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1 Deterministic dynamic systems

Starting from Renaissance rationality has dominated in the science. W. G. Leib-
nitz and I. Newton based foundations to mathematical and physical doctrine
of determinism—everything in the nature is defined by few deterministic laws,
and thus can be explained (computed) automatically from initial conditions.
However, the 20th century made quite serious amendments to the core idea of
determinism. It turned out that an adequate mathematical model of the process
and initial conditions are not sufficient for determining the state of the process
in many cases. Small disturbances in initial conditions or changes in model
will yield to totally different behaviour. The concept of such ill-posed problems
was noted already in 1902 by J. Hadamard. The three body problem (solved by
H. Poincaré and K. F. Sundman) gave a second warning: under some initial con-
ditions orbits of three bodies under the gravitational forces can reach a state of
chaos—all orbits are non-periodic and do not approach any limiting trajectory.
The similar effects were noted for many physical phenomenas, but still there
was a lack of mathematical insight why such mysterious fluctuations happen.
In a certain sense, the the chaos theory got really popular after publications of
Edward Lorenz, who discovered that a simple mathematical model for weather
forecasting is unstable and found a simple explanation of the phenomenon.

Nowadays it is well established fact that even simple deterministic non-
linear systems can have truly chaotic behaviour. Hence, if we assume that some
phenomenon is governed by (simple) deterministic rules there are three possible
behavioural patterns. The system can head to a catastrophe—trajectory in the
phase space grows without limit. Recall that phase space1 is a vector space
Rn that incorporates all parameters which determine the state of system. In
case of three body problem, the phase space might consist of three dimensional
coordinates of all bodies and their velocities. In case of catastrophe, one of the
bodies departures from the others without ever returning.

Systems can also evolve in a stable way—the trajectory in the phase space
is either periodic or quasi-periodic (oscillates around stable trajectory). The
third alternative is chaos—a trajectory in the phase space jumps seemingly

1By some odd reason statisticians name it state space, therefore we use that term after-
wards.
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randomly around different sub-paths. Clearly, it is quite easy to make long-
term predictions, when system is either periodic or quasi-periodic. On the other
hand, it is inherently impossible to make meaningful long-term predictions of
time series, when the series are generated by deterministic chaotic process.

The most obvious way to describe the evolution of the system is to build
a sound well-behaving mathematical model, then extract enough information
about initial state, and just compute the necessary output. However, in many
cases such approach is impossible: either we cannot build an accurate model or
the data is incomplete. Therefore, we should pose a question slightly differently:
is it possible to construct an adequate deterministic model for a time serie that
is based on the information encoded in the time serie itself. The celebrated
Takens theorem provides a partial answer. In the following, we consider practical
ramifications of Takens theorem and some possible applications.

2 Basic properties of dynamic systems

The following is written in mathematically loose terms: our intent is to give
basic intuition behind the notions and avoid tiresome technical details. For
more rigorous treatment, we suggest to consult PhD thesis [Bor98] or any other
suitable mathematical monography.

In principle, time series can either be deterministic or probabilistic. The
latter means that the observations are only partially determined by the internal
state of the system—some information about the internal state is bound to be
lost. Formally, the Takens theorem requires that measurements are completely
determined by the system state. However, we can extend it to noisy time series,
when the noise ratio is small. If the noise ratio is large, too much information
about the internal state is lost and we fail to reconstruct the state with sufficient
granularity.

Formal description of discrete dynamical system Let us denote the the
set of possible states of the system by X . In the following, we assume that X is
a bounded set in a finite dimensional vector space Rd. Informally, we could say
that system is somewhat stable and has a compact mathematical description.
Let T : X → X be a deterministic rule that uniquely determines the next state
given the current state of the system. In other words, we assume that time is
discrete or measurements are done with a fixed frequency. Given an initial point
x0, we get a positive orbit of the system

X = (x0, x1, x2, . . .) = (x0, Tx0, T
2x0, . . .) = (x0, T (x0), T (T (x0)), . . .).

For a formal statistical analysis, we need a probability distribution over the
state space X that is stationary with respect to the evolution rule T . More
precisely, if the system state xi ∈ B then the next state xi+1 ∈ T (B), hence we
require invariance

Pr [xi ∈ B] = Pr [xi+1 ∈ T (B)] = Pr [xi ∈ T (B)]
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A natural candidate for such probability distribution is average presence time

Pr [x ∈ B] = lim
n→∞

1
n + 1

n∑
i=0

Pr
[
T ix0 ∈ B

]
that counts how long on average orbit stays in the set B.

System evolution and attractors Consider a an orbit X = (x0, x1, x2 . . . , ).
As the state space X is bounded there are many converging sub-sequences of
X. They form an attractor—a set A such that after sufficiently long evolution
all consecutive states of the systems are less than ε units away from A. More
formally, we get a requirement

∀ε > 0 ∃i0 : ∀i > i0 d(A, xi) = inf
a∈A

‖xi − a‖∞ < ε.

We should also require that A is stationary A = T (A) and in some sense mini-
mal. Intuitively, the attractor A describes long-term properties of the system.

Correlation integral It is easy to understand that even if the state space is
high dimensional, the behaviour of the system might be simplistic. Therefore,
we have evaluate the dimensionality of the attractor set (Recall that attractor
describes the long-term behaviour of the system). The ordinal dimensionality
scale is too coarse and we need a more refined notion. The fractional dimension
of A is defined via correlation integral

C(r) = Pr [‖X − Y ‖∞ ≤ r] ,

where X and Y are independently drawn from the stationary distribution de-
fined before. Clearly, the correlation integral depends on r. If C(r) ∼ const · rα

as r → 0, we say that the correlation dimension of A is α. In oder words

cdim(A) = lim
r→0+

log C(r)
log r

,

if the latter exists. It can be shown that cdim(A) ∈ [0, d], where d = dim(X ).
The correlation dimension is sometimes referred as intrinsic dimensionality.

Time serie as an observation sequence Unfortunately, we cannot directly
observe the evaluation of the system in time. Instead, we make some measure-
ments that somehow characterise the system. Let f : X → R be the read-out
function—a measurement scheme. Then for each orbit X there is a correspond-
ing time serie

Y = (y0, y1, y2 . . .) = (f(x0), f(x1), f(x2), . . .)

It might be impossible to restore the internal state xi from measured quantities
Y , but the latter is not our primal goal in time series prediction. We need just
a reasonable model g : Rk → R that predicts the behaviour of Y . The Takens
theorem states that under some weak assumptions the latter is doable (at least
in theory).

3



3 Reconstruction. Takens theorem

It is easy to grasp that a single measurement yi cannot describe the internal
state of a complex system. The only reasonable alternative is to add mem-
ory, i.e. consider k-tuples (yi, yi+1, . . . , yi+k) of observations. We denote the
corresponding mapping

Reck(x) = (f(x), f(Tx), f(T 2x), . . . , f(T k−1x)).

Now for any k and each orbit X, we get an extended observation orbit Reck(X).
Ideally, we would like to distinguish between observation orbits of different sys-
tems that is Reck(X1) 6= Reck(X2) for any X1 6= X2. Secondly, we should
be able to detect “critical” points, where external forces cause a change of or-
bit. The Takens theorem states that we can detect jumps (discontinuities in
evolution) and angle-points (sudden changes of orbit direction without jumps).

Takens Theorem (1981). Let X be a bounded set. In the Cartesian product
space of C1-mappings on X and the space of C1-functions from X to R there
exists a open and dense subset U such that if (T, f) ∈ U , then the reconstruction
map Reck is an embedding, whenever k > 2 · dim(X ). Moreover, the embedding
is continuously differentiable and has also continuously differentiable inverse.

Assumptions

• The read-out function f : X → R is continuously differentiable. In other
words, it does not introduce new jumps or angle points.

• The deterministic transformation is also continuously differentiable—usually
automatically fulfilled by physical systems.

Implications

• The embedding exists for “almost” all function pairs (T, f). More precisely,
if there is no embedding from state space to extended observation space, then
there exists a slightly different pair of a deterministic rule and read-out func-
tion (T̂ , f̂) that has a corresponding embedding. We can even characterise
the closeness

∀ε > 0 ∃f̂ ∈ C1(X → R) : ∀x ∈ X |f(x)− f̂(x)| + |f ′(x)− f̂ ′(x)| < ε,

∃T̂ ∈ C1(X → X ) : ∀x ∈ X |T (x)− T̂ (x)|+ |T ′(x)− T̂ ′(x)| < ε.

In other words, we can pretend that there is a slight noise in the time serie
and slight external disturbance of the observed system. Both assumptions
are quite plausible in practice, and we do not have to care about (f, T ) ∈ U
or not2.
2However, there is a slight catch here. If system is chaotic then small errors in extended

observation space may cause drastic changes in predictions—ideal regressor in not better than
random guessing. This is true even (T, f) ∈ U .
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• The embedding preserves structural properties of the system. For example,
the the image Reck(A) of the system attractor A is also the attractor in the
extended observation space. Moreover, the correlation dimensions coincide

cdim(A) = cdim(Reck(A)).

• The observed orbit has roughly the same properties as the orbit of the
system—no jumps and angle points are introduced or deleted.

Minimal Regressor Size

Theoretical implications of the Takens theorem are nice, but the most stunning
ramification in the context of time series is captured in the following diagram

Current state Det. rule−−−−−−→
T

Next state

Reck

yxRec−1
k

Reck

y
(yi, . . . , yi+k) Prediction−−−−−−−−−→

Reck◦T◦Rec−1
k

(yi+1, . . . , yi+k+1)

Explicitly stated, if k > 2 dim(X ) there exists a precise deterministic rule for
predicting the next state of the time serie! Of course, the latter might be missing
in our function class F that we try to fit on the data, but in principle we could
find the ideal predictor.

However, the Takens theorem is non-constructive and in first sight does not
provide any means to determine a proper size of k. In the following, we show
how to estimate dim(X ).

4 Estimators of correlation integral

In order to determine the optimal regressor size, we must somehow estimate
the dimensionality of state space X . The second theoretical implication of the
Takens theorem

k > 2 · dim(X ) =⇒ cdim(A) = cdim(Reck(A))

provides necessary insight. Intuitively, if we increase the dimension of the ex-
tended observation space the correlation dimension cdim(Reck(A)) grows, as the
orbit becomes more complex. If the attractor of the system is not redundant
cdim(A) > dim(X )− 1, then we have a trivial inequality

k < dim(X ) =⇒ cdim(A) > cdim(Reck(A)).

Combining both inequalities with ad hoc steady growth assumption

cdim(Rec1(A)) < cdim(Rec2(A)) < . . . < cdim(Recd(A))

we get a digestible interpretation of the Takens theorem.
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Interpretation of Takens Theorem. If the correlation dimension of Reck(Y )
and Reck+1(Y ) are equal or close enough, then the dimensionality of the state
space satisfies dim(X ) ≤ k ≤ 2 dim(X ) + 1. The latter means that the optimal
regressor size is between k and 2k + 1.

Grassberger-Proccacia estimator We want to estimate the correlation di-
mension of the extended observation orbit Reck(Y ) = (z0, . . . ,zn, . . .), where
zi = (yi, . . . , yi+k). The correlation dimension itself is defined by the correla-
tion integral C(r) = Pr [‖X − Y ‖∞ ≤ r], where X and Y are random variables
distributed by the average presence time. If there are enough orbit points then
Grassberger-Proccacia estimator

Cn(r) =
2

n(n− 1)

n∑
i,j=1
i6=j

Pr
[
‖zi − zj‖∞ ≤ r

]
is a Monte-Carlo approximation of correlation integral C(r). If n is large, vec-
tors zi are drawn from a distribution that approximates the average presence
time distribution. Strictly speaking, values zi are not independent, but the
summation decreases the effect of dependence. Under some weak but weird
assumptions, one can even estimate convergence speed of Cn(r) →n C(r). The
Grassberger-Proccacia estimator of attractor dimension is a double limit

αGP = lim
r→0+

lim
n→∞

log Cn(r)
log r

.

Of course we cannot compute it, instead we fix n and compute αi = Cn(ri).
Then we fit a line through (log α1, log r1), . . . , (log αm, log rm) and the slope of
the line is the estimate α̂GP. There three kinds of errors:

• Systematic error. Points r1, . . . , rm are not infinitesimal and thus the
fraction Cn(ri)/ log ri is only approximately αGP. If we decrease ri the pre-
cision increases.

• Statistical error. We use a finite number of samples in the probability
estimate of Pr [‖X − Y ‖∞ ≤ r]. If r is small the neighbourhood of zi contains
too few points and statistical fluctuations dominate. If we decrease ri the
precision decreases.

• Effect of noise. Instead of values zi we really use ẑi = zi + εi, thus for
some pairs ‖zi − zj‖∞ ≤ ri though ‖ẑi − ẑj‖∞ > r and vice versa. The
latter introduces a bias to the estimate: Cn(ri) will be slightly smaller than
without noise. It is more probable to increase the distance between points
than decrease. If we decrease ri, the error increases.

Therefore, we must do a fair tradeoff between three error components. There
are also two principal chooses for fitting the line: least square or least median
regression. The latter is more stable against outliers and should provide more
conservative estimate.
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Generally, Grassberger-Proccacia estimator is quite stable, but it has a seri-
ous downside—quadratic computational complexity. Hence, the computations
quickly become intractable for large values of n. One possible caveat is to use
sub-sampling.

Takens estimator Consider the case when C(r) = c0 · rα, whenever r ≤ r0.
Then the conditional probability

Pr
[
‖X − Y ‖∞ ≤ r

∣∣r ≤ r0

]
=

Pr [‖X − Y ‖∞ ≤ r]
Pr [‖X − Y ‖∞ ≤ r0]

=
(

r

r0

)α

Simple substitution shows that S = log ‖X−Y ‖∞
r0

has an exponential distribution
Pr [S ≤ s] = 1− exp(−αs). Thus given an upper threshold r0 we can estimate
the dimension α by Maximum Likelihood estimate

α̂ML =
(

1
m

m∑
i=1

Si

)−1

, Si =
‖zi − zj‖

r0
≤ 1

The formula is correct when zi and zj are independent. Since zi and zj are
dependent, Takens suggested modified formula

α̂T = −
(

2
n(n− 1)

n∑
i,j=1
i6=j

‖zi − zj‖∞
r0

)−1

Generally, the condition C(r) = c0 · rα is not satisfied. However for sufficiently
small r0, C(r) ≈ c0 · rα and the estimate has a small enough bias.

The Takens estimator is computationally more efficient, but still has quadratic
complexity. On the other hand, the estimate is computationally unstable. If
zi ≈ zj the small variations of zj have large impact on α̂T.

Chord estimator If we take only two values r0 and r1 in the Grassberger-
Proccacia estimator, the line-fitting becomes trivial

α̂C =
log Cn(r0)− log Cn(r1)

log r0 − log r1

But it seems fishy—depending on the choice of r0 and r1 the estimate α̂C might
vary a lot. The trick here is to choose optimal values of r0 and r1 that minimise
the expected variance of α̂T. It has been proven that with properly chosen r0

and r1 the expected relative error is only 1.25 times worse than for the Takens
estimator. On the other hand, it is computationally more stable.

Ellner estimator In the Takens estimator, we ignored pairs that are to far
apart. The Ellner estimator ignores also pairs that are too close and adds a
corresponding correction term into the formula of α̂T. Intuitively, the number
of very close orbit points is small and statistical fluctuations do not cancel out.
Thus pruning improves stability of the estimate. From theoretical point, the
Ellner estimator is much more appealing than the Takens estimate.
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