
T-79.515 Special Course on Cryptology:

Privacy-Preserving Frequent Itemset Mining on Horizontally

Distributed Data

Sven Laur

February 16, 2004

Abstract

This survey covers some security aspects of cooper-
ative frequent itemset mining. We observe scenar-
ios, where individual records of the database are
distributed among different parties. All parties are
willing to cooperate in order to find globally fre-
quent itemsets, but they do not want to reveal too
much information. The survey examines one pos-
sible solution proposed in article [KC02], but an
alternative based on Benaloh’s protocol [Ben87] is
briefly discussed.

1 Introduction: motivation

A classical application of frequent itemset min-
ing is an analyse of supermarket data. Dis-
covered frequent itemsets characterize behavior
of customers—frequent sets denote objects often
bought together. Moreover, refined analyse can re-
veal causal relatioships between various items. For
example customers, who buy pizza and beer, tend
to buy chips. Discovery of new novel causal re-
lations makes frequent itemset mining apealing in
many applications.

In order to formalize the underlying idea, we in-
troduce simple notations. Imagine that we have a
database DB and each record R is a set of items.
All possible items I1, I2, . . . , Im form the itemset
I and frequent itemsets A = {Ii1 , . . . , Iik

} are
just subsets of I. The support of an itemset A is
the number of database records that contain those
items, formally

supp(A) = # {R ∈ DB : A ⊆ R} .

We call an itemset frequent, if the support is over
some fixed threshold κ.

Since frequent itemsets descirbe only items
bought together, we need a refinment that indicates
causal relations like Coke ⇒ Chips. The useful-
ness of such rules are described by two parameters:
support and confidence. The support of an assotci-
ation rule A ⇒ B characterizes how often the rule
is supported by data and the confidence quantifies
the uncertainty p(B|A). Formal definitions are

supp(A ⇒ B) = supp(A ∪ B),

conf(A ⇒ B) =
supp(A ∪ B)

supp(A)
.

The rules with low support occur rarely and are
usually caused by idiocracies of the data, thus un-
interesting. It is easy to see that rules with high
enough support can be computed from listing of
frequent itemsets. Thus mining frequent itemsets
is sufficient for exploring association rules.

Usually large collections of data are owned by
different departments or even by different corpora-
tions. There are two possibilities: a horiontal or a
vertical division. In case of horizontal division the
individual records are not divided, wheras the ver-
tical division means that each record is splited. We
consider only horizontal division among t parties

DB = DB1 ∪ DB2 ∪ . . . ∪ DBt.

Clearly, each party can compute local summaries,
but is unable to explore global trends. If the data
belongs to rival parties (competing companies),
then parties are unwilling to share the data. Even
more, laws might prohibit to reveal any delicate in-
formation to third parties. Therefore, all parties

1

want strict security guarantees that their data and
local meta-data remains private. Of course, the
summary itself leaks some private information, but
this is unavoidable. Recent results [Mie03] indicate
that restoring database based on frequent itemset
data is generally intractable.

Another interesing scenario is a covernment data
acquisition, where one well-established party is do-
ing datamining and will later publish summaries.
Here, we can trust that published summaries are
correct ones, but must still consider an information
leakage caused by data mining protsess.

2 Briefly about Apriori

Most of the frequent itemset algorithms are slight
modifications of the Apriori [AIS93, AMS+96] al-
gorithm. The Apriori uses explicitly anti-monotone
relation between itemsets and their supports, for-
mally described by the rule

A ⊆ B =⇒ supp(A) ≥ supp(B)

The rule follows immediately, since all records con-
taining items B contain A as well. Shortly put, all
subsets of the frequent itemset are also frequent.
So instead of searching over all possible subsets, the
algoritms starts from one-element itemsets. Then
tests only those two-element sets that have frequent
subsets and so on. It is easy to see that for can-
didate B with cardinality ` it is sufficient to check
whether all `− 1 element subsets are frequent. Al-
gorithm 1 is ascetic description of the Apriori.

Algorithm 1: Apriori algorithm
Input: Support threshold κ.
♠♠♠ No frequent sets, candidate set I ♠♠♠

F = ∅; C = I; ` = 1
while |C| > 0 do

♠♠♠ Find all valid candidates ♠♠♠
F = F ∪ {A ∈ C : supp(A) > κ}
♠♠♠ Form `-element candidate set ♠♠♠
C = {B ∈ P(I) : |B| = `, A ⊆ B ⇒ A ∈ F}
` = ` + 1

return F

The size of output is determined by the threshold
κ. If κ is small then the number of frequent itemsets
is large. The working time depends linearly on the

size of database |DB| and on the output size |F |.
In that sense the Apriori algorithm is optimal. Of
course, the Apriori will slow down, if there is even
a single large frequent set. Therefore, the Apriori
is suitable for mining sparse records with no large
frequent itemsets.

3 Secure distributed mining

Now consider a horizontally distributed database
shared by t parties DB = DB1 ∪ · · · ∪ DBt. In-
stead of global supports parties can compute local
supports suppi(A). If the number of all records
n = |DB| and local records ni = |DBi|, then the
following implication holds

supp(A) > κ ⇒ ∃i : suppi(A) >
niκ

n
= κi.

Moreover, we have three classes of frequent item-
sets: globally and locally frequent itemsets, and
locally supported globally frequent itemsets

F = {A : supp(A) > κ} ,

Fi = {A : suppi(A) > κi} ,

LFi = F ∩ Fi.

The distributed frequent itemset mining is based on
dependecies between F and LFi. If B be a globally
frequent itemset, then there is a site i such that
suppi(B) > κi. Hence, all subsets of B are locally
and globally frequent and we have the implication

B ∈ F =⇒ ∃i : A ⊆ B ⇒ A ∈ LFi.

In other words, we can create the Apriori candi-
date list locally. Each party generates candidate
sets Ci based on locally supported global sets LFi,
then tests them locally and afterwards a general
candidate list C is formed as a union of new el-
ements in LFi. Algorithm 2 formalizes the idea.
Our next aim is to modify the algorithm so that
minimal amount of information is leaked.

There are two different approaches to obtain se-
curity. Secure multi-party computation (MPC) re-
quires that only the end-result F should become
public. The MPC approach tends to force inef-
ficient protocols. Therefore, Clifton and Kantar-
cioglu relaxed the setting allowing some informa-
tion become public. Namely, the global candidate
set C and some additional details will leak out.

2

Algorithm 2: Distributed Apriori algorithm
Input: Normalized support threshold κ/n.
♠♠♠ Calculate local threshold ♠♠♠

κi = niκ/n
♠♠♠ No frequent sets, candidate set I ♠♠♠

F = ∅; LFi = ∅; Ci = I; C = I; ` = 1
while |C| > 0 do

♠♠♠ Find all valid candidates ♠♠♠
F ∗

i = {A ∈ Ci : suppi(A) > κi}
♠♠♠ Broadcast candidates ♠♠♠
C = F ∗

1 ∪ · · · ∪ F ∗
t

♠♠♠ Global test ♠♠♠
F = F ∪ {B ∈ C : supp(B) > κ}
LFi = LFi ∪ {B ∈ C : B ∈ F, B ∈ F ∗

i }
♠♠♠ New local candidate set ♠♠♠
Ci = {B ∈ P(I) : |B| = `, A ⊆ B ⇒ A ∈ LFi}
` = ` + 1

return F

Whether the leak is important depends entirely on
the application.

We have to modify the broadcast and global test-
ing phase of Algorithm 2, since other steps do not
depend on local data. In other words, we must com-
pute securely unions and sums and test inequalities.
Finding unions and sums is rather easy, since sev-
eral well-known cryptographic solutions exist.

Yet another question is whether, we allow ma-
licious parties who deviate from a specified proto-
col or not. Clearly, it is easier to device solutions
for semi-honest model, where everybody follows the
protocol, than garantee security against malicious
behavior. In the following, we examine only a semi-
honest behavior.

4 Private union protocols

Clifton and Kantarcioglu proposed a naive union
protocol that is secure in the semi-honest model, if
there is no collusion between different parties. The
protocol explicitly assumes that there exists a pub-
lic superset X that contains all possible inputsets
Ci of dissipating parties. Also, the upper bound
d of the cardinality Ci is public. In our case the
global Apriori candidate set is suitable for X.

Since X is public we can encode elements A of
Ci by binary words. In order to hide the cadinality
of Ci, we need a padding set F consisting of unused

binary words. In the following Algorithm 3, we are
explicitly dealing with encodings.

Algorithm 3: CK private union protocol
Public input: Superset X and count d.
Private input: Set Ci = {A1, · · · ,Aki

}.
Public output: Union C = C1 ∪ · · · ∪ Ct.

♠♠♠ Pad Ci with elements of F ♠♠♠

Set M = Ci.
Add false elements to M so that |M | = d.
♠♠♠ Sequential encryption ♠♠♠

for j = 1 to t− 1 do
Encrypt Ei(M) = {Ei(A) : A ∈ M}.
Send Ei(M) to right neighbor.
Receive result M from left neighbor.

if i even number then
Send Ei(M) to party 2.

else
Send Ei(M) to party 1.

♠♠♠ Duplicate elimination ♠♠♠

Parties 1 and 2 eliminate duplicates.
Party 2 sends all messages to 1.
Party 1 eliminates duplicates.
♠♠♠ Decryption phase ♠♠♠

Messages are decrypted Dt . . .D1.
Party t removes false elements and broadcast
result.

The protocol is based on a commutative encryp-
tion scheme. Unfortunately, only few commutative
schemes are known [?] and they are not fast. In
Algorithm 3 each party has is own private key and
can encrypt messages with the encryption function
Ei and decrypth with Di. If a message is encrypted
iteratively, then the encryption order is not impor-
tant or more formally

E1E2 . . .Et(A) = Eπ(1)Eπ(2) . . .Eπ(t)(A) (1)

for all possible messages and permutations π. The
probability of collisions (decryption failures)

Pr
[
E1E2 . . .Et(A1) = Eπ(1)Eπ(2) . . .Eπ(t)(A2)

]
,

when A1 6= A2, should be negligible. The equa-
tion (1) allows parties 1 and 2 to eliminate dupli-
cate encryptions of a same set element A. However,
it also allows to detect size of intersections between
Ci and Ci+2k. The maximal information leakage is
summarized in the following theorem.

3

Theorem 4.1 The CK protocol privately com-
putes the union if there are no colluding parties and
reveals at most:

• size of all intersections |Ci ∩ Ci+2k|;

• size of intersection |D1 ∩D2|;

• size of |D1| and |D2|;

where D1 = C1 ∪ C3 ∪ . . . and D2 = C2 ∪ C4 ∪

However, the privacy is guaranteed for a single
execution, since re-execution allows parties 1 and 2
can distinguish repeating sets. The security quar-
antee is rather weak, since one can use protocols
that are computationally more efficient and give a
strict security guarantee.

First, if cardinalities of the superset X and the
end-result C are approximately the same order,
then voting for each element A ∈ X cause only
a slight efficiency loss. The voting step itself can
be implemented by secure multiplication.

Algorithm 4: Generic union protocol
Public input: Superset X.
Private input: Set Ci = {A1, · · · ,Aki}.

C = ∅
for A ∈ X do

if A ∈ Ci then bi = 0 else bi = 1
Securely multiply c ≡ b1 · · · bt mod 2.
if c 6= 1 then

Add A to C.

return C

The correctness follows from De Morgan’s law
b1 ∨ b2 = ¬(¬b1 ∧ ¬b2). The secure multiparty
multiplication can be implemented with Benaloh’
protocol. The protocol is fully described in the
next section. It extreamly efficient since all calcu-
lations are done in Z2 and each party has to do 2t
multiplications. Only drawback is relatively large
communication complexity.

Theorem 4.2 The generic union protocol that
uses Benaloh’ protocol for multiplication is uncon-
ditionally secure against coalition of t− 1 parties.

Since the answers to each voting are determined
by C, the security of the generic union protocol
is determined by voting substep. As the Benaloh’

protocol is secure against coalition of t− 1 parties,
the claim follows.

5 Private addition and in-
equality test

For finding global supports supp(A) ≥ κ, we are
faced with distributed inequality problem. Again
Clifton and Kantarcioglu produce a solution assum-
ing that there are no coalitions.

Algorithm 5: CK inequality test
Private input: Private support suppi(A).
Public input: Large modulus m > 2n such

that gcd(m,n) = 1.

Party 1 chooses r ∈ Zm.
Sets c ≡ supp1(A) + r − κ1 mod m.
for i = 1 to t do

c ≡ c + suppi(A)− κi mod m.

Parties 1 and t use Yao’s circuit and determine
?c− r ≥ 0 mod m.

The condition gcd(m,n) = 1 allows to embed
fractional thresholds κi into Zm so that

κ1 + κ2 + · · ·+ κt ≡ κ mod m.

Hence, c − r ≡ supp(A) − κ mod m. As latter is
in the interval (−n, n) the sign of c− r determines
whether supp(A) ≥ κ. Currently, only Yao’s gen-
eral circuit construction allows securely compute
the predicate, but this is rather slow substep.

Coalitions of parties i and i+2 can determine the
value of suppi(A) without revealing their shares,
thus the non-collusion assumption is not realis-
tic. However, if we relax the constraint and allow
supp(A) become public then we can use Benaloh’
protocol for adding. First, consider a random ma-
trix in additive group G

a11 a12 · · · a1t

a21 a22 · · · a2t

...
...

. . .
...

at1 at2 · · · att

where row sums ai are fixed. Clearly, all proper
subsets of row elements have uniform distribution.
Therefore, column sums of t− 1 arbitrary columns

4

have also uniform distribution. This forms the core
of the Beneloh’ protocol.

In the Benaloh’ protocol, we first sum over the
columns and then over the column sums and obtain
the som of all matrix elements a = a1 + · · ·+ at.

Algorithm 6: Benaloh’ protocol
Private input: Private term ai.

Choose randomly ai1 + ai2 + · · ·+ ait = ai.
for j = 1 to t do

Send aij to the jth party.

Calculate column sum bi = a1i + a2i · · ·+ ati

Broadcast values bi.
return b1 + b2 + · · ·+ bt.

Theorem 5.1 The Beneloh’ protocol is uncondi-
tionally secure against coalition up to t− 1 parties.

Proof. Let us renumber the matrix rows and
columns so that honest parties have top-left rows
and columns. To simulate view of the coalition, we
first send random elements aij to coalition. Since
the t−1 column sums have uniform distribution we
can choose answers bi of honest parties randomly
except for the b1 = a − (b2 + · · · + bt). Note that
the simulator knows values b2, . . . , bt and the end-
result a. Since the view is perfectly simulated the
claim follows. �

Clifton and Kantarcioglu state, that combining
Benaloh’s protocol parties 1 and 2 can securely ob-
tain shares r and supp(A) − κ − r and then use
Yao’s circuit to evaluate predicate supp(A) ≥ κ.
But collaborating parties 1 and 2 can reveal
supp(A). Hence, the security against collusion re-
quires stronger protocol.

6 Impossibility of two-party
protocol

Let us consider the two-party case. If the public
outcome is a listing of frequent sets along with the
supports, then even the ideal protocol leaks useful
information. Namely, the the global suppport re-
veals local support of the other party. If the hostile
party provides empty database or uniformly filled
database, the he can deduce all frequent sets of the

victim. In most cases, there is no feasible cryp-
tographic mechanisms that could elliminate such
threats, thus we cannot guarantee security at all.

If the listing of frequent itesets is without sup-
ports, then it is possible to achieve the goal by run-
ning the usual Apriori in conjunction with Yao’s
circuit for comparison. However, the approach
will be computationally demanding and the same
empty database trick will work. Hence, securing
the two-party frequent itemset mining is question-
able.

7 Open problems

Clearly, proposed solution [KC02] has limited ap-
plicability. Therfore, we need realistic attack sce-
narios that allow coalitions, denial of service at-
tacks or even malicious behavior. Although the as-
sociation rule mining can be reduced to frequent
itemset mining, we need different kind of protocols
if we do not vant to reveal global frequencies of
itemsets. Also, a relatively efficient two or multi-
perty inequality test would be nice.

References

[AIS93] Rakesh Agrawal, Tomasz Imielinski,
and Arun N. Swami. Mining associ-
ation rules between sets of items in
large databases. In Peter Buneman and
Sushil Jajodia, editors, Proceedings of
the 1993 ACM SIGMOD International
Conference on Management of Data,
pages 207–216, Washington, D.C., 26–
28 1993.

[AMS+96] R. Agrawal, H. Mannila, R. Srikant,
H. Toivonen, and A. I. Verkamo. Fast
discovery of association rules. In Ad-
vances in Knowledge Discovery and
Data Mining, pages 307–328, 1996.

[Ben87] Josh Cohen Benaloh. Secret sharing ho-
momorphisms: Keeping shares of a se-
cret secret. In Advances in Cryptology -
Crypro’86, volume 263 of LNCS, pages
251–260, 1987.

[KC02] M. Kantarcioglu and C. Clifton.
Privacy-preserving distributed mining

5

of association rules on horizontally
partitioned data, 2002.

[Mie03] Taneli Mielikäinen. On inverse frequent
set mining, 2003.

6

