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Abstract

During last years there has been a breakthrough in genetics and biotech-
nology. Present technology allows large scale association studies between
genotypes and diseases. The most powerful methodology of association
studies is the analyse of single nucleotide polymorphisms (SNPs). The es-
timated number of SNPs in the human genome is 10 million. Therefore,
SNP markers provide practical fine-grain map of human genome. Theoret-
ical models and practical experiments suggest that a single strand of DNA
is composed from haplotype blocks—sequences of fixed DNA strands. In
other words, few suitably chosen SNPs can reveal most of DNA strand
and reduce the number of required SNPs for association studies.

The following review gives a introduction to basic concepts and mod-
els. We analyse pros and cons of various definitions of haplotype blocks,
point out advantages and limitations of inference methods. We cover all
three main approaches: methods based on marker pairs, combinatorial
methods and models with minimal-description length. We also briefly
discuss the optimal marker set (OMS) problem that is a common for all
methodologies. Good solution can provide high quality of the end results
and lower the measurement costs. However, the complete treatment of
OMS is out of our scope.

1 Introduction

The human genome sequence consists of 3 billion DNA base-pairs which are di-
vided into 46 chromosomes. The chromosomes are coupled into pairs holding two
copies of genes. The latter makes it difficult to extract one DNA strand (hap-
lotype), since both chromosomes contribute to the measurements. Although
asymmetric methods allow to isolate and measure single chromosomes, they
are more sophisticated and resource demanding. Thus asymmetric methods are
not suitable for large scale studies. Alternative strategy is to measure both
chromosomes at the same time and afterwards restore original DNA strands by
statistical inference.

The gargantuan number of base-pairs poses a big problem for large scale
DNA sequencing. Somewhat surprisingly, 99.9% of base-pairs are identical
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among different haplotypes. The natural variation of haplotypes causes multiple
differences (polymorphisms) like substitutions, insertions and deletions of base-
pairs. The most common are single-nucleotide polymorphisms (SNPs)—local
single base-pair differences. The SNP are distributed evenly over the genome
and occur approximately after every thousand base-pairs. Therefore, measure-
ments of SNPs reveal local structure of the haplotype. Furthermore, current
technology favours SNP measurements and offers an economical method for
association studies. The correlation between the occurrence of SNPs and dis-
ease symptoms indicates possible causal relationship which can be confirmed or
rejected by more elaborate analysis.

One outcome of the The Human Genome Project was approximately 3.7
millions SNPs that were discovered and localised [13]. Another authoritative
collection was composed by the International SNP Map Working Group, it con-
tains 1.4 millions of SNPs [21]. These figures are in the good accordance with the
theoretical estimates of 4-10 million SNPs [28]. The strong correlation between
neighbouring SNPs provides a shortcut to genome analysis. Various estimates
state that only 100–500 thousand tag SNPs are sufficient for association studies,
because properly chosen markers can identify large haplotype blocks. The main
aim of the Haplotype Map project [25] is to find an optimal set of SNPs and
the corresponding haplotype blocks so that the whole genome is covered, and
publish the corresponding map.

Inference of haplotype blocks consists of three main steps. First haplotypes
are extracted from experimental data. Usually biological measurements provide
only genotype—a sequence of unordered SNP pairs that is formed by two differ-
ent haplotypes. The identification of haplotypes is non-trivial task, since there
are exponential number of possible solutions. The most common approaches are
Clark’s [12, 22] and EM-algorithms [16, 17]. Some recent methods are based on
Bayesian inference and Monte-Carlo simulation [38, 33]. Some methods combine
the haplotype inference with the block identification.

In the next stage haplotype blocks are determined. The three main ap-
proaches use different criteria. The most straightforward approach is to use
correlation between SNPs to determine block boundaries [18]. An alternative
combinatorial approach [34, 47] seeks such a block structure that minimises
the number of tag SNPs. Third alternative [31, 2, 19] is based on minimum-
description length principle—a model with minimum description is inferred from
data.

In the last stage, locations of SNPs that identify the haplotype blocks are de-
termined. The underlying combinatorial problem corresponds to the NP-hard
test-set problem. Fortunately, the number of haplotype blocks is often small
and thus the exact solution is feasible. Nevertheless, the straightforward explo-
ration of the search space can be quite demanding, especially when haplotype
blocks are long. Therefore, additional insights for pruning the search space are
essential for efficiency.

Since there are so many different approaches, we try to formalise, analyse
and compare them. Each method has its own advantages and there is no perfect
haplotype block definition. There are just too many different and often opposite

2



goals. However, the minimal number of tag SNPs seems to be the most com-
pelling for large scale studies, even if the inferred haplotypes are not biologically
justified.

For practical reasons, the method should be relatively robust and handle
missing data without additional complications, otherwise unavoidable measure-
ment errors make the method unstable or too complicated. Another important
efficiency issue is locality. Although the method should fit model globally, the
quality of end result should not drop drastically, if the haplotype is divided into
separated regions. More sophisticated methods have at least quadratic complex-
ity, therefore divide-and-conquer strategy reduces significantly the complexity
and allows to parallelise calculations.

2 Basic concepts and notations

The human genome is altered by two biological phenomenas: mutations and
a meiotic crossover. The effect of mutations is usually local and brings diver-
sity to the human genome. Since the mutation rate is small, these differences
propagate through the population. But on the same time the meiotic crossover
swaps “random” blocks of parental haplotypes and thus decreases the corre-
lation between different DNA markers. The decay in structure is reversed by
bottleneck events when population descend form a small group of individuals.
Strong positive selection causes also similar patterns in DNA. In both cases,
a haplotype pattern becomes dominant. Afterwards decay continues and the
dominant region are broken into haplotype blocks.

We define the haplotype as a sequence of consecutive SNP marker values. Let
the number of markers be n and the number of investigated haplotypesm. Then
a haplotype segmentation B =

(

(s1, e1), (s2, e2), . . . , (sr, er)
)

consists of all start
and endpoints of blocks. The block itself is a consecutive sequence of indices
[a, b] = {a, a1, . . . , b}. In principle, the segmentation might be incomplete, but
the blocks must be non-overlapping and non-empty s1 ≤ e1 < s2 . . . < sr ≤ er.
Each segmentation induces the haplotype blocks. Let us denote the haplotype
by h and the whole dataset as a m× n matrix H . Then each block [sk, ek] will

contain qk different haplotype blocks a
(k)
s .

There is no biological reason why the block structure of the haplotype must
be unique. For example, consider two sub-populations that have different seg-
mentations B1 and B2. Then a reasonable outcome from the segmentation al-
gorithm is the intersection of both partitions. Small neighbouring blocks in the
sub-populations are differently correlated depending on the original structure.
Therefore, large differences among the transition frequencies

Pr
[

a
(k)
t

∣

∣a(k−1)
s

]

, t = 1, . . . , qk, s = 1, . . . , qk−1

suggest existence of different sub-segmentations. In our example Pr [D2|D1 ] = 1
and Pr [A2|D1 ] = Pr [B2|D1 ] = Pr [C2|D1 ] = 0 provide strong evidence of two
different haplotype segmentations. Of course, the implication holds only if the
algorithm returns approximately the intersection of sub-segmentations.
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A1 A2, A3 A4, A5 A6

B1 B2, B3 B4, B5 B6

C1 C2, C3 C4, C5 C6

D1, D2 D3, D4 D5, D7

Figure 1: Intersection of two different haplotype segmentations

The simplest statistical indicator of the block structure is joint frequency
distribution of two markers. The standard normalised association measure for
two markers A and B with two possible alleles is D′ = D/Dmax, where

D = Pr [A = 1, B = 1 ]− Pr [A = 1 ]Pr [B = 1 ]

and

Dmax = min {Pr [A = 1 ]Pr [B 6= 1 ],Pr [A 6= 1 ]Pr [B = 1 ]} , when D > 0,

Dmax = min {Pr [A = 1 ]Pr [B = 1 ],Pr [A 6= 1 ]Pr [B 6= 1 ]} , when D < 0.

The generalisation to markers with more than two alleles is a weighted average

D′ =
∑

i,j

Pr [A = i ]Pr [B = j ]
∣

∣D′
i,j

∣

∣ ,

where D′
i,j is pairwise measure that is

Di,j = Pr [A = i, B = j ]− Pr [A = i ]Pr [B = j ].

Alternative measure for di-allelic markers is a correlation

r =
Pr [A = 1, B = 1 ]− Pr [A = 1 ]Pr [B = 1 ]

√

Pr [A = 1 ]Pr [A 6= 1 ]Pr [B = 1 ]Pr [B 6= 1 ]
.

The most sophisticated method for determination linkage disequilibrium of two
markers is the exact Fisher’s test. Let fij be the haplotype counts with alleles
A = i and B = j and ri and cj marginal counts. Then the combinatorial
probability of observed joint frequency F is

Pr [F | r1, . . . , rm, c1, . . . , cn ] =
r1! · · · rm!c1! · · · cn!

N !
∏

i,j

fij !
,

where N is a number of observations. For each possible assignment of fij that is
consistent with marginal distributions conditional probability is calculated. All
probabilities that are less than Pr [F | r1, . . . , cn ] are summed up1. The sum is
a p-value that characterises the significance of linkage disequilibrium. However,
the enumerations over all possible assignments quickly comes infeasible and thus
Monte-Carlo simulation methods are used.

1To define p-value, we need a meaningful linear ordering of matrices F and in principle
some other ordering may be more suitable.
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3 Methods based on marker correlation

Intuitively, the correlation between markers reveals the information about hap-
lotype blocks. Markers that are always in the same block have high correlation
and the markers from different haplotype blocks should have low correlation.
The latter is not always true, for example if two neighbouring blocks are highly
correlated then the marker correlation is also high. Therefore, the decision
whether the markers are connected or separated is not a clear cut.

We start from the simplistic framework and extend it further to the method-
ology used in [18]. First we define two types of marker pairs.

Definition 1. Let D′ be the linkage disequilibrium between markers s and t.
Then the pair s, t is strongly connected if β < D′ and strongly separated if
D′ < α. All pairs that are either strongly connected or separated are informa-
tive, others are non-informative.

Ideally, the block should consist of contiguous region strongly connected
markers. But mutations and genotyping errors make the demand unrealistic.

Definition 2. The haplotype block is a maximal contiguous region of markers
such that over 95% of all informative pairs are strongly connected.

Note that this definition does not guarantee proper segmentation, since the
blocks may overlap. Consider a haplotype that consist of three blocks 150, 3
and 150 markers wide. For simplicity, let D′ = 1 for the marker in the same
block and D′ = 0 for others. Then the middle block can be merged to both
sides, because 450 of inter-block pairs is less than 5% of 1,1628 pairs.

The ambiguity around long blocks is unavoidable, therefore conflict han-
dling mechanism must be provided. In case of overlap, the intersection must
be assigned to the closer neighbour or recursively divided such way that large
blocks do not merge smaller ones. In principle, percentage of strongly connected
markers may be low in some sub-blocks of a valid block. Therefore, the best
segmentation requires global search and quadratic computational complexity.
A more efficient alternative is to fix the size of the look-ahead buffer, that is to
allow only a fixed number of invalid sub-blocks during the iterative widening
of blocks. This strategy reduces complexity to O(ln), where l is the maximum
length of haplotype block.

Robustness The robustness of the method is determined by parameters α and
β. Different errors occurring in the genotyping phase can drastically change LD
measures. We refer here robustness results of di-allelic markers [1].

Let A and B be actual and A′ and B′ observed marker values. Two com-
mon error mechanisms during the genotyping are symmetrical and one-sided
error. The former postulates that both error types are equiviprobable, al-
though different markers can have different error probabilities µ and ν. One-
sided error mechanism excludes one error type, that is Pr [A′ = 0 | A = 1 ] =
Pr [B′ = 0 | B = 1 ] = 0 and the other errors have probabilities µ and ν. The
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Symmetric One-sided Symmetric One-sided
Pr [B = 1 ] D′

T D′
E D′

T D′
E D′

T D′
E D′

T D′
E

Pr [A = 1 ] = 0.90 Pr [A = 1 ] = 0.50
0.90 1.00 0.67 1.00 0.70 1.00 0.64 1.00 0.70

0.50 0.33 0.50 0.35 0.50 0.32 0.50 0.35
0.50 1.00 0.64 1.00 0.70 1.00 0.88 1.00 0.94

0.50 0.32 0.50 0.35 0.50 0.44 0.50 0.47

Table 1: The difference between true value D′
T and estimated value D′

E under
symmetrical and one-sided error rate 3% [1].

first order error estimate is obtained by differentiatingD′ and substituting prob-
ability differences by expected differences. For example, in the symmetrical
model the difference of Pr [A = 1, B = 1 ] and Pr [A′ = 1, B′ = 1 ] is

∆Pr [ 11 ] = −(µ+ ν)Pr [ 11 ] + µPr [ 01 ] + νPr [ 10 ].

Table 1 shows that value of D′ changes drastically under modest error rate
3% and makes the segmentation sensitive to errors. It is common to all linkage
disequilibrium measures, although some of the are more robust. Of course,
proper choice of thresholds makes the method more robust, but in the same
time increases the number of non-informative marker pairs.

The sub-segmentations have similar effect on D′ as errors. Table 2 illustrates
the case with two sub-populations. In the first D′ = 1 and in the second markers
are independent. Distributions that are symmetric are also less sensitive and
for dominant alleles D′ does not change much. In other cases the markers will
be probably separated and the resulting segmentation is close to intersection of
sub-segmentations.

Further enhancements The value of D is essentially a point estimate and
known to fluctuate upwards. The use of confidence intervals makes the inference
statistically more justified. This leads to methodology [18], where one-sided con-
fidence intervals are used instead of D′. Confidence intervals of D′ are obtained
by bootstrap methods, since there is no explicit formulas. Still the method is
sensitive to errors, since the erratic distribution causes erratic confidence in-
tervals. Another shortcoming is subjectivity—different thresholds give different
results. On the other hand, the running-time is almost linear O(lmn) and lo-
cality is quite well preserved.

4 Four-gamete test

The four-gamete test [26] provides indisputable evidence of recombination events
under infinite site model. The infinite site model allows only one mutation per
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First Second distribution
distribution Rate (0.5, 0.5) (0.9, 0.9) (0.9, 0.1) (0.1, 0.9) (0.1, 0.1)

(0.9, 0.9) 10% 0.79 0.90 0.99 0.99 0.94
30% 0.56 0.70 0.95 0.95 0.88

(0.9, 0.5) 10% 0.64 0.83 0.97 0.17 0.94
30% 0.32 0.56 0.92 −0.25 0.79

(0.9, 0.1) 10% −0.04 0.50 0.90 −0.33 0.50
30% −0.16 0.20 0.70 −0.57 0.20

(0.5, 0.5) 10% 0.90 0.96 1.00 1.00 0.96
30% 0.70 0.79 0.98 0.98 0.89

(0.5, 0.1) 10% 0.64 0.89 0.98 0.17 0.83
30% 0.32 0.79 0.92 −0.25 0.56

Table 2: Linkage disequilibrium D′ of two sub-populations the first with D′ = 1
and the second D′ = 0. Distributions are fixed by marginal frequencies
Pr [A = 1 ] and Pr [B = 1 ].
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Figure 2: Genealogy graphs: no recombination, detectable recombination, un-
detectable recombination

base-pair. Since the probability of single mutation of a base-pair is very small,
the model is well-justified.

The mutation history can be captured in the binary genealogy tree. The
leaves of the tree are observed haplotypes and the other vertices are interme-
diate haplotype forms. Each intermediate vertex has two children, only one of
them can contain a new mutation. Consider now region of m SNPs. If no re-
combination have occurred, the number of different haplotype patterns is m+1,
because a mutation can happen only in one subtree.

Recombination joins mutations of different parents and the resulting geneal-
ogy graph can have more than m + 1 leaves. Since each recombination gener-
ates one new vertex in the graph, the maximum number of different patterns is
m + 1 + r, where r is the number of recombinations. In two marker case four
different marker pairs indicate the recombination. This is called four-gamete
test (FGT). But every recombination is not captured by FGT, see figure 2.

The four-gamete test provides a neat definition of haplotype block [39] that
does not contain any subjectively adjustable parameters.
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Definition 3. The haplotype block is a maximal contiguous region of markers
that pass the FGT.

The FGT can handle only di-allelic markers and not three or four alleles. The
main advantage of the FGT segmentation algorithm is low complexity. First,
FGT between two markers takes O(m) comparisons and the overall complexity
is O(lmn), where l is the length of the largest block.

In principle, block borders depend on starting point, but the difference prop-
agation over a long region is unlikely. These differences can be detected by ig-
noring iteratively starting markers in the first block. If all runs indicate a same
block boundary, then the segmentation after it is unique. Therefore, the algo-
rithm can be run in parallel on several subregions without altering the resulting
segmentation.

The failing FGT test between neighbouring markers forces strong block bor-
ders. If the population consist from several sub-segmentations, then all strong
borders of sub-segmentations will also appear in the global segmentation. In
other words, the summary segmentation is close to intersection.

Generally, the FGT method produces more blocks than the other methods.
For example, the FGT method found 75 blocks [2]in 5q31 data [14], whereas
the evidence suggest existence of of 10–12 blocks. The excessive borders are
caused by the working principle of FGT, since markers are separated if there
is an evidence of a recombination. In other words, the FGT finds probable
recombination borders, but these might be sub-optimal for the haplotype map.
Moreover, the infinite site model is not always adequate—mutations can happen
more than once.

Another major drawback is sensitivity to genotyping errors. Clearly, a single
measuring error can force a new border. Thresholds for marker pairs can make
the method more robust, but this requires a larger sample. Also, missing data
must be ignored, since imputation methods lead either to erratic borders or are
useless.

5 Combinatorial methods

Combinatorial methods have easily interpretable objective. They seek through
all possible complete segmentations and output a segmentation with minimal
number of required tag SNPs. The utility is evident even if the segmentation has
no biological grounding. The methodology was successively introduced through
series of articles [34, 45, 47, 49, 48].

First, we describe general dynamic programming strategy. The main idea
behind search algorithm is universal and has been used in MDL methods [31, 2].
Algorithm 1 is applicable when the cost function is additive

f(B) =
r

∑

i=1

f(si, ei), B =
(

(s1, e1), . . . , (sr, er)
)

.
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For the fixed last block [s, n], the best segmentation must have minimal cost over
all possible segmentations of region [1, s− 1]. The algorithm starts dynamically
building best segmentations of prefix regions. Let Sj be the minimal cost of the
prefix [1, j]. Then Algorithm 1 computes iteratively

Sj+1 = min
i=1,...,j

Si + f(i, j).

Stored minimising values Ij allow to reconstruct the minimising solution by
backtracking.

Lexicographic ordering and multicomponent cost functions allow to achieve
objectives with different priorities. For example, to find segmentation with
minimum number of SNPs that has minimum number of blocks, we just define
f(i, j) = (κ, 1), where κ is the minimum number of markers that identify the
haplotype block. The lexicographic ordering assures that the optimal segmen-
tation achieves the goal.

Algorithm 1: Generic dynamical programming algorithm

Input: Haplotype data and cost function f(·, ·).
Output: Segmentation with minimal cost f(B) = f(s1, e1) + · · ·+ f(sr, er).

S0 ← 0
for j = 1 to n do

Sj ← +∞
I for i = 1 to j − 1 do

if Sj > Si−1 + f(i, j) then

Ij ← i− 1
Sj ← Si−1 + f(i, j)

NNN Restoring the segmentation NNN

k ← n
B = ∅
while i > 0 do

Add the pair (Ik + 1, i) to B
k ← Ik

return B

The heart of the algorithm is the cost function f . To define f properly, we
must specify what are the haplotype blocks and when is haplotype identified
by marker values. As ordinary haplotype data contains missing marker values,
there must be a simple procedure for missing data. There are two different
approaches combinatorial and statistical. The combinatorial method [34, 47]
divides haplotypes into different classes and excludes ambiguous haplotypes.

Definition 4. Let a = a1 . . . al and b = b1 . . . bl be haplotypes. Then haplo-
types are compatible a ∼ b if ai = bi for all pairs without missing values. The
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haplotype b is ambiguous if there are two non-compatible haplotypes a and c

such that a ∼ b ∼ c.

It is easy to see that a set of non-ambiguous haplotypes consists of non-
intersecting compatible sets and certain haplotype block identifies each set. One
can define corresponding haplotype blocks for each region [s, e], but this leads
to over-fitting. For example, consider the dataset with 200 haplotypes that
covers over 10,000 markers. Approximately 200 markers are required to identify
each haplotype and thus without constraints the optimal partition will be trivial.
Because of that a valid haplotype block must have support over certain threshold
and a valid block certain coverage.

Definition 5. Support supp(as) is the number of non-ambiguous haplotypes
that are compatible with haplotype block as. The haplotype block as is valid if
as is among the observed data and supp(as) ≥ τ . The block is valid if summary
support of valid haplotype blocks covers over α% observations.

Finding out the smallest set of ambiguous haplotypes can be tricky in theory.
In practice, it is sufficient to start eliminating haplotypes with highest count of
missing values and continue until all ambiguouties are resolved.

Definition 6. An indicator set of [i, j] is the set of markers that identify hap-
lotype blocks with summary support over α% of all haplotypes2. Let κ(i, j)
denote the minimal size of the indicator set.

The definition allows misclassification, because some haplotypes are unam-
biguous. An alternative definition is based on haplotype diversity [11]. Then
identified haplotypes must capture variation of the block. As the resulting seg-
mentations are similar [47], we omit details. Due to the over-fitting constraint,
the explicit form of the cost function is

f(i, j) =

{

(

κ(i, j), 1
)

, if [i, j] is a valid block,

(+∞, 1), otherwise.

Finding the minimal marker set of a block is NP-hard task, since for zero-
one markers it coincides with minimum test-set problem. Fortunately, if the
number of valid haplotypes is small, the enumeration over all possible variants
is feasible. Let the block length be l and number of haplotypes q. Then at most
q − 1 markers will identify haplotype blocks and we must test all subsets with
size less than q. The resulting complexity is polynomial in l

(

l

1

)

+

(

l

2

)

+ · · ·+
(

l

q − 1

)

= O(lq−1)

However, the number of variants grows drastically, when l is big. For example
l = 100 and q = 6 yields 7.9 · 107 variants. Thus big blocks with relatively few
haplotypes can cause algorithm to slow down.

The task of finding the minimal indicator set can be restated as set-cover
problem [6]3. Each marker separates several haplotype blocks. Let I be the

2Some sources [34, 47] require that α% of unambiguous haplotypes are covered.
3The citation gives wrong impression
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set of all different haplotype pairs then we can define |I| × l zero-one matrix A,
where

aij =

{

1, if the haplotype pair i has different values of the jth marker,

0, otherwise.

A proper marker set must separate all haplotype pairs. The corresponding
constraint Ax ≥ 1, xj ∈ {0, 1} is linear. Since the cost function c = 1 · x
is also linear, we get a classical setting of set-cover problem, which can be
tackled with generic integer linear programming methods [37, 43] and other
more specific exact and approximate methods (see [20, 10, 32]. Another source
for optimisation is to use overlappings between blocks. More precisely, if [a, b] ⊆
[c, d] then κ(a, b) ≤ κ(c, d).

The statistical inference methods for haplotype blocks specify first a prob-
abilistic measurement model. The haplotype blocks are inferred via maximum
likelihood or minimum description length principle. One possible approach is to
specify error mechanism as multivariate Bernoulli distribution and choose model
with highest likelihood L0. But this causes over-fitting, therefore we must either
limit possible number of haplotype blocks or use penalised likelihood. However,
this could lead to a model far from reality and it is reasonable to consider all
blocks with likelihood L < αL0 invalid.

The approach is very close to MDL methods and same techniques like EM-
algorithm and clustering can be used for determination of haplotype blocks.
However, we still get segmentation that requires minimal number of tag SNPs.

Robustness Genotyping errors consist of missing and incorrect markers. Elim-
ination of ambiguous haplotypes solves the problem with missing values. True
measurement errors can cause erratic and hide rare haplotypes. The latter is
unavoidable, whereas the haplotype support threshold can eliminate most of
errors. The threshold τ should be higher than µm, where µ is error probability
of a single marker. On the other hand, too high τ will filter out rare haplotype
blocks. Due to the small sample size current studies [34, 47] use the lowest
threshold τ = 2.

The threshold of summary cover α quantifies how far is the discrete model
from true distribution. High values of αmake the method more sensible to errors
and increase the number of tag markers. But low values allow large deviations
and make the haplotype model less powerful (see [45] for additional details).

Surprisingly enough, a sub-population may require more tag SNPs. First
some rare haplotypes, refuted globally by threshold τ , may be frequent enough
in the sub-population. Secondly, misclassified haplotype blocks may be unevenly
represented and thus the global segmentation may be invalid.

Locality The quadratic complexity of dynamic programming algorithm favours
divide-and-conquer technique. When the haplotypes are divided into k equal
regions, the overall running-time reduces k times. More importantly, we can
quantify the maximum number of additional markers.
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Lemma 1. Let u be the number of tag SNPs of the optimal segmentation and
u′ the number of tag SNPs of the optimal segmentation with the border after the
kth marker. Then

u′ − u ≤ max
(i,j)∈I

κ(i, k) + κ(k + 1, j)− κ(i, j) ≤ qmax,

where qmax is the maximal number of haplotypes and

I = {(i, j) | i ≤ k < j and a block [i, j] is valid and indivisible} .

Proof. Consider the optimal segmentation. If k collides with the border then
u′ = u. Otherwise, we get plausible segmentation by adding border after k.
The inequality is just the upper bound of possible growth. Clearly, the block
must be indivisible that is further splitting will increase the number of required
markers.

Alternative settings The number of tag SNPs is usually limited so a more
natural objective is to maximise genome coverage with fixed number of markers.
We need another additive cost function ℓ(B) = ℓ(s1, e1)+ · · ·+ ℓ(sr, er), where ℓ
quantifies the span of a block. The simplest form is ℓ(i, j) = j− i+ 1, but more
complex ones quantify the block span in base-pairs or even penalise introns,
exons and other control structures differently.

Definition 7. The fixed tag SNP problem [48] is following. Find a segmentation
B such that f(B) ≤ u and maximises ℓ(B).

Let Sjk be the maximal span of the segmentation in region [1, j] that has at
most k tag markers. The segmentation can have two possible configurations. In
the first the last block does not contain the end marker and thus Sjk ≥ Sj−1,k.
Alternatively, the last block is [i, j] and thus Sjk ≥ Si−1,k−f(i,j) + ℓ(i, j). This
leads to the recursive equation

Sj,k = max

{

Sj−1,k,max
i<j

(

Si−1,k−f(i,j) + ℓ(i, j)
)

}

,

where f(i, j) =∞ for invalid blocks. Natural boundary conditions are

S0,k =

{

0, if k ≥ 0,

−∞, if k < 0.

The complexity of a dynamic programming is O(lnu), where l be the maximal
length of the valid block. In other words, the running-time is magnitudes longer
than in the simple setting.

Another compelling task is to find partition that minimises the number of
tag marker with respect to the fixed span.

Definition 8. The fixed genome coverage problem [48] is following. Find seg-
mentation B such that ℓ(B) ≥ ℓ0 and f(B) is minimal.
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Here again, the last block of the optimal partition may be included or ex-
cluded. As a result, a straightforward algorithm requires n × ℓ0 matrix for
storing intermediate results, since the algorithm must keep track of excluded
markers. It is natural to allow ℓ0 be a fraction of n, but this leads to cubic
complexity O(n3).

Zhang [48] used an alternative parametric cost function to reduce complexity.
Let B and E be the sub-segmentation of included and excluded blocks and
the parameter λ exclusion cost. Then the cost of the segmentation is f∗ =
f(B) + λℓ(E). Parametric sequence alignment uses analogous cost function and
therefore many algorithms and theoretical results coincide with results [42, 23].

Note that optimal segmentation B, E has minimal value of f(B) over all seg-
mentations that exclude less than ℓ(E). Clearly, if ℓ(E ′) ≤ ℓ(E) and f(B′) < f(B),
we get a contradiction f(B′) + λℓ(E ′) < f(B) + λℓ(E). Moreover, the segmen-
tations B1, . . . ,Bk that correspond to the growing λ have a special structure.
The span of excluded regions decreases strictly and the number of tag markers
increases strictly in the sequence. Shortly put, the sequence provides solutions
for all fixed genome coverage problems.

For each λ we have dynamic programming problem

Sj = max

{

max
i<j

(

Si−1 + λℓ(i, j)
)

,max
i<j

(

Si−1 + f(i, j)
)

}

.

For pre-computed values of f and ℓ, the naive implementation has complexity
O(n2), but O(ln) is achievable [42, 41], where l is the maximal length of the
block.

Both alternative settings give nice convex dependence between the used
markers and genome coverage. Adding new markers leads to saturation, where
utility of markers decreases rapidly—all long blocks have been incorporated into
the model. Therefore, an approximate graph can be very useful for selecting
the number of tag markers.

Genotypes versus haplotypes For large scale studies asymmetric meth-
ods that measure haplotypes directly are too expensive. On the other hand,
complete restoration of haplotypes from genotypes can and is computationally
demanding. The closer look on Algorithm 1 reveals that it does not require
entire haplotypes. It is sufficient to give haplotypes and their frequencies of
valid blocks. Thus segmentation algorithms and haplotype inference can be
merged—blocks are iteratively increased until they are valid.

6 Minimum description length principle

Another promising way to define haplotype blocks is through minimum descrip-
tion principle. Like combinatorial methods the corresponding algorithms search
for a partition that minimises the cost function. But the cost function has dif-
ferent form, the minimal number of tag markers is not guaranteed. On the other
hand, the optimal partition is in a certain sense the most probable explanation
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of data. Therefore, minimum description principle is more suitable for biological
studies.

All three proposed methodologies [31, 2, 19] follow the same general scheme.
First a probabilistic model of haplotype measurements is specified. Then priors
are assigned for various parameters and last optimisation algorithm is given. In
the following we try to follow the underlined road map, but before we give a
brief overview of minimum description length principle.

6.1 Minimum description length

The principle of minimum description length (MDL) is a powerful and well-
established criterion for model selection. In a certain sense, the MDL principle
is a bridge between frequentist and Bayesian approaches in statistics. The MDL
principle can be viewed as a generalisation of maximum likelihood (ML) prin-
ciple. The MDL used for models with different complexity—the ML approach
leads to over-fitting when models have different structure. Therefore, complex-
ity of models is penalised by additional term. On the other hand, the penalty
can be interpreted as a subjective prior of model and the MDL will coincide
with the Maximum A Posteriori estimate in Bayesian statistics.

Shortly put, the description length of the model is a summary length of data
description and the model description

ℓ(D,M) = ℓ(D | M) + ℓ(M).

The two-stage description length is simplest and perhaps most natural concept
(see [24] for more detailed discussion). The data is encoded in two steps: first
the parameters of model and then the data. The model specifies probability
distribution for the data and therefore the data can be encoded optimally. Al-
though the simple models have smaller penalty, their distributions are usually
more apart from the actual distribution and the resulting data description is
longer. The MDL makes a reasonable compromise between complexity and
precision.

The description length of the second stage is determined through the data
likelihood p(D | M). The celebrated Shannon’s theorem postulates that optimal
code-length of discrete data D with respect to modelM is

ℓ(D | M) =
⌈

log Pr [D | M ]
⌉

.

Discretization allows to generalise the result to continuous data, the resulting
code length, omitting constant terms and rounding, is

ℓ(D | M) = −L [D | M] = − log p(D | M).

The description length of the first stage is determined by prior information.
The prior information allows to pick a parameter encoding scheme that yields
minimal expectation of description length. Alternatively, the coding scheme can
be used without any reasoning4.

4This avoids ambiguouties accompanied with Bayesian priors.
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If the parameter θ ∈ {θ1, . . . , θn} then Laplacian principle of indifference
justifies uniform encoding and ℓ(θ) = logn. Continuous parameters are dis-
cretisized and encoded like discrete values. Let m be the number of samples.
Then theoretical results [35, 36, 24] indicate that precision 1/

√
m is sufficient

and the corresponding length is ℓ(θ) = 1/2 · logm.
Often parameter encoding corresponds to hierarchical prior. Then the pa-

rameters are encoded according to the distribution determined by hyperparam-
eters H and the description length is

ℓ(M) = ℓ(M | H) + ℓ(H).

Well structured models give a rise to several layers of hyper parameters.
The Bayesian viewpoint gives another interpretation of MDL principle. Ac-

cording to Bayes’ rule

p(M | D) =
p(D | M)p(M)

p(D)
∝ p(D | M)p(M)

and the logarithmic conversion gives

L(M | D) = L(D | M) + L(M) + const.

If the prior is chosen p(M) ∝ exp
(

−ℓ(M)
)

, then the model with minimum
description length has maximal posterior probability. Moreover, the normalised
value

Pr [M | D ] =
exp

(

−ℓ(D,M)
)

∑

M′

exp
(

−ℓ(D,M′)
)

gives a posterior probability ofM, provided that the number of models is finite
5. This link between description length and probabilities allows to estimate the
significance of the model.

6.2 Independent block model

The independent block model [27, 31] consists of a segmentation and haplo-
type patterns. A haplotype pattern specifies a haplotype block along with the
probabilistic measuring mechanism. The latter makes the method robust to
genotyping errors. Although the original algorithm handles only di-allelic data,
it can be generalised to multi-allelic case.

Observed haplotype block h(k) decends from basic haplotype a
(k)
s . But mu-

tation and genotyping errors can alter h(k). Therefore, a multivariate Bernoulli

distribution is associated with a
(k)
s . The parameter vector

θ(k)
s =

(

θ(k)
s,sk

, θ
(k)
s,sk+1, . . . , θs,ek

)

5Since the number of possible codewords if finite the number of models is also finite. The
inconsistency comes from discretization of the model space.
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Figure 3: The internal structure of independent block model

contains probabilities of observing dominant allele in each block position. Thus
the likelihood is

Pr
[

h(k)
∣

∣a(k)
s

]

=

ek
∏

j=sk

[

θ
(k)
s,j

]hj
[

1− θ(k)
s,j

]1−hj
. (1)

Let m×r matrix C consist of the class indices of the observed haplotypes. Then
the conditional log-likelihood of the data is

L
[

H
∣

∣M
]

=

r
∑

k=1

m
∑

i=1

ek
∑

j=sk

[

hi,j log θ
(k)
ci,k,j + (1 − hi,j) log(1− θ(k)

ci,k,j)
]

.

Parameter encoding The complete description of a segmentation B requires
r logn bits. Block counts qk require another r logm bits. Uniform prior of block
numbers gives log qk bits for each entry of C. A Bernoulli parameter requires
(logm)/2 bits and the overall description length is

ℓ(M) = r(logm+ logn) +

r
∑

k=1

[

1

2
qk(ek − sk + 1) logm+m log qk

]

. (2)

Optimisation method The MDL cost function is also in additive form. Let
us define block weight

f(sk, ek) = logm+ logn+m log qk +
1

2
qk(ek + sk + 1) logm

−
m

∑

i=1

ek
∑

j=sk

[

hi,j log θ
(k)
ci,k,j + (1 − hi,j) log(1− θ(k)

ci,k,j)
]

.

Then ℓ(H,M) = f(s1, e1) + · · · + f(sr, er) and we can use the dynamic pro-
gramming algorithm 1.

However, the function f has more complicated form than before. It is hard
to derive the best model of block patters, because observations must be divided
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into different clusters that minimise the the block description. The underlying
problem is NP-hard, but efficient classification algorithms provide approximate
solutions. Current implementations use k-means algorithm, since the class cen-
tres of zero-one data coincide with the MLE estimate of θ(k)

s (see implementation
details [31, 27]). Basically, the k-means routine is invoked several times with
different cluster numbers and the best clustering is chosen. The maximum num-
ber of clusters is bounded by 10—the bigger number of haplotypes blocks have
longer description and are extremely rare.

The multi-allelic data requires different clustering methodology, since Eu-
clidean distance does not capture well similarities between categorical data.
Nevertheless, a reasonable classification allows to compute the MLE estimate
for parameters of multivariate multinomial distribution.

The fixed genome coverage problem is compelling also with the MDL cost
function, because it allows to drop inconsistent markers. The setting and algo-
rithm coincide with the combinatorial ones.

Computational complexity and locality The computation of f(sk, ek) is
dominated by complexity of clustering. As the complexity of k-means algorithm
is O(ml), the overall complexity of the algorithm is O(lmn2). The latter can
be problem if the n is big enough.

As before, the divide-and-conquer technique decreases running-time. More-
over, we can bound the increase in description length. Unfortunately, the result
does not directly quantify the difference between two models.

Lemma 2. Let ℓ be the optimal description length and ℓ′ the optimal description
length with the border after the kth marker. Then the difference ℓ′− ℓ ≤ logm+
logn+m log qmax, where qmax is the maximal number of haplotype blocks.

Proof. The additional border after the kth marker increases only model com-
plexity and thus the claim follows.

Significance of the block boundaries The duality between description
length and posterior probabilities allows to estimate a significance of the block
boundaries. Let us consider only the segmentations with optimally tuned pa-
rameters. Let the set Sj,j+1 consist of all segmentations with a boundary be-
tween the jth and (j + 1)st marker and the set S of all segmentations. Then
the probability

Pr [Sj,j+1 | H,Optimal ] =

∑

M∈Sj,j+1

exp
(

−ℓ(M)
)

∑

M∈S

exp
(

−ℓ(M)
) .

The segmentations in the region [i, j] can be divided into groups according the
last block. Therefore the summary probability Q(i, j) of all segmentations in
the region [i, j] decomposes

Q(i, j) =
∑

i≤k≤j

Q(i, k − 1) exp(−f(k, j))
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Figure 4: Internal structure of first order Markov model

and we can calculate the significance of block borders via dynamic programming

Pr [Sj,j+1 | H,Optimal ] =
Q(1, j)Q(j + 1, n)

Q(1, n)
.

Robustness and missing data The measuring model makes the algorithm
remarkably tolerant to noise. Experiments [31] show that 5 − 10% of noise
decreases only the significance of block boundaries but does not significantly
change the segmentation.

The measuring mechanism allows to incorporate missing values into the data
without imputation. In di-allelic case, the missing values can be encoded by
numbers ranging [0, 1] depending on the certainty. Then the likelihood formula
(1) must be rescaled, but rescaling yields a constant in the cost function which
can be ignored. Also, the Euclidean distance remains appropriate dis-similarity
measure and cluster centres and the Bernoulli parameters still coincide.

6.3 First order Markov model

The hidden Markov model was first used for haplotype block inference already by
Daly et al. [14], where the sequence of block assignments of SNPs was considered
a Markov chain. The methodology proposed by Anderson and Novembre [2]
differs—they considered the sequence of blocks instead. The consecutive blocks
are not completely independent and therefore first order Markov chain is more
adequate than independence assumption. The second difference is missing error
model—all haplotypes are assumed to be exact without genotyping errors. Third
major difference is complex and somewhat cumbersome hierarchical prior.

The model consist of segmentation B, induced haplotypes and description

of the Markov chain. The haplotype blocks a
(k)
s are all observed marker se-

quences in the kth block. The Markov chain is determined by initial marginal
probabilities

θ(1)s = Pr
[

a(1)
s

]

, s = 1, . . . , q1

and transition probabilities

ψ
(k)
s→t = Pr

[

a
(k)
t | a(k−1)

s

]

, s = 1, . . . , qk−1, t = 1, . . . , qk.
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Other marginal probabilities can be expressed in terms of initial probabilities
and transition probabilities.

Let H(k) be the sub-matrix that corresponds to the kth block, X
(k)
s be the

count of a
(k)
s and Z

(k)
s→t the count of pairs a

(k−1)
s ,a

(k)
t . Then the complete log-

likelihood of the data is a sum of

L
[

H(1)
∣

∣M
]

=

q1
∑

s=1

X(1)
s log θ(1)s ,

L
[

H(k)
∣

∣H(k−1),M
]

=

qk−1
∑

s=1

qk
∑

t=1

Z
(k)
s→t logψ

(k)
s→t.

Priors and parameter encoding The haplotype block are modelled by mul-
tivariate Bernoulli distribution with the parameter vector φ = (φ1, . . . , φn) that
consists of probabilities of dominant alleles. The prior avoids over-fitting since
blocks with many haplotypes get high penalty. The summary log-likelihood of
haplotype blocks is a sum of terms

L
[

a
(k)
1 , . . . ,a(k)

qk

∣

∣φ
]

=

qk
∑

s=1

ek
∑

j=sk

[

a
(k)
sj logφj + (1− a(k)

sj ) log(1− φj)
]

.

The transition matrix ψ(k) gets additional penalty according to the number of
different entries 6. Let ∆(k) be the indicator matrix of ψ(k), more precisely let
zero represent dependence in the row

δ
(k)
s→t = δ(k)

s→u = 0 ⇔ φ
(k)
s→t = φ(k)

s→u

and one independence. To encode the sth row of ∆(k), we first indicate how
many ones are in the row. This requires 1 bit if all elements are zeros and log qk
otherwise. It is easy to see that a configuration of z

(k)
s ones require log

( qk

z
(k)
s

)

bits 7. The overall description length of ∆(k) is

ℓ
(

∆(k)
)

=

qk−1
∑

s=1

sign
(

z(k)
s

)

log qk−1 +

qk−1
∑

s=1

z(k)
s −1
∑

i=0

[

log(z(k)
s − i)− log(i+ 1)

]

.

The sth row of ψ(k) requires qk +1−z(k)
s entries with the optimal coding length

(logX
(k−1)
s )/2, this gives

ℓ
(

ψ(k)
)

=
1

2

qk−1
∑

s=1

(qk − z(k)
s + 1) logX(k−1)

s

6I cannot understand why they do not use simple penalty function like summary square
difference from the weighted row average.

7The original article [2] contains an error here—the number of possibilities is essentially
binomial coefficient and not a falling factorial!
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Additionally, the initial probabilities require8 ℓ(θ) = q1/2 · logm bits.

Let Z
(k)
s→0 be the summary count of all pairs that correspond to indicators

δ
(k)
s→t = 0 and w

(k)
s the count of δ

(k)
s→t = 0. Then the maximal likelihood estimate

of transition matrix with respect to fixed configuration yields9

ψ
(k)
s→t =







Z
(k)
s→t

X
(k)
s

, if δ
(k)
s→t = 1,

Z
(k)
s→0

w
(k)
s X

(k)
s

, otherwise.

The result follows directly from ML estimate of multinomial distribution. Since
there are exponential number of different assignments of ∆(k), the minimising
solution is obtained through hill-climbing algorithm. Clearly, the ML estimate

for initial probabilities is θ
(k)
s = X

(k)
s /m.

If we assume that haplotype blocks are drawn only once, we get the penalty
of hyper-parameters

ℓ(φ) =
r

∑

k=1

(ek − sk + 1) log qk.

Finally, the exact description length of segmentation B is

ℓ(B) = logn+ log

(

m− 1

r

)

.

Optimisation method The cost function is not completely additive

ℓ(H,M) = ℓ(B) + f2(e1) +

r
∑

k=2

f(sk−1, ek−1, ek),

where

f1(e1) = ℓ(H(1)) + ℓ(a
(1)
1 , . . . ,a(1)

q1
) + ℓ(θ(1),φ(1)),

f2(sk−1, ek−1, ek) = ℓ(H(k) | H(k−1),M) + ℓ(a
(k)
1 , . . . ,a(k)

qk
) + ℓ(ψ(k),∆(k),φ(k)).

But if we specify the number of blocks r forehead, we can use dynamic program-
ming. The optimal segmentation must have optimal prefix but the beginning of
last block is also important. So the dependence between adjacent blocks forces
two-dimensional cost matrix S and cubic time-complexity.

The latter can be tackled with heuristic reduction. Although the exact
recursion formula is

Sjk = min
i<j

[Sij + f(i, j, k)],

8Here, differently from original article, we do not encode marginal frequencies for all steps,
since the penalty of ψ(k) is already covered. Also, the question about optimal prior for
marginal frequencies disappears.

9Here again, the result is more evidently presented than in original article.
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the optimal solution is likely to pass through column winners Sij = mini<j Sij ,
since the differences between f(i, j, k) are small compared with differences among
columns. The approximate algorithm looks only the column winners and the
complexity becomes quadratic. For more details see the appendix B of [2].

The weight of ℓ(B) is small, but nevertheless there might be several itera-
tions of dynamic algorithm until the solution is consistent to the pre-specified
value of r. But when the description length of the segmentation is approxi-
mated ℓ(B) = r logn, then the cost function becomes additive and one iteration
provides an answer. Also, the significance of the block boundaries becomes com-
putable, though the corresponding expression is more complex compared with
the independent block model.

Robustness and missing data The method is clearly sensitive to errors,
since there is no built-in flexibility. For example, few errors in large blocks
will break them into smaller sub-blocks. Consider a block with two haplotypes
1 . . . 1 and 0 . . . 0, when a single genotyping error leads to three haplotypes 1 . . . 1,
0 . . . 0 and 0 . . . 010 . . . 0. Then the cost of a single block parameters consists of

ℓ(B(k)) ≈ logn, ℓ(φ(k)) = l log 3

ℓ(a
(k)
1 , . . . ,a

(k)
3 ) = 3(l− 1) log 2 + 3 log 3− 2 log 2

and cost of matrices ψ(k), ∆(k). If the error is encapsulated into a sub-block,
then the cost of parameters reduces

ℓ(B(k), . . . ,B(k+2)) ≈ 3 logn,

ℓ(φ(k), . . . ,φ(k+2)) = l log 2

ℓ(a
(k)
1 , . . . ,a

(k+2)
2 ) = 2l log 2.

New transformation matrices add additional complexity, but the maximum cost
is 4 logm+ 2, if there is no packing and precision is (logm)/2.

The difference between the probabilities of the Markov chains is negligible,
because we introduced two rare rules 0 . . . 0→ 1 and 1→ 0 . . . 0. Consequently,
the block is divided if inequality holds

2 logn+ 4 logm+ 2 < l log 3− 5 log 2 + 3 log 3.

The sensitivity can cause big variance in results, if missing data is handled by
imputation. Compatibility classes of haplotypes allow to bypass the problem
and a reasonable support threshold for haplotypes could make the method more
robust.

Complexity and locality The cubic complexity makes the exact algorithm
intractable for large sequences, but the quadratic approximation algorithm re-
lives the problem. Unfortunately, there is no well-established similarity measure
for segmentations. Therefore, we cannot quantify the cost of approximation. On
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Figure 5: The internal structure of averaged first order Markov chain

the other hand, results [2] suggest that the difference in description lengths is
small and the borders are similar. Still we need more formal argumentation
augmented with practical results. The same lack of argumentation arises, if we
compare the independent block model and the first order Markov chain.

Again with some effort one can find cost of dividing haplotypes into several
regions. However, the result is not so neat as before.

6.4 Averaged first order Markov chain

Another and technically even more demanding approach [19] uses both Markov
chain and stochastic mutation mechanism. The main difference compared with
other two MDL methods is averaging over all possible block assignments. In
other words, instead of two-stage coding we use mixture MDL principle to eval-
uate models (see [24] for additional discussion). The segmentation, haplotype
blocks and various transition probabilities are treated differently from concrete
block assignments. The former is the aim of the inference, whereas the latter
corresponds to latent variables and is averaged out. A solution is the model
that on average has greater support of observed data.

The segmentation model B determines the size of blocks and the Markov
chain C1, . . . , Cr models block assignments. The value of Ck determines the

haplotype block a
(k)
s . But the mutation layer can change haplotype block a

(k)
s

to a different observation h
(k)
s . The model is captured in Figure 5 that represents

corresponding Bayesian network. As before, ψ
(k)
s→t denotes probability that block

a
(k−1)
s is followed by a

(k)
t and θ

(1)
s denotes the marginal probability of a

(1)
s . The

constrained mutation probabilities

µ
(j)
a→h = Pr [Hj = h | Aj = a ] ∈ [µmin, µmax], j = 1, . . . , n.

make the model more robust. Original article suggest the interval [10−3, 10−6],
but due to the measurement errors [10−3, 0.03] is more appropriate.

A genotype data can be used directly without the haplotype inference phase,
since by duplicating the structure we get model of genotype.
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The evidence of concrete model is obtained through summing over all pos-
sible assignments of haplotype blocks

Pr [H | M ] =

m
∑

i=1

∑

c1,...,cr

Pr [ c1, . . . , cr ]

r
∏

k=1

Pr
[

a(k)
ck
→ h

(k)
i

]

. (3)

The efficient calculation is computationally demanding and is done by bucket
elimination technique[15]. Nevertheless, the summation spoils linearity of log-
likelihood and thus efficient dynamic programming methods in simple form are
impossible.

Priors and parameter encoding Somewhat surprisingly, original article
[19] assigns equal priors to all segmentations. Recall that the previous two
models favoured segmentations with longer blocks. Also, difference in haplotype
counts qk are is ignored and the effective description length is determined by
descriptions of θ(1),ψ(1), . . . , ψ(r) and haplotype blocks.

Initial probability vector require q1−1
2 logm bits and the transition matrix

ψ(k) requires qk−1
2

∑qk−1

s=1 logm · θ(k−1)
s , where θ

(k−1)
s are marginal probabili-

ties of the (k − 1)st block. The haplotype blocks are assumed to be drawn
form multivariate multinomial distribution, where all parameters are consid-
ered equiviprobable. Thus the ML estimate of hyper parameters leads to

L
[

a(k)
s

]

=

ek
∑

j=sk

log fj

(

a
(k)
sj

)

, fj(a) =
1

qk
#

{

s : a
(k)
sj = a

}

.

Optimisation method The averaging makes the optimisation harder, since
we cannot convert sum (3) into product or sum of sub-functions that depend
only on few block borders. Therefore, we cannot use dynamic programming at
least in the present form. Currently employed optimisation technique is basically
local greedy search. It consists of three different sub-steps: addition, nugging
and deletion of block boundaries.

During an addition step a new boundary is added, if the resulting description
is shorter than previous. The nugging step shifts ”slightly” boundaries and if
necessary corrects the estimate. The same applies to the deletion step. All sub-
steps try to find the minimising points in the neighbourhood. To reduce the
amount of computation, only the parameters of altered blocks are recalculated.
First, haplotype blocks and mutation probabilities are optimised locally block by
block. Then the parameters of the Markov chain inferred. Still the optimisation
is computationally very demanding and additional shortcuts are used to speed
up the process.

The averaging over all possible block assignments makes exact estimation of
significance of haplotype boundaries intractable.

Robustness and missing data The model is essentially robust, if we allow
large 0.03− 0.1 mutation probabilities. However, the heuristic greedy optimisa-
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tion method itself can cause variance in results. Therefore, practical experiments
are required to determine whether the algorithm behaves consistently.

The missing values are not a problem, because they can be integrated out
from the likelihood formula.

7 Discussion and concluding remarks

Roughly, all haplotype inference methods can be divided into three classes:
methods that use marker pairs, combinatorial methods and MDL methods.
Marker pairs provide extremely local information and thus cannot provide glob-
ally optimal segmentations. Nevertheless, the corresponding statistics like LD
measures and the FGT test are valuable for evaluating quality of blocks.

The main advantage of combinatorial methods is clear objective—minimal
number of tag SNPs. The corresponding cost function coincides with the real
cost of large scale association studies. Whether the block boundaries have bio-
logical reasoning is another issue. The main disadvantage is ad hoc criterion of
valid block—the coverage and diversity are brutal and oversimplified measures
from the biological and statistical viewpoint. Alternative stochastic criterion
that uses probabilistic measuring model and constrained ML or MDL principle
could provide well-grounded statistical approach, but still preserve the origi-
nal objective.

Still the combinatorial approach is reasonably robust and flexible, besides
handles missing data without complex imputation routines. The thresholds
allow to control both robustness and accuracy. The search of test markers can
occasionally slow down the algorithm, but this is common for all segmentation
algorithms that provide tag SNPs.

The problem of optimal marker set is subject of independent interest. The
problem can be restated as a set-cover problem that has been studied for years.
Therefore, results of linear integer programming and specific set-cover solvers
can reduce complexity of tagging phase and simplify the haplotype inference.

The MDL methods have solid statistical grounding and provide also good re-
sults in practice. However, the optimal solution does not guarantee the minimal
number of tag SNPs and therefore we have a discrepancy between obtained and
desired objectives. Another trade-off here is between computational complex-
ity and statistical accuracy. Though more sophisticated methods based on the
Markov chains can be statistically more precise, they also have higher computa-
tional complexity. Unfortunately, there is no well-established similarity measure
between segmentations and thus we cannot evaluate the cost of trade-offs. But
the independent block model seems to be good compromise between accuracy
and complexity.

Depending on objectives MDL methods can be preferred to combinatorial
ones and vice versa. But the concordance between economical utility and cost
function makes the combinatorial methods more appealing for large scale stud-
ies. However, this does not diminish value of other methods, since economy in
genotyping is not the only objective.
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