
Security models and proofs: Insights and examples

Sven Laur

Historical perspective

- 1981 Dolev and Yao, On the Security of Public Key Protocols.
- 1984 Simmons, Authentication Theory/Coding Theory.
- 1993 Bellare and Rogaway, Entity Authentication and Key Distribution.
- **2000** Pfitzmann, Schunter, Waidner *Cryptographic Security of Reactive Systems.*
- **2002** Canetti, Lindell, Ostrovsky, Sahai, Universally composable two-party and multi-party secure computation.
- **2003** Lindell, General Composition and Universal Composability in Secure Multi-Party Computation. (Security in arbitrary comp. context.)
- **2005** Serge Vaudenay, Secure Communications over Insecure Channels Based on Short Authenticated Strings.

Authentication: stand-alone security model

In-band communication is routed via malicious adversary, Malice, who can read, insert, drop and modify messages.

Out-of-band communication is authentic and sometimes secret. Malice can only read, delay and reorder messages.

Malice succeeds in deception if Alice and Bob accept different outputs.

Classical message authentication

Send $k \leftarrow \mathcal{K}$ over a confidential channel.

Send m and a tag tag = h(m, k).

Bob accepts m iff tag = h(m, k).

As Malice does not know the secret key k there are two attack types:

- \bullet Impersonation attacks. Malice tries to inject a message \widehat{m} when Alice has not sent any messages.
- Substitution attacks. Malice tries to change a message m into \widehat{m} by choosing a proper $\widehat{\text{tag}}$.

Necessary properties of the hash functions

Impersonation attacks. For every message m, the tag distribution

$$\mathcal{D}_m = \{h(m, k) : k \leftarrow \mathcal{K}\}$$

must be (computationally) close to uniform distribution.

Substitution attacks. The tag h(m,k) should reveal minimal amount of information about the key and tag, i.e., a (computational) conditional entropy $H(h(\widehat{m},k)|h(m,k)), \ m \neq \widehat{m}$ must be maximal.

There are hash-functions (*perfect hash functions*) that provide optimal information-theoretic security for a single protocol run. Many fast and computationally secure message authentication codes are built on top of information-theoretic counterparts using pseudorandom generators.

Towards Bellare-Rogaway model

Add to the stand-alone model

- Man-in-the-middle attack
- Interleaving attack
- Random timing
- Worst possible scenario

Security in Bellare-Rogaway model

- Is the classical message authentication protocol secure in BR-model?
- If not under which restrictions this protocol is secure?
- How to construct a corresponding mutual authentication protocol?

MANA II protocol

Deliver data m to both parties.

Verify that the data m is ready.

Send a random key $k_a \leftarrow \mathcal{K}$ to Bob.

Verify $k_a = k_b$ and $h(m_a, k_a) = h(m_b, k_b)$

SECURITY PROOF

- What happens if Malice does not deliver data before synchronisation?
- What happens if Malice changes k to \widehat{k} ?
- How is the remaining attack called? Which properties must h satisfy?

Security in Bellare-Rogaway model

Let the final check value of MANA II be 2ℓ bits long (i.e. $2^{-\ell}$ -secure). Let q be the maximal number of protocols run in parallel.

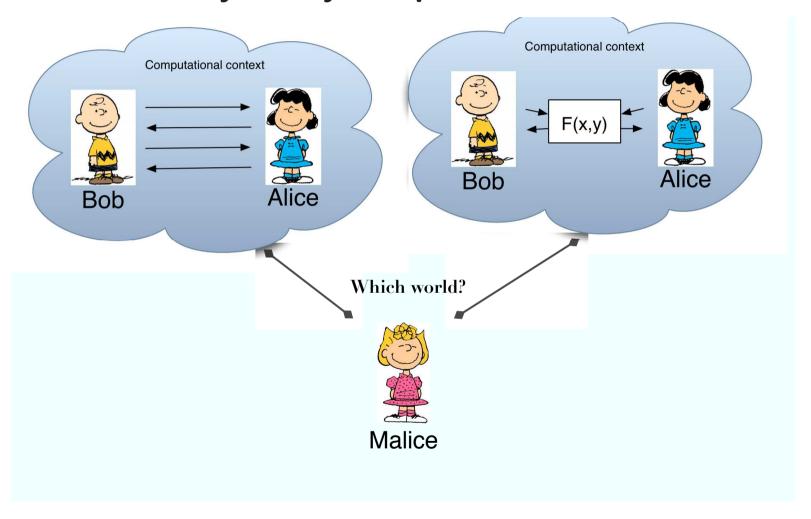
- Show that MANA II is not secure in BR-model?
- Give a simple lower bound on security w.r.t. q and ℓ ?
- Is the lower bound w.r.t. q and ℓ also the upper bound?
- If not under which restrictions this protocol is secure?

Rewinding is incompatible with parallel runs

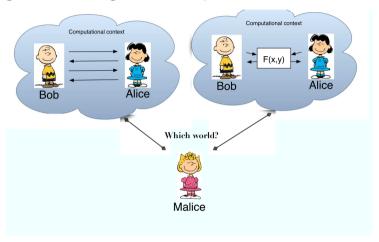
Example: Blum's coin flipping protocol run in parallel.

Alice sends a commitment Com(x) for $x \leftarrow \{0, 1\}$ to Bob.

Bob sends $y \leftarrow \{0,1\}$ to Alice who opens Com(x) and both output $x \oplus y$.

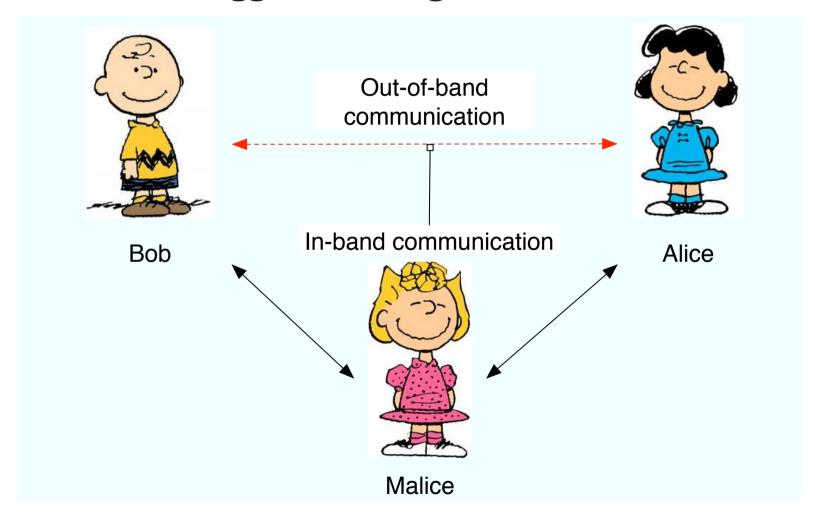

Task 1: Force the output $x \oplus y = 0$ by sending different $\mathsf{Com}(x)$ values.

Task 2: Force the output $x_i \oplus y_i = 0$, i = 0, 1 by sending:


- different Com(x) values sequentially to Bob;
- different Com(x) values concurrently to Bob.

Where is the catch? Why there is a state space explosion?

Security in any computational context


Security in any computational context

A protocol is secure in any computational context if:

- The protocol is secure in the stand-alone model.
- There is no rewinding arguments in the proof.
- Simulators used in the proofs are black-box and universal.
- Protocol messages can be separated from other messages

What is the biggest challenge in stand-alone model?

Classification of authentication protocols

- Based on long pre-shared values:
 - (a) Classical message authentication (pre-shared secrets)
 - HMAC
 - CBC-MAC.
 - (b) Public key infrastructure (pre-shared certificates)
 - X.509 certificates and authentication
- Based on interactive authentic communication:
 - (a) Password-based authentication (short confidential messages)
 - WPA-PSK, WEP-TKIP
 - EKE, EKE2, SPEKE
 - (b) Manual authentication (short authentic test tags)
 - MANA II
 - MANA IV

Manually authenticated key exchange

- Classical key exchange + Manual authentication
 - MA-DH (specially optimised)
- Hybrid encryption + Manual authentication
 - manually authenticated hybrid encryption
- ???

Known upper bounds and corresponding attacks

- ullet Guessing attack with success $2^{-\ell}$ affects
 - classical authentication
 - password-protected key exchange
- ullet Simple collision attack with success $2^{-\ell}$ affects
 - manual authentication