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Known results

Let X be the universal set of all possible elements and N = |X |.

• Private equality tests x ∈ X?

? Yao’s circuit evaluation O(logN) gates (oblivious transfers).

? Special PET protocols have one round, but the asymptotic com-
plexity is same O(logN).

• Disjointness and cardinality tests of X ∩ Y

? The lower communication complexity bound is Ω(min {|X|, |Y |}).

? The good approximation still requires Ω(min {|X|, |Y |}).
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Various scenarios of private set intersection

A client Alice has a set X = {x1, . . . , xk}.
A server Bob has a set Y = {y1, . . . , y`}.

Different tasks

• Private matching (PM) — Alice learns X ∩ Y .

• Private cardinality (PC) — Alice learns |X ∩ Y |.
• Private threshold test (PT) — Alice learns |X ∩ Y | > τ .

Attack scenarios

• Semi-honest model

• Malicious Alice. Malicious Bob.

• Malicious Alice and Bob.
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A basic tool—an indicator polynomial

Consider a set X = {x1, . . . , xk} ⊆ Fq then the indicator polynomial

PX(y) =
k∏

i=1

(xi − y) =
k∑

i=0

ciy
i

has a trivial property

PX(y)r = 0 ⇐⇒ PX(y) = 0 ⇐⇒ y ∈ X

The property (LZ) holds in residue rings Zm if

• xi, y ∈ [0, κ/2), where κ is the smallest zero-divisor

κ = min {a : ∃b 6= 0 ∧ ab ≡ 0 mod m} .
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Corresponding PM protocol
Input : Private input sets X and Y such that k = |X|, ` = |Y | � m.
Output : Alice learns X ∩ Y and Bob ⊥.

Step Setup phase
Alice chooses a private key of homomorphic encryption scheme.
Alice sends the public key to Bob.

Step 1
Alice constructs the indicator polynomial PX and encrypts coefficients ci.
Alice sends coefficients (E(c0), . . . , E(ck)) to Bob.

Step 2
for y ∈ Y do

Bob evaluates mi = E(rPX(y) + y) with a fresh random number r 6= 0.

Bob sends randomly permuted mi to Alice.

Step 3
for i = 1 to ` do

if D(mi) ∈ X then Alice outputs D(mi).
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Correctness

The error probability is negligible.

• If y ∈ X then (LZ) property assures D(mi) = PX(y)r + y = y ∈ X.

• If y /∈ X and r is invertible rPX(y) has uniform distribution and

Pr [D(mi) ∈ X] =
|X|

ϕ(m)
≈

k

m
< 2−1000

• The probability that r is zero-divisor is negligible 2−500.

Alternatively, we could use a large factor of m
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Security

• Since Bob manipulates with encryptions the privacy guarantee of Alice
computational.

• If y /∈ X then Alice receives zr + y, where z is invertible element.
Hence, the security guarantee of Bob is information theoretical, iff the
statistical difference

∆1 =

(
1

ϕ(m)
−

1

m

)
ϕ(m) + (m− ϕ(m))

1

m
= 2

(
1−

ϕ(m)

m

)
is small. Otherwise we get a vague computational guarantee.

• The probability r is not invertible is negligible.
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Complexity analysis

• Alice sends k + 1 and Bob sends ` ciphertexts.

• Alice computes k + 1 coefficients. The naive complexity is O(k2).

• Alice computes k + 1 encryptions and ` decryptions.

• Bob evaluates PX at ` different locations, it takes O(k`) exponentia-
tions.

Computations are dominated by k` exponentiations!
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The first hack. Applying Horner’s rule

• There is a big computational difference between E(z)y and E(z)yi
.

• Bob should compute

E(c0 + c1y + · · ·+ ckyk) = E(c0 + y(c1 + y(c2 · · ·+ yck)))

= E(c0) · ((E(c1) · (E(c2) · (· · ·E(ck)
y · · · )y)y)y)y

• Bob does k short exponentiations.

• The optimization makes the process approximately 50 times faster.
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The second hack. Divide and conquer technique

• The computation complexity of Bob depends on the degree of PX .
A smaller degree reduces amount of computations.

• If we divide X = X1 ∪ X2 and publish corresponding supersets
X = X1 ∪ X2, the degree and consequently the number of exponen-

tiations decreases twofold.

• But this is not a secure and efficient solution. We could use random
hash function h : X → {1,2} instead and define

Xi = {x ∈ X : h(x) = i} , i = 1,2.

Then with a high probability

|X ∩ X1| ≈ |X ∩ X2|.
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Balanced hashing. Tradeoff between complexities

Consider two hash functions h1, h2 : X → {1, . . . , B}.
Let C(i) denote the dynamic number of elements of X with h(x) = i.
Then the balanced hash function

h(xi) =

h1(xi), if C(h1(xi)) < C(h2(xi)),

h2(xi), otherwise.

The maximum number of elements of X in the bins

M = Θ(k/B) + (1 + o(1))
ln lnB

ln 2
with high probability.

• Setting B = k/ ln ln k, we get M = O(ln ln k).

• In practice M ≤ 5 with probability 10−58.
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Implementation details

Alice and Bob use keyed fast (non-)cryptographic hash to divide elements
of X and Y into B bins. Let M be the degree bound.

Alice must send M + 1 coefficients of B = k/ ln ln k polynomials

Pj(y) =
∏

x∈X∩Xi

(x− y) =
M∑

i=0

cijy
i.

For each y ∈ Y Bob must evaluate both polynomials

mj = E(Pj(y)r + y), j = h1(y), h2(y).

• The communication complexity increases about 4 times.

• The workload of Alice doubles.

• The workload of Bob decreases rapidly O(2M`) � O(k`).
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What about security?

• If keys of h1 and h2 are chosen randomly, then the probability that
there are more than M elements in one bucket is small, say 10−58.

The protocol fails or something leaks only if M is too small.

• Since the value of Pj(y)r + y is still garbage, when y 6∈ Xj or y the
privacy guarantee of Bob is still information theoretical.

In other words, mi that corresponds to a wrong bin reveals nothing
about y.
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What about PC and PT?

• The protocol allows easily to compute private cardinality. Bob must
evaluate E(rP (y)) instead.

• The generalization to private threshold test reduces circuit complexity.

? Basically, we can compute shares si, ti ∈ Zm such that

si + ti ≡ 0 mod m ⇐⇒ yi ∈ X.

? Thus the corresponding Yao’s circuit has lower complexity, since
each pair of shares encodes predicate yi ∈ X.

? This is not a major breakthrough.
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Protection against malicious Alice

If Alice sets PX ≡ 0, she will learn Y . Bob needs a guarantee |X| = k.
First assume that we have only one bin.

To prove that degPX = k Alice reveals all coefficients. But this violates
the privacy of Alice.

Hence, Alice has to mask his entries with keyed cryptographic pseudo-
random function f . Then values f(s, xi) do not reveal xi provided s is
secret.

There is no point in cheating if either Alice gets caught or she cannot cheat.

The aim: Alice passes a test, only if she is honest with extremely high
probability.
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Almost perfect protection mechanism

Alice chooses 2L random keys s1, . . . , s2L and generates indicator poly-
nomials

Pj(y) =
k∏

i=1

[
f(xi, sj)− y

]
=

k∑
i=0

cijy
i

and sends encryptions E(cij) to Bob.

Bob asks to reveal coefficients cij and f(xi, s) of L polynomials. Alice gets
caught with an extremely high probability if she lied about L polynomials.

Alice reveals keys sj of other L polynomials. Bob forces all or nothing
behavior by setting

E(Pj(F (y, sj))
r + uj),

⊕
j∈J

uj = y.

Alice gets something useful only if y is the root of all polynomials.
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Alice can still cheat!

Alice might choose weak keys s so that

f(s, xi) 6= f(s, xj), i 6= j

but

∀y∃i : f(s, xi) = f(s, y)

To eliminate this threat Bob chooses a collision resistant hash function g

and compose a fair keyed hash f ′(s, ·) = f(s, g(·)).

Alternatively we could use keyed pseudo-random permutations (block-
ciphers). It is possible if block-size is less than logm.
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A trouble with bins

If bins contain at most M elements of X then some bins are under-fulled.

We cannot reveal how many elements of X belong to the ith bin, since the
superset X might be small enough to use brute force search algorithms.

We can use false roots to increase the degree of under-fulled polynomials.
Now two options exist:

• We take different elements — Alice cannot prove to Bob that |X| = k.

• Alice takes repeating elements — finding “greatest common divisor”
allows Bob to reveal bin counts of h1 and h2.

Hence, Alice can securely prove only that |X| ≤ MB = O(k)!?
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Can we prove if Bob lies?

Bob can trivially lie by replacing E(rP (y) + y) with E(y∗). Thus Alice
should force Bob to prove that he computed rP (y) + y.

Proof by random witness

Bob chooses a random s ∈ Zm. Asks from a random oracle enough
randomness (r, r′) = H1(s) and computes e1 = E(rP (y) + y) and
e2 = E(rP (y) + s).

To complete the proof he asks from an other random oracle h = H2(r
′, y)

and sends triple (e1, e2, h) to Alice.

Decoding procedure

• Set s′ = D(e2) and y′ = D(e1). Compute (r, r′) = H1(s).

• Reject if y′ /∈ X or h 6= H2(r
′, y′), otherwise output y′.
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Approximate solution of PC

Both parties compute indicator strings X and Y .

They random sample I yiels an (unbiased?) statistical estimate

δ =
1

|I|
∑
i∈I

xiyi.

If the sample has statistically significant size |X ∩ Y | ≈ δN .

The sampling is done with oblivious indexing. The communication com-
plexity is asymptotically optimal.
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The multi-party case

Let An be the leader. The leader creates shares

yi =
n−1⊕
j=1

uij, i = 1, . . . , `.

Parties A1, . . . , An−1 use two-party protocol, where leader computes
mπ(i)j = E(rP (yi) + uij).

For each candidate vij = D(mij) parties A1, . . . , An−1 use Benaloh pro-
tocol to securely compute vi = vi1 ⊕ · · · ⊕ vi,n−1

All parties accept v if it belongs to their sets.
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Secure fuzzy matching of n component vectors

Can Alice retrieve all fuzzy matches

Fk(X, Y ) = {z ∈ X : ∃x ∈ X ∃y ∈ Y H(z, x) ≤ k ∧H(z, y) ≤ k}

where H is Hamming weight?

Choose indicator polynomials Pj for each component so that∑
j∈J

Pj(xij) + aJ = 0, |J | = k

Then again Bob can compute

E
((∑

j∈J Pj(yi + aJ )
)

r + y
)

, forall |J | = k

and send them back in a randomly permuted fashion.
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