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Known results

Let X’ be the universal set of all possible elements and N = |X|.

e Private equality tests x € X7

% Yao’s circuit evaluation O(log N) gates (oblivious transfers).

* Special PET protocols have one round, but the asymptotic com-
plexity is same O(log N).

e Disjointness and cardinality testsof X NY
*x The lower communication complexity bound is Q(min {| X|, |Y|}).

*x The good approximation still requires Q(min {| X, |Y|}).
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Various scenarios of private set intersection

A client Alice hasaset X = {x1,...,x}.
A server Bob hasasetY = {y1,...,ys}.

Different tasks

e Private matching (PM) — Alice learns X NY'.
e Private cardinality (PC) — Alice learns | X NY|.
e Private threshold test (PT) — Alice learns | X NY| > 7.

Attack scenarios

e Semi-honest model
e Malicious Alice. Malicious Bob.
e Malicious Alice and Bob.
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A basic tool—an indicator polynomial

Consider aset X = {z1,...,x;} C F, then the indicator polynomial
k k ,
Px(y) =[] (zi—y) = D ¢

has a trivial property

Px(y)r=0 <— Pyx(y) =0 <— yeX

The property (LZ) holds in residue rings Z, if

e z;,y € [0,x/2), where k is the smallest zero-divisor

k=min{a: 3b#=0Aab=0 mod m}.

Special Course in Cryptology, 17.02.2004 Seminar V: Private Set Intesection Protocols, Sven Laur

4



Corresponding PM protocol

Input : Private input sets X and Y such that k = | X|,/ = |Y| < m.
Output : Alice learns X N'Y and Bob L.

Step Setup phase
L Alice chooses a private key of homomorphic encryption scheme.

Alice sends the public key to Bob.

Step 1
Alice constructs the indicator polynomial Px and encrypts coefficients c;.
Alice sends coefficients (E(cg),...,E(cr)) to Bob.

Step 2
for y € Y do
| Bob evaluates m; = E(rPx(y) + y) with a fresh random number r # 0.

Bob sends randomly permuted m; to Alice.
Step 3

for s =1to £do
| if D(m;) € X then Alice outputs D(m;).
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Correctness

The error probability is negligible.

o If y € X then (LZ) property assures D(m;) = Px(y)r+y =y € X.

o If y ¢ X and r is invertible r Px (y) has uniform distribution and
X k
Pr[D(m;) € X] = Xk ~ »—1000
e(m) m

e The probability that = is zero-divisor is negligible 200,

Alternatively, we could use a large factor of m
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Security

e Since Bob manipulates with encryptions the privacy guarantee of Alice
computational.

o If y ¢ X then Alice receives zr + y, where z is invertible element.
Hence, the security guarantee of Bob is information theoretical, iff the
statistical difference

A1=( . 1)¢<m>+<m—¢<m>>i=2(1—m)
So(m) m m m

Is small. Otherwise we get a vague computational guarantee.

e The probability » is not invertible is negligible.
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Complexity analysis

e Alice sends k£ 4+ 1 and Bob sends /¢ ciphertexts.
e Alice computes k + 1 coefficients. The naive complexity is O(k2).
e Alice computes k + 1 encryptions and ¢ decryptions.

e Bob evaluates Py at ¢ different locations, it takes O(k¢) exponentia-
tions.

Computations are dominated by k¢ exponentiations!
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The first hack. Applying Horner’s rule

e There is a big computational difference between E(z)Y and E(z)yi.

e Bob should compute

E(co+ c1y+ - + ™) = E(eg +y(er +ylea- -+ yep)))
= E(co) - ((E(er) - (E(eo) - (- - E(e)?---)Y)Y)¥)Y

e Bob does £ short exponentiations.

e The optimization makes the process approximately 50 times faster.
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The second hack. Divide and conquer technique

e The computation complexity of Bob depends on the degree of Px.
A smaller degree reduces amount of computations.

o If we divide X = X7 U X5 and publish corresponding supersets
X = X1 U Xy, the degree and consequently the number of exponen-
tiations decreases twofold.

e But this is not a secure and efficient solution. We could use random
hash function h : X — {1, 2} instead and define

X,={xeX:h(x)=1i}, i=172.
Then with a high probability
X N = | X Ny
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Balanced hashing. Tradeoff between complexities

Consider two hash functions hq,ho : X — {1,..., B}.
Let C'(7) denote the dynamic number of elements of X with Ah(z) = 1.

Then the balanced hash function
N _ ) hi(zg), ifC(hi(z;)) < C(ha(x;)),
h(x;) = .
ho(x;), otherwise.
The maximum number of elements of X in the bins
InIn B
M =0(k/B)+ (1+0(1)) 5
with high probability.

e Setting B=k/InInk,weget M = O(InInk).

e In practice M < 5 with probability 10—°8.
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Implementation details

Alice and Bob use keyed fast (non-)cryptographic hash to divide elements
of X and Y into B bins. Let M be the degree bound.

Alice must send M + 1 coefficients of B = k/ In In k polynomials

Pj(y>— H (r—y) = Zczgy

re XNAX;
For each y € Y Bob must evaluate both polynomlals

m; = E(Pj(y)r +vy), = hi1(y), ha(y).
e The communication complexity increases about 4 times.

e The workload of Alice doubles.

e The workload of Bob decreases rapidly O(2M¥¢) < O(k¥).
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What about security?

e If keys of hy and h, are chosen randomly, then the probability that
there are more than M elements in one bucket is small, say 10—>8.

The protocol fails or something leaks only if M is too small.

e Since the value of P;(y)r + y is still garbage, when y ¢ X; or y the
privacy guarantee of Bob is still information theoretical.

In other words, m; that corresponds to a wrong bin reveals nothing
about y.
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What about PC and PT?

e The protocol allows easily to compute private cardinality. Bob must
evaluate E(rP(y)) instead.

e The generalization to private threshold test reduces circuit complexity.
* Basically, we can compute shares s;, t; € Z, such that

s;+t;, =0 modm <+— y; € X.

* Thus the corresponding Yao’s circuit has lower complexity, since
each pair of shares encodes predicate y;, € X.

* This Is not a major breakthrough.
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Protection against malicious Alice

If Alice sets Px = O, she will learn Y. Bob needs a guarantee | X| = k.
First assume that we have only one bin.

To prove that deg Py = k Alice reveals all coefficients. But this violates
the privacy of Alice.

Hence, Alice has to mask his entries with keyed cryptographic pseudo-
random function f. Then values f(s,z;) do not reveal x; provided s is
secret.

There is no point in cheating if either Alice gets caught or she cannot cheat.
The aim: Alice passes a test, only if she is honest with extremely high

probability.
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Almost perfect protection mechanism

Alice chooses 2L random keys sq, ..., so>7, and generates indicator poly-
nomials
k k ,
Pi(y) = |] [f(xi75j> - y] = > ¢y
i=1 i=0

and sends encryptions E(c;;) to Bob.

Bob asks to reveal coefficients c;; and f(x;, s) of L polynomials. Alice gets
caught with an extremely high probabillity if she lied about L polynomials.

Alice reveals keys s; of other L polynomials. Bob forces all or nothing
behavior by setting

T —
jeJ
Alice gets something useful only if y is the root of all polynomials.
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Alice can still cheat!

Alice might choose weak keys s so that
f(Sax’L') 7+_f(8733j)7 Z#]
but
Vydi: f(s,z) = f(s,9)

To eliminate this threat Bob chooses a collision resistant hash function g
and compose a fair keyed hash (s, ) = f(s, g(+)).

Alternatively we could use keyed pseudo-random permutations (block-
ciphers). It is possible if block-size is less than log m.
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A trouble with bins

If bins contain at most M elements of X then some bins are under-fulled.

We cannot reveal how many elements of X belong to the :th bin, since the
superset X might be small enough to use brute force search algorithms.

We can use false roots to increase the degree of under-fulled polynomials.
Now two options exist:

e \We take different elements — Alice cannot prove to Bob that | X| = k.

e Alice takes repeating elements — finding “greatest common divisor”
allows Bob to reveal bin counts of h1 and h».

Hence, Alice can securely prove only that | X| < M B = O(k)!?
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Can we prove if Bob lies?

Bob can trivially lie by replacing E(rP(y) + y) with E(y*). Thus Alice
should force Bob to prove that he computed rP(y) 4+ .

Proof by random witness

Bob chooses a random s € Z,,. Asks from a random oracle enough
randomness (r,r’) = Hy(s) and computes e; = E(rP(y) + v) and

e = E(rP(y) +9).

To complete the proof he asks from an other random oracle h = H>(r/, y)
and sends triple (eq, es, h) to Alice.

Decoding procedure
e Sets’ = D(er) and y’ = D(ey). Compute (r,r") = H1(s).

e Rejectify’ ¢ X or h # H>(r', '), otherwise output 7.
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Approximate solution of PC

Both parties compute indicator strings X and Y.

They random sample 7 yiels an (unbiased?) statistical estimate

|I| Z LiYq-

€L
If the sample has statistically significant size | X NY |~ dN.

The sampling is done with oblivious indexing. The communication com-
plexity is asymptotically optimal.
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The multi-party case

Let A, be the leader. The leader creates shares
n—1
Y; — @uw, i:].,...,f.
j=1
Parties Aq,...,A,_1 use two-party protocol, where leader computes
mri); = BE(rP(y:) + ugj).

For each candidate v;; = D(m;;) parties A4, ..., A,_1 use Benaloh pro-
tocol to securely compute v; = v;1 @ -+ © v; p—1

All parties accept v if it belongs to their sets.
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Secure fuzzy matching of n component vectors

Can Alice retrieve all fuzzy matches
Fr(X,)V)={zeX :Fxe XIyeY H(z,x) <kNH(z,y) <k}

where H is Hamming weight?

Choose indicator polynomials P; for each component so that

Y. Pi(zy;) a7y =0, |Jl=k
jeTJ

Then again Bob can compute

E((Zjejpj(yz_l_aj))r_l_y)a forall |j| =k

and send them back in a randomly permuted fashion.
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