Overview of recent claims about $\mathcal{P} \neq \mathcal{NP}$

Sven Laur swen@math.ut.ee

Helsinki University of Technology

[†]The text in orange represents author's personal opinion and thus might be slightly subjective.

Is the question $\mathcal{P} = \mathcal{NP}$ really important?

Most mathematicians seem to belive that the proof of $\mathcal{P} = \mathcal{NP}$ would have a big practical impact. However, the latter is not true:

The class of polynomial algorithms \mathcal{P} is rather an artifact of complexity theory than a conceptual description of feasible algorithms.

- The class \mathcal{P} is just the first "reasonable" complexity class that is closed under superposition—one can freely use sub-routines.
- Due to the limited physical resources one can never implement a Turing machine. All computing devices are finite automatons.
- Asymptotic complexity is just an approximation. For large k, the exponential working time $2^n \ll n^k$ for all feasible instances of n.
- All feasible alforithms have working time $\mathcal{O}(n^6)$ and for many areas already $\Omega(n^2)$ is infeasible.

Could the proof of $\mathcal{P} = \mathcal{NP}$ be useful?

There are three possible levels of ignorance.

• The proof itself is non-constructive.

- Has no practical implications, only motivates "smart" people.

• The problem $\mathcal{P} = \mathcal{NP}$ is independent from Peano Arithmetics.

- The question becomes just a matter of taste.

- The proof is constructive, but the algorithm complexity is $\Omega(n^6)$.
 - The for sufficient $n \ge 10000$ the problems still remain intractable.
 - The non-existance of non-trivial polynomial-time algorithms with a complexity $\Omega(n^6)$ is rather an artifact of limited intellectual capabilities of mankind than a "general" law.

Could the proof of $\mathcal{P} \neq \mathcal{NP}$ be useful?

There are three possible levels of ignorance.

- The proof does not change the *status quo*.
 - The result has no practical implications, exept some lower bounds for approximations factors of \mathcal{NP} -hard problems become provable.
 - Still it may be difficult to find hard problem instances.
- The factorization problem is belived to be non- \mathcal{NP} -complete.
 - Thus $\mathcal{P} \neq \mathcal{NP}$ does not *apriori* give a complexity guarantee.
- No guarantees for practical cryptographic primitives.
 - The size and structure of problem instance is fixed.
 - Lower bounds on scheme complexity are required.

General remarks about the article

Tatsuaki Okamoto and Ryo Kashima, *Resource Bounded Unprovability of Computational Lower Bounds.*

Submitted to Cryptology ePrint archive on 9th September 2003. Last time revised on 6th January 2005.

The difference between two versions is substantial:

- Roughly twenty pages of a new material.
- Obvious flaws have been fixed, but the *essential* problems are still unaddressed.
- The mistake is implicitly hidden among assumptions.
- The readability has not been improved rather the things have gone worse: misuse and abjuce of formal notation, incorrectly stated theorems, incoherent and hard-to-follow proofs.

Historical development of the argument

- 2003 Concept of polynomial-time provable languages:
 - First and Second Incompleteness Theorems.
 - Sketchy and flawed connection with the $\mathcal{P} = \mathcal{NP}$ problem.
- Somewhere in 2004 authors refined their arguments:
 - Concept polynomially decidable predicates in Peano Arithmetics.
 - First and Second Incompleteness Theorems.
 - Poly-time provable languages become obsolete.
- <u>Questionable</u> and <u>unlinked</u> poly-time ω -consistency assumption: – Non-existance of $\mathcal{P} = \mathcal{NP}$ proof under poly-time ω -consistency.

True result: There are no prover that for any poly-time SAT decider \mathcal{D} could produce an example, where \mathcal{D} fails, in poly-time w.r.t. instance size.

Outline of the talk

- Basic concepts of formal logic
- Introduction to Peano Arithmetics
- Polynomial-time proofs for languages of decidable formulas
- Meta-level proofs and their properties
- Polynomial-time descisions for languages of canonic decidable formulas
- Why the proof of unprovability of $\mathcal{P} \neq \mathcal{NP}$ is not convincing.

Duality between programs and proofs

- Each constuctive formal proof gives a rise to a program.
- But the converse is not true—correctness proofs are hard.

Signatures and interpretation

The syntax of first order logic is determined by a signature $\sigma = \langle \mathcal{C}; \mathcal{F}; \mathcal{P} \rangle$.

- ${\mathcal C}$ contains all constant symbols such as $0,1,\ldots$
- \mathcal{F} contains all function symbols such as $+, \cdot, \exp, \operatorname{rem}, \operatorname{div}$.
- \mathcal{P} contains all predicate symbols such as =, <, \leq .
- Defining additional function or predicates is not allowed. Still one can use macro constructions to represent functions and predicates.

Interpretation ${\mathcal I}$ assigns meaning to formulas.

- A universe $\mathcal{M} \neq \emptyset$ is fixed.
- Constants, functions and predicates are instantiated.

Theories. True and provable statements

A theory \mathcal{T} is determined by set of axioms \mathcal{T} . An interpretation \mathcal{I} is consistent with \mathcal{T} iff all axioms are satisfied.

Definition. A formula ϕ follows from axioms \mathcal{T} if for all consistent interpetations \mathcal{I} the evaluation $\mathcal{I}(\phi)$ is true. We denote it by $\mathcal{T} \models \phi$.

Definition. A proof-system \mathcal{V} is a set of formal rules that allows to derive only a (sub)set of true formulas.

Definition. A formula ϕ is provable w.r.t. \mathcal{T} if ϕ is derivable with the proof-system \mathcal{V} . We denote it by $\mathcal{T} \vdash \phi$.

The set of provable formulas may be considerable smaller than the set of true formulas. The opposite is impossible.

T-79.515 Cryptography: Special Topics, March 21, 2005

Gödel's Theorems

Theorem (Completeness Theorem). Let a theory \mathcal{T} be a finitely axiomatiable. Then the set of true formulas is recursively enumerable and every true formula is provable.

Theorem (Incompleteness theorem). There are true but not provable formulas in Peano Arithmetics, unless it is inconsistent.

Corollary. Arithmetics is not a finite axiomatiable as a theory in the first order logic.

Theorem (Chaitin). *The fact that formula is not provable is not itselt provable in general.*

Okamoto and Kashima tried to prove that $\mathcal{P} \neq \mathcal{NP}$ statement is not provable statements by a sketching similar framework as Gödel.

T-79.515 Cryptography: Special Topics, March 21, 2005

Axiom scheme for Peano Arithmetics

Let ϕ be any well-formed formula in the signature $\sigma = \langle 0, 1; +, \cdot; = \rangle$.

EQUALITY AXIOMSSUCCESSOR AXIOMS
$$\forall x(x=x)$$
 $\forall x \neg (x+1=x)$ $\forall x \forall y (x=y \supset y=x)$ $\forall x \neg (x+1=x)$ $\forall x \forall y \forall z ((x=y \land y=z) \supset x=z)$ $\forall x \forall y (x+1=y+1 \supset y=x)$ $\forall x \forall y (\phi(\dots,x,\dots) \supset \phi(\dots,y,\dots))$ $(\phi(0) \land \forall x (\phi(x) \supset \phi(x+1)) \supset \forall x \phi(x))$

ADDITION AXIOMSMULTIPLICATION AXIOMS $\forall x(x+0=x)$ $\forall x(x \cdot 0=x)$ $\forall x \forall y(x+(y+1)=(x+y)+1)$ $\forall x \forall y(x \cdot (y+1)=x \cdot y+x)$

Why do we need induction scheme?

First order Peano Arithmetics has many models.

Induction axiom states that we do not care about non-successors of 0.

Introducing lists with variable length

Gödel originally proposed a β -function to get a grip over lists

 $\forall k \; \forall a_1, \dots, a_k \in \mathbb{N} \quad \exists a, b \in \mathbb{N} : \quad \beta(a, b, i) = a_i, \quad i = 1, \dots, k$

The latter allows to write Turing machine \mathcal{M} as a predicate $\rho_{\mathcal{M}}(x,y)$

 $\exists t \exists a \exists b (\underbrace{\rho_{\mathsf{init}}(\beta(a, b, 0), x)} \land \underbrace{\forall (t_1 < t) \ \rho_{\mathsf{tran}}(\beta(a, b, t_1), \beta(a, b, t_1 + 1))}_{\mathsf{tran}})$

Fix initial configuration

Force transitions of ${\cal M}$

 $\wedge \underline{\rho_{\mathsf{ends}}}(\beta(a,b,t),y) \big)$

Fix end configuration

The construction is computationally inefficient—Gödel just did not care.

Optimising the proof-system

The proof of $2^x = y$ has exponential in size of x if we use Gödels β -function.

It is not known wheter $2^x = y$ has an alternative representation in signature $\sigma = \langle 0, 1; +, \cdot; = \rangle$ so that the proofs have polynomial size.

Hence, we need to extend the sigature and proof-system by a adding function $exp(x) = 2^x$. For convenience, we use also

$$\operatorname{len}(x) = |x| \qquad \qquad \operatorname{bit}(x,i) = x_i \qquad \qquad \beta_{\mathsf{e}}(a,b,t) = a_i$$

where $x = x_n \cdots x_0$ and $a = a_k 2^{b(k-1)} + \cdots + a_0$

Okamoto and Kashima fail to grasp that subtlety in their article.

Formulas and proofs as numbers

Consider an efficent encoding of formulas and proofs

 $\mathfrak{F} \ni \phi \mapsto \operatorname{code}_P(\phi) \in \mathbb{N}$ $\mathfrak{P} \ni \pi \mapsto \operatorname{code}_P(\pi) \in \mathbb{N}$

Then we can device a verifying Turing machine $\ensuremath{\mathcal{V}}$ such that

$$\mathcal{V}(\operatorname{code}_P(\phi), \operatorname{code}_P(\pi)) = \begin{cases} 1, & \text{if } \pi \text{ is valid proof of } \phi, \\ 0, & \text{otherwise.} \end{cases}$$

For clarity, we skip the details and use $\mathcal{V}(\phi, \pi)$ instead.

Polynomial-time provable languages

A language of formulas $L \subseteq \mathfrak{F}$ is polynomially provable iff there exists a polynomial-time Turing machine \mathcal{P} such that for any $\phi \in L$

 $\mathcal{P}(\mathsf{code}_P(\phi)) = \mathsf{code}_P(\pi) \qquad \land \qquad \mathcal{V}(\mathsf{code}_P(\phi), \mathsf{code}_P(\pi)) = 1.$

The prover \mathcal{P} must be polynomial w.r.t. to each input $x \in \mathbb{N}$.

- The latter is not restrction when L is polynomially decidable.
- The complexity measure SIZE(x) can be specified in a language specific way as long SIZE(x) = O(|x|).
- The prover \mathcal{P} may fail for some or all instances $\psi \notin L$.
- The verifier \mathcal{V} must be also polynomial w.r.t. the input size.

Restriction to a single instance

An instance ϕ from a language of formulas $L \subseteq \mathfrak{F}$ is polynomially provable by a polynomial-time Turing machine \mathcal{P} iff

 $\mathcal{P}(\mathsf{code}_P(\phi)) = \mathsf{code}_P(\pi) \qquad \land \qquad \mathcal{V}(\mathsf{code}_P(\phi), \mathsf{code}_P(\pi)) = 1.$

The corresponding notation $\mathcal{T} \land \mathcal{P} \Vdash \phi$.

We can treat it as a two argument predicate $[\![\mathcal{T} \land _ \vdash _]\!]$ that maps

$$(\mathsf{code}_{\mathcal{U}}(\mathcal{P}), \mathsf{code}_{P}(\phi)) \mapsto \mathcal{V}(\phi, \mathcal{P}(\phi))$$

For clarity, we use $\llbracket \mathcal{T} \land \mathcal{P} \Vdash \phi \rrbracket$ instead of $\llbracket \mathcal{T} \land \operatorname{code}_{\mathcal{U}}(\mathcal{P}) \Vdash \operatorname{code}_{P}(\phi) \rrbracket$.

Efficient representations

Let $\rho_r(x_1, \ldots, x_k)$ be a formula that represents a relation $r \subseteq \mathbb{N}^k$. Then ρ_r is an efficient representation of r iff languages

$$L_{\phi} = \{ \rho_r(\mathsf{x}_1, \dots, \mathsf{x}_k) : (x_1, \dots, x_k) \in r \}$$
$$L_{\neg \phi} = \{ \neg \rho_r(\mathsf{x}_1, \dots, \mathsf{x}_k) : (x_1, \dots, x_k) \notin r \}$$

are polynomial-time provable.

Theorem. Any poly-time computable predicate is efficiently representable.

Proof. Extension of Gödel β -function approach with computationally efficient β_{e} is sufficient. The fact was already noted by Cook 1971 in the \mathcal{NP} -completeness proof of SAT, however Okamoto and Kashima provide an unreadable proof which uses circuit evaluation instead.

How to grow a proof tree?

Lemma. If there are polynomial-time provers \mathcal{P}_1 and \mathcal{P}_2 then there exists a polynomial-time prover \mathcal{P}_3 such that

 $\mathbf{PA}^{\mathbf{e}} \vdash \forall x \forall y \llbracket \mathcal{T} \land \mathcal{P}_1 \Vdash \phi(\mathsf{x}) \rrbracket \land \llbracket \mathcal{T} \land \mathcal{P}_2 \Vdash \psi(\mathsf{y}) \rrbracket \supset \llbracket \mathcal{T} \land \mathcal{P}_3 \Vdash \phi(\mathsf{x}) \land \psi(\mathsf{x}) \rrbracket.$

Further conclusions

Theorem. Polynomial provability is closed under elementary proof steps.

Lemma. For any formula $\phi(x_1, \ldots, x_k) \in \mathfrak{F}$ and for any polynomial-time prover \mathcal{P} , the predicate

 $\llbracket \mathcal{T} \land \mathcal{P} \Vdash \phi(\mathsf{x}_1, \ldots, \mathsf{x}_k) \rrbracket$

has an efficient representation w.r.t. input parameters x_1, \ldots, x_k .

Lemma. Let ρ_r be a canonical efficient representation of a relation $r \subseteq \mathbb{N}$. Then there exists a polynomial-time prover \mathcal{P} such that

$$\mathbf{PA}^{\mathsf{e}} \vdash \forall x (\rho_r(x) \sim \llbracket \mathbf{PA}^{\mathsf{e}} \land \mathcal{P} \Vdash \rho_r(\mathsf{x}) \rrbracket).$$

Proof. We must prove that correct code interpretaton is possible.

Polynomial-time Recursion Theorem

Theorem. For any $m \in \mathbb{N}$ and $c_1 \in \mathbb{N}$ there exist a code-constant k and a time-bound constant $c_2 > c_1$ such that

 $\mathrm{PA}^{\mathsf{e}} \vdash \forall w(\rho_{\mathsf{p}\text{-utm-p}}(\mathsf{k},\mathsf{c}_2,\mathsf{w}) \sim \rho_{\mathsf{p}\text{-utm-p}}(\mathsf{m},\mathsf{c}_1,\mathsf{k},\mathsf{w})).$

Proof. Let $k = \text{code}_{\mathcal{U}}(\mathcal{K})$ where \mathcal{K} executes following steps:

- 1. Write m to the working tape.
- 2. Copy its own code k to the working tape.
- 3. Copy the inputs w to the working tape.
- 4. Interptete the input (m, c_1, k, w) as universal Turing machine \mathcal{U}_p .

Tatsuaki and Kashima fail to recognise the differnce in degrees $c_2 > c_1$.

Gödel sentences

Lemma. For any polynomial-time Turing machine \mathcal{M} there exist a formula $\rho_{\mathcal{M}}$ such that

$$\mathbf{PA}^{\mathbf{e}} \vdash \forall w (\rho_{\mathcal{M}}(\mathbf{w}) \sim \neg \llbracket \mathbf{PA}^{\mathbf{e}} \land \mathcal{M} \vdash \rho_{\mathcal{M}}(\mathbf{w}) \rrbracket$$

For all x the formula $\rho_{\mathcal{M}}$ is called a Gödel sentence with respect to \mathcal{M} . Proof. Consider a Turing machine $\mathcal{K}(w)$:

- Construct the formula $\rho_{p-utm-p}(k, c_1, w)$ for a <u>cleverly chosen</u> c_1 .
- Test $\mathcal{V}(\rho_{p-utm-p}(k, c_1, w), \mathcal{M}(\rho_{p-utm-p}(k, c_1, w))=1.$
- Return $\neg [\![PA^e \land \mathcal{M} \vdash \rho_{p-utm-p}(k, c_1, w)]\!].$

The lemma can be proven, althought it must be done more carefully than in the article—explicit degree bounds are a big nuisance.

Incompleteness theorems

Theorem (First Incompleteness Theorem). Let \mathcal{M} be a polynomial-time Turing machine and $\rho_{\mathcal{M}}(w)$ the corresponding Gödel sentence. Then for all inputs $w \in \mathbb{N}$

$$\mathrm{PA}^{\mathsf{e}} \wedge \mathcal{M} \not\models \rho_{\mathcal{M}}(\mathsf{w})$$

unless PA^e is inconsistent.

Theorem (Second Incompleteness Theorem). Let $\phi(w) \in \mathfrak{F}$ with a single free variable w and \mathcal{M} a polynomial-time Turing machine. Then there exists a Turing machine \mathcal{M}_{\circ} such that for all $w \in \mathbb{N}$

$$\mathrm{PA}^{\mathrm{e}} \wedge \mathcal{M} \not\Vdash \neg \llbracket \mathrm{PA}^{\mathrm{e}} \wedge \mathcal{M}_{\mathrm{o}} \Vdash \phi(\mathsf{w}) \rrbracket$$

unless PA^e is inconsistent.

These theorems are completely useless for proving $\mathcal{P} \neq \mathcal{NP}$.

Language of satisfiable 3CNF formulas

Introducing propositional variables $X_i \equiv x_i = 1$ and $\neg X_i \equiv \neg (x_i = 1)$. Language L_{3SAT} of 3CNF formulas is a subset of \mathfrak{F} , and we define

$$x \in r_{3SAT} \iff x = \operatorname{code}_{P}(\phi) \land \phi \in L_{3CNF}$$
$$\operatorname{SIZE}(x) = \begin{cases} 2n, & \text{if } \phi \in L_{3SAT}, \\ 2 \cdot |x| & \text{otherwise.} \end{cases}$$

Let ρ_{3SAT} be the canonical but inefficient representation of r_{3SAT} .

Now, we have to gear our theory towards polynomial-time descisions instead of proofs.

T-79.515 Cryptography: Special Topics, March 21, 2005

Polynomially descidable predicates

A Turing machine ${\cal M}$ correctly accepts, rejects or decides predicate ϕ iff

CONDITION	Predicate	Equivalent
$\mathrm{PA} \models \mathcal{M}(\phi) \supset \phi$	$\llbracket \mathrm{PA} \models \mathcal{M}(\phi) \supset \phi \rrbracket$	$\mathcal{M}(\phi) \supset \phi$
$\mathrm{PA} \models \neg \mathcal{M}(\phi) \supset \neg \phi$	$\llbracket \mathrm{PA} \models \neg \mathcal{M}(\phi) \supset \neg \phi \rrbracket$	$\neg \mathcal{M}(\phi) \supset \neg \phi$
$\mathrm{PA} \models \mathcal{M}(\phi) \sim \phi$	$\llbracket PA \models \mathcal{M}(\phi) \sim \phi \rrbracket$	$\mathcal{M}(\phi) \sim \phi$

Consider only descidable predicates in canonical form—(efficient) predicate encoding that corresponds to a distingusher. Lets call them *simple* formulas.

Theorem. All polynomially descidable predicates have efficient simple representation.

How to grow a descision tree?

Lemma. If there are polynomial-time distinguishers \mathcal{D}_1 and \mathcal{D}_2 then there exists a polynomial-time distinguisher \mathcal{D}_3 such that

 $PA^{e} \vdash \forall x \forall y (\llbracket \mathcal{D}_{1}(\phi(\mathsf{x})) \sim \phi(\mathsf{x}) \rrbracket \land \llbracket \mathcal{D}_{2}(\psi(\mathsf{y})) \sim \psi(\mathsf{y}) \rrbracket$ $\supset \llbracket \mathcal{D}_{3}(\phi(\mathsf{x}) \land \psi(\mathsf{y})) \sim \phi(\mathsf{x}) \land \psi(\mathsf{x}) \rrbracket).$

Further conclusions

Lemma. There exists a universal prover \mathcal{P}_{\circ} for a simple predicate $\rho(x)$ always outputs either a proof of $\rho(x)$ or a proof of $\neg \rho(x)$.

Remark. If the simple predicate is in an efficient representation, the working time of \mathcal{P}_{\circ} is polynomial.

Theorem. Polynomial-time descidability is closed under elementary proof steps.

Theorem. If the predicate is simple, then correctness of descisions is provable in PA^e. For efficient simple predicates, the working time of the prover is polynomial.

Gödel sentences

Lemma. For any polynomial-time accepting-rejecting Turing machine \mathcal{M} there exist an <u>efficient</u> simple predicate $\rho_{\mathcal{M}}$ such that

 $PA^{e} \vdash \forall w (\rho_{\mathcal{M}}(\mathsf{w}) \sim \neg \llbracket \mathcal{M}(\rho_{\mathcal{M}}(\mathsf{w})) \rrbracket)$ $PA^{e} \vdash \forall w (\neg \rho_{\mathcal{M}}(\mathsf{w}) \sim \neg \llbracket \neg \mathcal{M}(\rho_{\mathcal{M}}(\mathsf{w})) \rrbracket)$

For all x the formula $\rho_{\mathcal{M}}$ is called a Gödel sentence with respect to \mathcal{M} .

Proof. Consider a Turing machine \mathcal{K} :

- Loads its own code k.
- Constructs the formula $\rho_{\text{utm-p}}(k, w)$.
- Outputs $\neg \mathcal{M}(\rho_{p-utm-p}(k, w))$.

Incompleteness theorems

Theorem (First Incompleteness Theorem). A polynomial-time Turing machine \mathcal{M} cannot correctly describe any instance $\rho_{\mathcal{M}}(w)$ of the corresponding Gödel sentence.

 $PA^{e} \vdash \neg \llbracket \mathcal{M}(\rho_{\mathcal{M}}(\mathsf{w})) \supset \rho_{\mathcal{M}}(\mathsf{w}) \rrbracket$ $PA^{e} \vdash \neg \llbracket \neg \mathcal{M}(\rho_{\mathcal{M}}(\mathsf{w})) \supset \neg \rho_{\mathcal{M}}(\mathsf{w}) \rrbracket$

unless PA^e is inconsistent.

Theorem (Second Incompleteness Theorem). Let $\phi(w) \in \mathfrak{F}$ be a simple predicate. Then for any polynomial-time Turing machine \mathcal{M} , we can construct a polynomial-time Turing machine \mathcal{M}_{\circ} such that for all $w \in \mathbb{N}$

$$\mathrm{PA}^{\mathsf{e}} \land \mathcal{M} \not\Vdash \neg \llbracket \mathcal{M}_{\circ}(\phi(\mathsf{w})) \sim \phi(\mathsf{w}) \rrbracket$$

unless PA^e is inconsistent.

Towards the proof

Lemma. Let $\rho_{\mathcal{M}_{\circ}}$ be a Gödel centense w.r.t. polynomial-time Turing machine \mathcal{M}_{\circ} . Then there exists a polynomial-time Turing machine \mathcal{M}_{\star} such that

$$\begin{aligned} \mathbf{P}\mathbf{A}^{\mathbf{e}} &\vdash \forall w(\neg \llbracket \ \mathcal{M}_{\star}(\psi(\mathbf{w})) \supset \ \psi(\mathbf{w}) \rrbracket \supset \ \rho_{\mathcal{M}_{\circ}}(\mathbf{w})) \\ \mathbf{P}\mathbf{A}^{\mathbf{e}} &\vdash \forall w(\neg \llbracket \neg \mathcal{M}_{\star}(\psi(\mathbf{w})) \supset \neg \psi(\mathbf{w}) \rrbracket \supset \neg \rho_{\mathcal{M}_{\circ}}(\mathbf{w})) \end{aligned}$$

Proof.

- \mathcal{M}_{\star} computes and outputs predicate $\rho_{\mathcal{M}_{\circ}}(w)$.
- By the construction Gödel sentences are efficiently computable, therefore \mathcal{M}_{\star} runs in polynomial-time.
- The claims are obvious and can be formally proved.

Construction of the magic \mathcal{M}_{\circ}

- \mathcal{M}_{\circ} passes descision of $\neg \llbracket \mathcal{M}_{\star}(\psi(\mathsf{w})) \sim \psi(\mathsf{w}) \rrbracket$ to \mathcal{M}_{1} . Here $\mathcal{M}_{\star}(\psi(\mathsf{w})) = \mathcal{K}_{\mathcal{M}_{\circ}}(w)$.
- \mathcal{M}_1 passes it further to \mathcal{M} that has to "execute" $\mathcal{K}_{\mathcal{M}_0}(w)$ and compute $\psi(w)$. If \mathcal{M} gets a provably correct result, it reveals $\rho_{\mathcal{M}_0}(w)$.
- Thus \mathcal{M}_{\circ} has executed the prohibited call.

The actual proof is more involved—one has to reach zen-state to grasp all details and verify the 'construction, but it is doable!

Implication of Second Incompleteness Theorem

There is no polynomial-time prover \mathcal{P} that could prove for all polynomial-time Turing machines \mathcal{D} that they make incorrect descisions.

- Exact polynomial complexity may depend on the Turing machine \mathcal{D} .
- Result indicates that for a constructive proof of *P* ≠ *NP* we have to use at least super-polynomial prover *P* to generate counter examples for a concrete candidate distinguisher *D*.
- The result does not indicate that there is no provably totally recursive counter example generator for L_{3SAT} distinguishers.
- The bound is quite natural, as for generating counter examples the prover \mathcal{P} has to "evaluate" 3SAT formulas.

Computational content of $\mathcal{P} \neq \mathcal{NP}$ proof

The proof of $\mathcal{P} \neq \mathcal{NP}$ is equivalent to

$$\mathbf{PA}^{\mathbf{e}} \vdash \forall \mathcal{M} \; \forall n \; \exists w \ge n \; \neg \llbracket \mathcal{M}(\rho_{\mathsf{3SAT}}(\mathsf{w})) \sim \rho_{\mathsf{3SAT}}(\mathsf{w}) \rrbracket$$

The latter does not apriori mean that given \mathcal{M} and n the counter example w can be computed in polynomial-time in |n|.

If the proof is non-constructive then there might be no hints how to compute $w \,$ at all.

Hence even if we have a proof $PA^e \vdash \exists w \ge n \neg [\![\mathcal{M}(\rho_{3SAT}(w)) \sim \rho_{3SAT}(w)]\!]$ we might be unable to pin-point w. Still it is trivial to prove it in polynomialtime w.r.t. formula length, if we have finite proof of

$$\mathbf{PA}^{\mathbf{e}} \vdash \forall \mathcal{M} \ \forall n \ \exists w \geq n \ \neg \llbracket \mathcal{M}(\rho_{3\mathsf{SAT}}(\mathsf{w})) \sim \rho_{3\mathsf{SAT}}(\mathsf{w}) \rrbracket.$$

Unjustified and questionable assumption

Definition. The theory \mathcal{T} is an polynomially ω -consistent w.r.t. two argument described predicate $\psi(\mathcal{M}, w)$ iff the following holds:

• Let \mathcal{P} be a polynomial-time prover such that for any \mathcal{M} there exists an infinite set $\{m_1, m_2 \ldots\} \subseteq \mathbb{N}$ so that

 $\mathcal{T} \land \mathcal{P} \Vdash \exists w \ge m_i \ \psi(\mathcal{M}, w)$

• Then there must exist another polynomial-time prover \mathcal{P}_{\circ} such that for any \mathcal{M} there exist a constant c an infinite set $\{n_1, n_2 \ldots\} \subseteq \mathbb{N}$ so that

$$\mathrm{PA}^{\mathsf{e}} \wedge \mathcal{P} \Vdash \exists w (\mathsf{n}_{\mathsf{i}} \leq w < \mathsf{m}_{\mathsf{i}} + |\mathsf{n}_{\mathsf{i}}|^{c}) \ \psi(\mathcal{M}, w)$$

Computational content of polynomial ω -consistency

It is rather hard or even impossible to link polynomial ω -consistency with any other logic concept. Thus, we provide *ad hoc* interpretation.

Intuitively, polynomial ω -consistency explicity states that any proof:

- Is constructive or has an extractable explicit computational content.
- The corresponding algorithm has a polynomial complexity.

Under these circumstances unprovability of $\mathcal{P} \neq \mathcal{NP}$ is evident.

Since Peano Arithmetics is not proven to be polynomial ω -consistent, there is essentially no progress.

It would be trully surprising if Peano Arithmetics is polynomially $\omega\text{-}$ consistent.