T-79.515 Special Course on Cryptology

Seminar V: Private Set Intesection Protocols

Sven Laur Helsinki University of Technology swen@math.ut.ee,slaur@tcs.hut.fi

Special Course in Cryptology, 17.02.2004

Seminar V: Private Set Intesection Protocols, Sven Laur

Known results

Let \mathcal{X} be the universal set of all possible elements and $N = |\mathcal{X}|$.

- Private equality tests $x \in \mathcal{X}$?
 - * Yao's circuit evaluation $O(\log N)$ gates (oblivious transfers).
 - * Special PET protocols have one round, but the asymptotic complexity is same $O(\log N)$.
- Disjointness and cardinality tests of $X \cap Y$
 - * The lower communication complexity bound is $\Omega(\min\{|X|, |Y|\})$.
 - * The good approximation still requires $\Omega(\min\{|X|, |Y|\})$.

Various scenarios of private set intersection

A client Alice has a set $X = \{x_1, \dots, x_k\}$. A server Bob has a set $Y = \{y_1, \dots, y_\ell\}$.

Different tasks

- Private matching (PM) Alice learns $X \cap Y$.
- Private cardinality (PC) Alice learns $|X \cap Y|$.
- Private threshold test (PT) Alice learns $|X \cap Y| > \tau$.

Attack scenarios

- Semi-honest model
- Malicious Alice. Malicious Bob.
- Malicious Alice and Bob.

A basic tool—an indicator polynomial

Consider a set $X = \{x_1, \ldots, x_k\} \subseteq \mathbb{F}_q$ then the indicator polynomial

$$P_X(y) = \prod_{i=1}^k (x_i - y) = \sum_{i=0}^k c_i y^i$$

has a trivial property

 $P_X(y)r = 0 \iff P_X(y) = 0 \iff y \in X$

The property (LZ) holds in residue rings \mathbb{Z}_m if

• $x_i, y \in [0, \kappa/2)$, where κ is the smallest zero-divisor

$$\kappa = \min \left\{ a : \exists b \neq 0 \land ab \equiv 0 \mod m \right\}.$$

Seminar V: Private Set Intesection Protocols, Sven Laur

Corresponding PM protocol

Input: Private input sets *X* and *Y* such that $k = |X|, \ell = |Y| \ll m$. **Output**: Alice learns $X \cap Y$ and Bob \perp .

Step Setup phase

Alice chooses a private key of homomorphic encryption scheme.

Alice sends the public key to Bob.

Step 1

Alice constructs the indicator polynomial P_X and encrypts coefficients c_i .

Alice sends coefficients $(E(c_0), \ldots, E(c_k))$ to Bob.

Step 2

for $y \in Y$ do Bob evaluates $m_i = \mathbb{E}(rP_X(y) + y)$ with a fresh random number $r \neq 0$. Bob sends randomly permuted m_i to Alice.

Step 3 for i = 1 to ℓ do if $D(m_i) \in X$ then Alice outputs $D(m_i)$.

Correctness

The error probability is negligible.

- If $y \in X$ then (LZ) property assures $D(m_i) = P_X(y)r + y = y \in X$.
- If $y \notin X$ and r is invertible $rP_X(y)$ has uniform distribution and

$$\Pr[D(m_i) \in X] = \frac{|X|}{\varphi(m)} \approx \frac{k}{m} < 2^{-1000}$$

• The probability that r is zero-divisor is negligible 2^{-500} .

Alternatively, we could use a large factor of \boldsymbol{m}

Security

- Since Bob manipulates with encryptions the privacy guarantee of Alice computational.
- If y ∉ X then Alice receives zr + y, where z is invertible element.
 Hence, the security guarantee of Bob is information theoretical, iff the statistical difference

$$\Delta_1 = \left(\frac{1}{\varphi(m)} - \frac{1}{m}\right)\varphi(m) + (m - \varphi(m))\frac{1}{m} = 2\left(1 - \frac{\varphi(m)}{m}\right)$$

is small. Otherwise we get a vague computational guarantee.

• The probability r is not invertible is negligible.

Complexity analysis

- Alice sends k + 1 and Bob sends ℓ ciphertexts.
- Alice computes k + 1 coefficients. The naive complexity is $O(k^2)$.
- Alice computes k + 1 encryptions and ℓ decryptions.
- Bob evaluates P_X at ℓ different locations, it takes O(kℓ) exponentiations.

Computations are dominated by $k\ell$ exponentiations!

The first hack. Applying Horner's rule

- There is a big computational difference between $E(z)^y$ and $E(z)^{y^i}$.
- Bob should compute

$$E(c_0 + c_1 y + \dots + c_k y^k) = E(c_0 + y(c_1 + y(c_2 \dots + yc_k)))$$

= $E(c_0) \cdot ((E(c_1) \cdot (E(c_2) \cdot (\dots E(c_k)^y \dots)^y)^y)^y)^y$

- Bob does *k* short exponentiations.
- The optimization makes the process approximately 50 times faster.

The second hack. Divide and conquer technique

- The computation complexity of Bob depends on the degree of P_X . A smaller degree reduces amount of computations.
- If we divide X = X₁ ∪ X₂ and publish corresponding supersets X = X₁ ∪ X₂, the degree and consequently the number of exponentiations decreases twofold.
- But this is not a secure and efficient solution. We could use random hash function $h : \mathcal{X} \to \{1, 2\}$ instead and define

$$\mathcal{X}_i = \{x \in \mathcal{X} : h(x) = i\}, \quad i = 1, 2.$$

Then with a high probability

$$|X \cap \mathcal{X}_1| \approx |X \cap \mathcal{X}_2|.$$

Seminar V: Private Set Intesection Protocols, Sven Laur

Balanced hashing. Tradeoff between complexities

Consider two hash functions $h_1, h_2 : \mathcal{X} \to \{1, \dots, B\}$. Let C(i) denote the dynamic number of elements of X with h(x) = i. Then the balanced hash function

$$h(x_i) = \begin{cases} h_1(x_i), & \text{if } C(h_1(x_i)) < C(h_2(x_i)), \\ h_2(x_i), & \text{otherwise.} \end{cases}$$

The maximum number of elements of X in the bins

$$M = \Theta(k/B) + (1 + o(1)) \frac{\ln \ln B}{\ln 2}$$

with high probability.

- Setting $B = k / \ln \ln k$, we get $M = O(\ln \ln k)$.
- In practice $M \le 5$ with probability 10^{-58} .

Implementation details

Alice and Bob use keyed fast (non-)cryptographic hash to divide elements of X and Y into B bins. Let M be the degree bound.

Alice must send M + 1 coefficients of $B = k / \ln \ln k$ polynomials

$$P_j(y) = \prod_{x \in X \cap \mathcal{X}_i} (x - y) = \sum_{i=0}^M c_{ij} y^i.$$

For each $y \in Y$ Bob must evaluate both polynomials

$$m_j = E(P_j(y)r + y), \qquad j = h_1(y), h_2(y).$$

- The communication complexity increases about 4 times.
- The workload of Alice doubles.
- The workload of Bob decreases rapidly $O(2M\ell) \ll O(k\ell)$.

What about security?

• If keys of h_1 and h_2 are chosen randomly, then the probability that there are more than M elements in one bucket is small, say 10^{-58} .

The protocol fails or something leaks only if M is too small.

• Since the value of $P_j(y)r + y$ is still garbage, when $y \notin X_j$ or y the privacy guarantee of Bob is still information theoretical.

In other words, m_i that corresponds to a wrong bin reveals nothing about y.

What about PC and PT?

- The protocol allows easily to compute private cardinality. Bob must evaluate E(rP(y)) instead.
- The generalization to private threshold test reduces circuit complexity.

 \star Basically, we can compute shares $s_i, t_i \in \mathbb{Z}_m$ such that

$$s_i + t_i \equiv 0 \mod m \iff y_i \in X.$$

- ★ Thus the corresponding Yao's circuit has lower complexity, since each pair of shares encodes predicate $y_i \in X$.
- * This is not a major breakthrough.

Protection against malicious Alice

If Alice sets $P_X \equiv 0$, she will learn Y. Bob needs a guarantee |X| = k. First assume that we have only one bin.

To prove that deg $P_X = k$ Alice reveals all coefficients. But this violates the privacy of Alice.

Hence, Alice has to mask his entries with keyed cryptographic pseudorandom function f. Then values $f(s, x_i)$ do not reveal x_i provided s is secret.

There is no point in cheating if either Alice gets caught or she cannot cheat.

The aim: Alice passes a test, only if she is honest with extremely high probability.

Special Course in Cryptology, 17.02.2004

Seminar V: Private Set Intesection Protocols, Sven Laur

Almost perfect protection mechanism

Alice chooses 2L random keys s_1, \ldots, s_{2L} and generates indicator polynomials

$$P_j(y) = \prod_{i=1}^k \left[f(x_i, s_j) - y \right] = \sum_{i=0}^k c_{ij} y^i$$

and sends encryptions $E(c_{ij})$ to Bob.

Bob asks to reveal coefficients c_{ij} and $f(x_i, s)$ of L polynomials. Alice gets caught with an extremely high probability if she lied about L polynomials.

Alice reveals keys s_j of other *L* polynomials. Bob forces all or nothing behavior by setting

$$\mathsf{E}(P_j(F(y,s_j))^r + u_j), \qquad \bigoplus_{j \in \mathcal{J}} u_j = y.$$

Alice gets something useful only if y is the root of all polynomials.

Special Course in Cryptology, 17.02.2004 Seminar V: Private Set Intesection Protocols, Sven Laur

Alice can still cheat!

Alice might choose weak keys s so that

$$f(s, x_i) \neq f(s, x_j), \qquad i \neq j$$

but

$$\forall y \exists i : f(s, x_i) = f(s, y)$$

To eliminate this threat Bob chooses a collision resistant hash function g and compose a fair keyed hash $f'(s, \cdot) = f(s, g(\cdot))$.

Alternatively we could use keyed pseudo-random permutations (blockciphers). It is possible if block-size is less than $\log m$.

A trouble with bins

If bins contain at most M elements of X then some bins are under-fulled.

We cannot reveal how many elements of X belong to the *i*th bin, since the superset \mathcal{X} might be small enough to use brute force search algorithms.

We can use false roots to increase the degree of under-fulled polynomials. Now two options exist:

- We take different elements Alice cannot prove to Bob that |X| = k.
- Alice takes repeating elements finding "greatest common divisor" allows Bob to reveal bin counts of h₁ and h₂.

Hence, Alice can securely prove only that $|X| \leq MB = O(k)$?

Special Course in Cryptology, 17.02.2004 Seminar V: Private Set Intesection Protocols, Sven Laur

Can we prove if Bob lies?

Bob can trivially lie by replacing E(rP(y) + y) with $E(y^*)$. Thus Alice should force Bob to prove that he computed rP(y) + y.

Proof by random witness

Bob chooses a random $s \in \mathbb{Z}_m$. Asks from a random oracle enough randomness $(r, r') = H_1(s)$ and computes $e_1 = \mathbb{E}(rP(y) + y)$ and $e_2 = \mathbb{E}(rP(y) + s)$.

To complete the proof he asks from an other random oracle $h = H_2(r', y)$ and sends triple (e_1, e_2, h) to Alice.

Decoding procedure

- Set $s' = D(e_2)$ and $y' = D(e_1)$. Compute $(r, r') = H_1(s)$.
- Reject if $y' \notin X$ or $h \neq H_2(r', y')$, otherwise output y'.

Approximate solution of PC

Both parties compute indicator strings X and Y.

They random sample \mathcal{I} yiels an (unbiased?) statistical estimate

$$\delta = \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} x_i y_i.$$

If the sample has statistically significant size $|X \cap Y| \approx \delta N$.

The sampling is done with oblivious indexing. The communication complexity is asymptotically optimal.

The multi-party case

Let A_n be the leader. The leader creates shares

$$y_i = \bigoplus_{j=1}^{n-1} u_{ij}, \quad i = 1, \dots, \ell.$$

Parties A_1, \ldots, A_{n-1} use two-party protocol, where leader computes $m_{\pi(i)j} = E(rP(y_i) + u_{ij}).$

For each candidate $v_{ij} = D(m_{ij})$ parties A_1, \ldots, A_{n-1} use Benaloh protocol to securely compute $v_i = v_{i1} \oplus \cdots \oplus v_{i,n-1}$

All parties accept v if it belongs to their sets.

Secure fuzzy matching of n component vectors

Can Alice retrieve all fuzzy matches

 $\mathcal{F}_k(X,Y) = \{z \in X : \exists x \in X \exists y \in Y \ H(z,x) \le k \land H(z,y) \le k\}$ where *H* is Hamming weight?

Choose indicator polynomials P_i for each component so that

$$\sum_{j \in \mathcal{J}} P_j(x_{ij}) + a_{\mathcal{J}} = 0, \qquad |\mathcal{J}| = k$$

Then again Bob can compute

$$E\left(\left(\sum_{j\in\mathcal{J}}P_j(y_i+a_{\mathcal{J}})\right)r+y\right), \quad \text{forall } |\mathcal{J}|=k$$

and send them back in a randomly permuted fashion.

Special Course in Cryptology, 17.02.2004 Seminar V: Private Set Intesection Protocols, Sven Laur