is successful, it is followed by a
communication session, as seen in the example of TLS. It is obvious, that if the ad-
versary has compromised a network node, one can modify the contents of this session.
However, it is unclear, whether the adversary can still modify the session once one
has lost control over the node. Also, it is unclear, whether the adversary can force
the user to authenticate to some entity other than the user intended even if one has
control of the user’s node. This motivates us to say, that the architecture of a de-
vice achieves maximal security with respect to a entity authentication protocol if the
following conditions are met.
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• The adversary cannot under any circumstances force a user to authenticate to
some other entity unintentionally.

• When the adversary does not actively control either of the physical endpoint
nodes, it cannot modify the content of the communication session.

One can see, that due to the possibility of hijacking attacks described in the previous
section, the current architecture of the chip card related software stack does not provide
maximal achievable security with respect to TLS.

3.2 Suggested solutions

There do indeed exist authentication schemes that provide the security level defined
above. Consider a network, where the device hardware is secure and all network cards
contain internal secret keys. When establishing an end-to-end connection, the oper-
ating systems of these devices specify only the physical address of the communication
partner and negotiate a TLS channel using the available infrastructure. The distribu-
tion of public keys does not have to be authentic, that is, the adversary can generate
key pairs, that claim to belong to some other address. Additionally, every client device
has a chip card reader with a pin pad and a display. For client authentication and
application data transfer, another TLS channel is created between the chip card and
the server. The display shows the user of the client machine excerpts from the TLS
protocol, notably the identity of the server and its certificate authority. It is easy to
verify that this configuration achieves the maximal achievable security. Indeed, the
display makes sure the user does not authenticate to any other party unintentionally.
Due to the end-to-end physical communication channel, the adversary looses the ability
to modify or listen to the communication session messages on withdrawal. However,
such a configuration is surely infeasible because of the organizational costs.

Let us see how we can achieve the security goals by improving on the technologies
used today. First, we need to eliminate the possibility of the attacks with a substitute
chip card library. This can be achieved by protecting the link between the browser
and the library by administrative rights. The second step is to transfer the client-side
mutual TLS protocol handling functionality to the driver level. This means giving up
the modularity of the software stack and engaging in browser- level protocol based
software proxying, but this way the TLS challenge is guaranteed to belong to the cor-
rect session, as it is computed by the driver based on its own communication. As the
graphical user interface of the operating system can be manipulated by locally installed
malicious applications, its authenticity generally cannot be verified, so an appropriate
security measure for securing PIN input and assurance of the peer’s identity in the TLS
protocol could be a physical pin pad reader with a display from the previous example.
The display would again show the user the appropriate parts of TLS messages, notably
the domain name of the peer and the certificate authority by whom its certificate was
signed.

Such changes can be implemented with reasonable means: some developing work on
the current software solutions and engineering of a custom pin pad reader. Purchasing
the latter would translate into additional costs to a single user, but surely make up in
the gained security.
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Kiipkaardipõhise Autentimise Analüüs

Aleksei Gornõi
Bakalaureusetöö (6 EAP)
Kokkuvõte

Enamik kiipkaardiga töötavatest rakendusest eeldab vaikimisi, et liidestus kaardi ajuriga
ei ole pealtkuulatav ning et sellele saadetavad andmed pole muudetavad. Selline eeldus
pole üldjuhul mõistlik, sest tavakasutajal puuduvad vastava turvataseme tagamiseks
vajalikud tehnilised teadmised. Antud lõputöö käsitleb kiipkaartide autentimisfunkt-
sionaalsuse turvalist kasutamist olukorras, kus pahatahtlikul kolmandal osapoolel on
olemas ajutine kasutajaõigustega ligipääs kaardi omaniku masinale.

Selleks uurime kõigepealt võimalikke ründeid teoreetiliselt, lähtudes standardsetest
lahendustest rakenduste ja operatsioonisüsteemide arhitektuuris. Seejuures loeme iga-
suguse kiipkaardi-vastase ründe edukaks, kui see ei nõua ründajalt jätkuvat aktiivset
osalust ning kui ründe käigus kasutatakse kaarti selle omaniku tahte vastaselt.

Teiseks, implementeerime vastavad ründed konkreetsel platvormil, mis koosneb Ubuntu
Linux operatsioonisüsteemist, OpenSC kiipkaardi-ajurist ning veebilehitsejast Mozilla
Firefox.

Kolmandaks, määrame, millised muutused mainitud platvormi komponentides tagavad
maksimaalse turvalisuse kasutaja-privileegidega ründaja vastu.
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