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1 Introduction

One of the most important tasks in cryptography is to
establish a secure communication over an insecure channel
between two or more participants. This can be trivially
done when all users are sharing a secret key. Indeed, they
can use any secure block or stream cipher to protect the
data communications. In reality, the challenging problem
is how to establish a common secret key.

With no assumptions, participants must exchange the
secret key directly. For that, at least once before the
communication theyneed touse a secure extra channel that
ensures confidentiality, authenticity and integrity. Such a
channel is very expensive in practice because participants
must be physically close while the keys are exchanged.

On the same idea, assume that participants share a
low-entropy secret, also known as a password. In this

setting, participants can run a password-based key
agreement protocol. Then, at the end of the execution, they
obtain a high-entropy shared secret key. The problem is the
same as before: they must use a secure extra channel. The
only gain compared to the first solution is that the secure
channel is used to exchange a smaller amount of data.

The use of public-key primitives can relax the
confidentiality assumption on the extra channel. For
instance, theDiffie-Hellman key exchange protocol (Diffie
and Hellman, 1976) is a secure way to establish a secret
key under the standard complexity-theoretic assumptions.
However, the Diffie-Hellman protocol is insecure against
man-in-the-middle attacks. For that reason, we must
authenticate the protocol transcript. Another example is
the use of any secure public-key cryptosystem such asRSA
(Rivest et al., 1978) or ElGamal (ElGamal, 1985). In this
case, we must assure that a public key is transferred to all
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participants in an authenticated way. In a nutshell, setting
up a secure communication can be reduced to the problem
of authenticating messages. Indeed, as long as we are able
to authenticate data, we can establish a shared secret key
and thus we can also protect communication over insecure
channels.

We emphasise that transcripts of common key
agreement protocols are usually several thousands bits
long and thus message authentication is a non-trivial
task. Of course, we can use message authentication
codes but this requires a shared secret key that we
are only trying to establish. Alternatively, we can use
digital signatures for that purpose but they also require
authentic transfer of public keys. Consequently, the use of
digital signatures can only reduce the amount of essential
authentic communication. In particular, we can envisage
the use of a Public-Key Infrastructure (PKI) that will
deliver certificates for public keys used for signing.Herewe
clearly note two main disadvantages: firstly, this solution
requires a huge infrastructure which is expensive, and
secondly, it requires us to trust external parties, e.g.,
certificate authorities.

In other words, we cannot authenticate messages
without relying on authenticated channels. Hence, many
practical communication protocols such as SSH, PGP,
Bluetooth andWUSB use extra channels which achieve at
least authentication. Indeed, in SSH and PGP, the public
keys are authenticated by the help of the user who will
check the fingerprints. When a user receives a PGP public
key, he or she computes its fingerprint and then calls
the claimed owner of the public key. They check if both
fingerprints are equal. If they are then the public key is
authenticated, otherwise the key must have been altered.

More formally, use-aided protocol is a protocol that
directly uses Out-Of-Band (OOB) messages. Namely,
we assume that most messages are transmitted over
insecure channels, referred as the in-band communication,
while some authentic data is transmitted over an extra
channel, referred as the out-of-band communication.
Normally, the OOB channel is established by a human
operator. For instance, a user can establish OOB
communication channel by doing relatively simple tasks
like copying a string from one device to another or spelling
a string by phone. Indeed, such tasks create authenticated
channels in practice, since no adversary controlling the
network can forge these OOB messages. On the other
hand, these protocols require the help of the user and
thus they should request only small tasks in order to stay
user-friendly.

In consequence, protocol designers should use the
minimum amount of OOB data as they can for the
desired security level. This line of research was initiated
by Balfanz et al. (2002) who were the first to formalise
the fingerprint protocol discussed above. However, first
non-trivial resultswere obtained byGehrmann et al. (2004)
who showed how to construct user-aided authentication
protocols that preserve reasonable security levels even
for short OOB messages consisting of 4–6 decimal digits.
The latter made user-aided data authentication practical

for securing short-range wireless communication such as
Bluetooth andWiFi networks.TheSASprotocol proposed
by Vaudenay (2005) was the second important discovery.
The protocol was the first to achieve optimal security level
and thus halved the length of required OOB messages.
Vaudenay also introduced the concept of user-aided
protocols to wider cryptographic audience under the name
of SAS-based cryptography where SAS stands for Short
Authenticated Strings.

Our contribution

Our main contribution in this paper is a systematised
overview of various user-aided message authentication
protocols and their applications. In particular, we show
how our earlier results (Pasini and Vaudenay, 2006b; Laur
and Nyberg, 2006; Laur and Pasini, 2008) fit into the
general framework of user-aided data authentication.

In Section 2, we describe cryptographic primitives that
play essential role in user-aided message authentication
protocols. Namely, keyed hash functions with information
theoretical properties are needed to handle short
out-band-messages and commitment schemes are needed
to achieve optimal deception level. In Section 3, we
formalise the notion of user-aided data authentication and
show how to express various functional requirements in
the stand-alone security model. The latter is an important
methodical advance, since one can pose many complex
design requirements on message authentication protocols.

Section4provides a systematisedoverviewof two-party
message authentication protocols including our earlier
results (Pasini and Vaudenay, 2006b; Laur and Nyberg,
2006). As an important theoretical result, we show that
all state of the art user-aided authentication protocols
share the same internal structure. Namely, they use
in-band communication and OOB messages to mimic
the behaviour of classical authentication protocols with
pre-shared secret keys. The shared internal structure
also explains why all protocols with optimal deception
bound rely on the same security premises and why
non-malleability of used commitments is so important. In
Section 5, we show how to extend these ideas to group
settings. In particular, we describe the underlying structure
of our SAS-GKA protocol (Laur and Pasini, 2008).

As a second important theoretical result, we prove that
stand-alone security guarantees are preserved in complex
settings as long as a simple set of usage restriction are
satisfied. The latter significantly simplifies the security
analysis of user-aided message authentication protocols.
These issues are thoroughly discussed in Section 6, where
we clarify the relations between various security models.

More precisely, we show that all message authenti-
cation protocols are universally composable as soon as
they are secure in the stand-alone model. However, the
latter is not sufficient for security when several protocols
share the same trusted setup phase. As a result, one must
use theBellare-Rogawaymodel in order to analyse security
of practical applications that reuse the same secret key
many times. Notably, user-aided message authentication
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protocols are different in that respect, since they do not
rely on common secrets and preserve stand-alone security
guarantees even in the Bellare-Rogaway model.

In Section 7, we discuss how to employ user-aided
message authenticationprotocols to protect key agreement
protocols against active attacks. We also describe some
additional measures that decrease the amount of required
user-interaction in dynamical settings.

Finally, this paper ends with some concluding remarks
and some open questions in Section 8. In particular,
we comment the tension between theoretical results
and practical implementations of various user-aided
authentication and key agreement protocols. Namely, all
security proofs in this paper are given by using the weakest
abstract properties, however, one often substitutes these
primitives with heuristic constructions in practice. Hence,
understanding the corresponding risks and limitations is
important.

2 Cryptographic preliminaries

All results in this paper are stated in terms of exact
security. That is, security properties are always specified
by a game or a game pair between an adversary
A and a challenger C. For a single game G, the
advantage is defined as Adv(A) = Pr [GA = 1]. For a
game pair G0,G1, the advantage is defined as Adv(A) =
|Pr [GA

0 = 1] − Pr [GA
1 = 1]|. Typically, one requires that

for all t-time adversaries A, the corresponding advantage
is bounded: Adv(A) ≤ ε.

Although exact quantification of security properties
is our main goal, we use asymptotic estimates to hide
irrelevant technical details. Note that these bounds are
given in the setting, where the cryptographic construction
is fixed and only the adversarial computational power t
varies. Of course, these results can be translated back to
thenon-uniformpolynomial securitymodel by considering
asymptotics with respect to the security parameter.

2.1 Keyed hash functions

A keyed hash function h : M × R → T takes two
arguments: a message m ∈ M and a key r ∈ R,
and outputs a digest t ∈ T . Keyed hash functions
are commonly used as building blocks in message
authentication protocols. For example, two participants
who share a secret key r ∈u R can add a digest t to the
message to protect it from tampering. Now a potential
adversary can carry out two types of attacks. First,
the adversary might try to impersonate a key holder
by creating a valid message tag pair (m̂, t̂ ) without no
additional information. Secondly, the adversary might try
to substitute a message m by altering the corresponding
pair (m, t). The security against impersonation and
substitution attacks depends on the regularity and the
universality of the hash function. A hash function h is
εr-almost regular if for any m ∈ M and t ∈ T :

Pr [r ∈u R : h(m, r) = t] ≤ εr.

A hash function h is εu-almost universal, if for any two
distinct inputs m0 �= m1:

Pr [r ∈u R : h(m0, r) = h(m1, r)] ≤ εu

and εu-almostXOR-universal, if for any twodistinct inputs
m0 �= m1 and a difference ∆t ∈ T :

Pr [r ∈u R : h(m0, r) ⊕ h(m1, r) = ∆t] ≤ εu.

These notions can be extended to hash functions with
many sub-keys, i.e., for h : M × R1 × · · · × Rn → T . A
function h is εu-almost universal w.r.t. the sub-key ri if for
any input pair m0 �= m1 and sub-keys rj , r̂j ∈ Rj :

Pr [ri ∈u Ri : h(m0, r) = h(m1, r̂)] ≤ εu,

wherer denotes a vector (r1, . . . , ri−1, ri, ri+1, . . . , rn) and
r̂ denotes a vector (r̂1, . . . , r̂i−1, ri, r̂i+1, . . . , r̂n). A hash
function h is εu-almost universal w.r.t. the sub-key pairs,
if for any input pair m0 �= m1, indices i, j and rj , r̂j ∈ Rj :

Pr [r∗ ∈u R : h(x0, r) = h(x1, r̂)] ≤ εu,

where r denotes a vector (r1, . . . , ri−1, r∗, ri+1, . . . , rn)
and r̂ denotes a vector (r̂1, . . . , r̂j−1, r∗, r̂j+1, . . . , r̂n) and
the equality i = j is allowed. Finally, a hash function is
εr-almost regular w.r.t. to the sub-key ri, if for any input
m, sub-keys r̂j ∈ Rj and a target digest t ∈ T :

Pr [ri ∈u Ri : h(m, r̂1, . . . , ri, . . . , r̂n) = t] ≤ εr.

All protocols presented in this paper use hash functions
that are both εr-almost regular and εu-almost universal. It
is straightforward to prove that εr, εr ≤ 2−� if the digest t
can be at most � bits long. However, it is also possible to
find hash functions that achieve optimality εr = εr = 2−�

or are almost optimal. See the papers (Laur and Nyberg,
2006; Pasini and Vaudenay, 2006b; Laur and Pasini, 2008)
for further discussion.

2.2 Commitment schemes

Acommitment scheme is another importantbuildingblock
in many user-aided message authentication protocols.
A commitment scheme Com is specified by a triple of
algorithms (setup, com, open). The setup algorithm setup
generates public parameters pk for the commitment
scheme. The commitment algorithm compk : M → C × D
maps messages m ∈ M into a commitment string c ∈ C
of fixed length and a decommitment value d ∈ D. Usually
the decommitment value is a pair d = (m, r) where r is
the randomness used to compute c. A commitment scheme
is functional if for all (c, d) ← compk(m) the equality
openpk(c, d) = m holds. Incorrect decommitment values
should yield a special abort value ⊥.

Three most commonly used cryptographic properties
of commitment schemes are hiding, binding and non-
malleability. Non-malleability is the strongest property,
since binding and hiding properties directly follow from
non-malleability and not vice versa. Many notions
of non-malleable commitments have been proposed in
cryptographic literature (Dolev et al., 1991; Crescenzo
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et al., 1998; Fischlin and Fischlin, 2000; Damgård and
Groth, 2003; Laur andNyberg, 2006). All these definitions
try to capture requirements that are necessary to defeat
man-in-the-middle attacks. In this work, we adopt the
modernised version of non-malleabilityw.r.t. opening. The
corresponding definition (Laur and Nyberg, 2006) mimics
the framework of non-malleable encryption (Bellare and
Sahai, 1999) and leads to more natural security proofs
compared to the simulation based definitions (Crescenzo
et al., 1998; Damgård and Groth, 2003).

Non-malleability and security against Chosen
CiphertextAttacks (CCA)are known tobe tightly coupled.
In fact, these notions coincide if the adversary is allowed
to make decryption queries throughout the entire attack
(Bellare et al., 1998) and thus usage of decryption oracles
can simplify many proofs without significantly increasing
the security requirements. Unfortunately, a similar
technique is not applicable to commitment schemes
as there can be several different valid decommitment
values di for a single commitment c. Thus, we must use
explicit definitions of hiding, binding and non-malleability
properties in the following security proofs.

A commitment scheme Com is (t, εh)-hiding if any
t-time adversary A succeeds in the hiding game with
probability at most εh, i.e., Advhid

Com(A) ≤ εh where

Advhid
Com(A) = 2 ·

∣∣∣∣∣∣∣∣∣
Pr




pk ← setup, s ∈u {0, 1} ,

(x0, x1, σ) ← A(pk),
(cs, ds) ← compk(xs) :

A(σ, cs) = s


 − 1

2

∣∣∣∣∣∣∣∣∣
.

A commitment scheme Com is (t, εb)-binding if any t-time
adversaryA succeeds in the binding game with probability
at most εb, i.e., Advbind

Com(A) ≤ εb where

Advbind
Com(A) = Pr




pk ← setup, (c, d0, d1) ← A(pk) :
openpk(c, d0) �= openpk(c, d1),

openpk(c, di) �= ⊥ for i ∈ {0, 1}


.

The non-malleability property is defined by complicated
games, and thus we use an illustrative pictorial style
to specify these games, see Figure 1. Intuitively, the
goal is: given a valid commitment c, it is infeasible
to generate related commitments ĉ1, . . . , ĉn that can be
successfully opened after seeing a decommitment value d.
More formally, the adversary A consists of two parts: A1
corresponds to the active part of the adversary that tries
to create and afterwards open commitments related to c

while A2 captures a desired target relation. Note that A1
is a stateful algorithm and can pass information from one
stage to the other but no information can be passed from
A1 to A2 except σ. By convention, a game is ended with
the output ⊥ if any operation leads to ⊥.

Figure 1 should be read as follows. In the game Gnm
0 , a

challenger C first generates the public parameters pk. Given
pk, the adversary outputs amessage generatorMGen.Next,
the challenger selects x0 ← MGen and computes (c, d).
Given c, the adversary outputs some commitment values ĉi

and an advice σ forA2 and then, given d he generates some
decommitment values d̂i. Finally, the challenger opens
all commitments ŷi ← openpk(ĉi, d̂i) and tests whether
A1 won or not by computing A2(σ, x0, ŷ1, . . . , ŷn). The
condition ĉj �= c eliminates trivial attacks. The game Gnm

1
is almost the same, except the challenger tests a relation
A2(σ, x1, ŷ1, . . . , ŷn) instead, where x1 ← MGen is chosen
independently from the rest of the game. A commitment
scheme is (t, εnm)-non-malleable w.r.t. to opening if for
any t-time adversary A the advantage

Advnm
Com(A) = |Pr [Gnm

0 = 1] − Pr [Gnm
1 = 1]| ≤ εnm.

Note that A2 can be any computable relation that is
completely fixed after seeing c. For instance, we can
define A2(σ, x, y) = [x ?=y]. Hence, it must be infeasible to
construct a commitment ĉ that can be opened later to the
same value as the challenge commitment c.

Non-malleable commitments schemes can be easily
constructed based on simulation-sound trapdoor
commitments from MacKenzie and Yang (2004) as
detailed by Vaudenay (2005). They can also be built using
a CCA2 secure encryption scheme, or by using a hash
function as detailed by Laur and Nyberg (2006).

2.3 Common reference string model

We emphasise that all security definitions for commitment
schemes explicitly assume that system wide initial
parameters pk are generated by a trusted third party.
Such a setting is known as Common Reference String
(CRS) model. Although this assumption is not essential,
most of the communication and computation efficient
commitment schemes are specified for the CRS model.

The CRS model is not so restrictive as it seems at first
glance. All communication standards provide system wide
public parameters such as specifications of hash functions
or a bit length of public keys. Therefore, one shouldmake a
trade-off between computational efficiency and reusability

Figure 1 Non-malleability games Gnm
0 and Gnm

1
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and size of system-wide parameters pk.Moreover, there are
theoretic constructions that allow generation of a common
reference string in the standard model.

3 Message authentication protocols

Authentication protocols are used for two main purposes.
We can either protect authenticity of communication
between two or more participants or alternatively verify
that a person or a device is who he, she or it claims
to be. These security goals are somewhat orthogonal,
since message authentication protocols only assure that
messages are not tampered during the transmission.
Although the latter also identifies the corresponding
physical sender devices, it does not automatically
guarantee validity of claimed legal identities. Hence,
entity authentication is often done separately after all
communication links are secured. In this paper, we
investigate only message authentication.

As usual, we assume that the actions of all participants
includingpotential adversaries dependonly on the received
messages and their relative ordering. This assumption is
often justified even if a practical instantiation of a protocol
depends on explicit timings. In fact, it is straightforward to
prove that security guarantees obtained in this simplified
model are valid for all practical settings, where exact
timings do not depend on the states of private variables.

3.1 Communication model

It is often prohibitively expensive to establish necessary
physical infrastructure that guarantees integrityof received
messages. Authenticity concerns are particularly justified
in case of wireless communication, since anybody with
right equipment can eavesdrop, inject messages and cause
communication failures. Thus, we have to assume that
participants exchange messages over a communication
network that is controlled by a malicious adversary.
However, the latter does not exclude possibility of truly
authentic message transmission, since participants may
use alternative ways to communicate. For instance, in
many small-rangewireless networks a human operator can
authentically transfer short messages from one device to
another. If entities are further apart, we can transfer such
messages over the phone provided that participants can
recognise each other by voice and behaviour.

As usual, we consider a model where communication
is asynchronous. Parties can use in-band and out-band
communication channels. In-band communication is
insecure and routed via an active adversary A who can
drop, delay, modify and insert messages. Additionally,
parties can send Short Authenticated Strings (SAS) aka
OOB messages. OOB communication is authentic: the
adversary can only read and delay these OOB messages.

We emphasise that there are no true broadcast channels
in our model. Although several wireless networks such
as WLAN in ad hoc mode offer physical broadcast
channels, there are no guarantees that the signal actually

reaches all nodes. If we can guarantee this by physical
means, then the authentication taskbecomes almost trivial.
As different recipients can receive different broadcast
messages, there is no difference between broadcasting
and standard messaging except for efficiency. Similarly,
broadcasting authenticated messages does not change the
security analysis, although in practice, broadcasting can
significantly reduce the necessary human interaction and
make the protocol more user-friendly. For instance, a user
entering the samePINoneachmobile device in aBluetooth
piconet is certainly a less demanding than using different
PIN values. The same is true if we consider securing of
VoIP-based conference calls: a participant giving the same
value to all others has much less work than a participant
giving a different value to each group member.

3.2 Idealised implementation

Many message authentication protocols are designed to
meet complex security objectives. Therefore, it is often
advantageous to fix the desired idealised implementation
π◦ first and then define security of a protocol π through
a specific game that directly quantifies how much the real
execution diverges from the idealised implementation π◦.

As there are many possible ideal implementations,
various specifications and security requirements for
message authentication protocols form a complex
taxonomy. For example, there are two-party and group
authentication protocols. Also, a message authentication
protocol can assure integrity of a single message or protect
a combined input that is assembled by many participants.

In the simplest case, the set of participants is known
ahead and the protocol must assure only the authenticity
of transferred messages. The latter is true for many
practical applications such as securing conference calls
over VoIP, forming Bluetooth piconets and including
devices to otherwireless networks.Alternatively, the group
can be formed dynamically based on the participation such
as configuration of complex sensor networks. Then the
protocol must additionally assure that honest participants
also agree on the group description, i.e., received identities
coincide.

All these security goals can be formalised by choosing
an appropriate ideal world model, where a trusted third
partyT does all computations.More formally, assume that
the trusted third party T can securely exchange messages
with parties P1, . . . ,PN and the ideal world adversary A◦.
Additionally, assume that a node label id ∈ {1, . . . , N}
uniquely determines the corresponding node Pid, i.e.,
a node label id can be treated as an network address.
Then the ideal implementation π◦ can be formalised by
specifying the behaviour of P1, . . . ,PN and T.

For example, consider an ordinary message
authentication protocol, where a party Pid1 wants to
send a message m to a party Pid2 in an authenticated
way. The corresponding idealised implementation π◦
(depicted in Figure 2) models all attacks that cannot be
avoided. Obviously, we cannot guarantee that the message
m reaches the destination in the real world, since the
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adversary can always drop all in-bandmessages. Secondly,
the adversary can decide whether to corrupt the sender
depending on the first in-bandmessage which often reveals
the input m. In other words, the adversarial corruption
pattern can always depend on the message m. The ideal
implementation of a two-party cross-authentication
protocol, where parties want to exchange their inputs m1
and m2, is defined analogously.

Figure 2 The ideal unilateral authentication protocol

As a second example, we present an idealised
implementation for a group authentication protocol,
where the set of participants is determined dynamically
and the final outcome is combined from all inputs. More
precisely, a Group Message Authentication (GMA)
protocol for a group1 G = {id1, . . . , idn} works as follows.
Each participantPid, id ∈ G starts with inputsmid and ends
with outputs G and m, where m = (mid1 , . . . , midn

). As a
result, givenG andm it is trivial to restorewhoparticipated
in the protocol and what was the corresponding
input.

Again, the corresponding idealised implementation
(depicted in Figure 3) models all unavoidable attacks. In
particular, note that a real world adversary can always
controlwho joins the groupby selectively blocking in-band
messages. Also, note that we can obtain descriptions
of different GMA protocols by modifying the ideal
implementation. For example, if we drop the first step
then we obtain a group authentication protocol without
an initiator.

3.3 Stand-alone security

For clarity, we first consider security of message
authentication protocols in the stand-alone model, where
the adversary can attack only a single protocol instance.
More precisely, we consider security against chosen inputs
attacks in the common reference string model.

In the corresponding security game, the challenger first
generates system wide public parameters pk ← setup and
sends them to the adversary A. Then the adversary A can
adaptively specify inputs for all parties P1, . . . ,PN who
can join the authentication protocol π. More precisely, a
party Pi remains inactive until the adversary A specifies
its input mi. If mi = ⊥ then the party Pi refuses to join
the protocol π. Otherwise, the party Pi joins the protocol
π with the input mi. The adversary A can also adaptively
corrupt protocol participants. At the end of the execution,
the challenger collects all outputs ψ = (ψ1, . . . , ψN , ψa)
and determines whether A succeeded in deception or not.

For simple protocols, it is easy to define deception
by listing all invalid end configurations. However, such
an approach quickly becomes tedious and technical for
complex protocols. Hence, we use a generic approach
and state that the adversary A succeeds in deception
if one cannot achieve the same end configuration for
honest participants in the ideal world. Formally, let H ⊆
{1, . . . , N} be the set of non-corrupted participants and let
(mi)i∈H be the corresponding inputs. Then the adversary
A fails in deception if one can choose inputs (m̂i)i/∈H

for the corrupted participants such that the ideal world
adversary A◦ can achieve the same end configuration
(ψi)i∈H for the honest parties.

Definition 1: A message authentication protocol π is
(t, ε)-secure in the stand-alone model if for any t-time real
world adversary A the deception probability

Advforge
π (A) = Pr [pk ← setup : A succeeds in deception]

is bounded by Advforge
π (A) ≤ ε.

Let us now consider compatible real and ideal world
adversaries that both specify the same inputs mi and
corrupt the same set of participants in the same
order. To be punctual, we assume that the setup
procedure is executed also in the ideal world2 and
the corresponding distributions of inputs and corrupted
parties coincide for any value of public parameters pk. Let
ψ = (ψi, . . . , ψn, ψa) and ψ◦ = (ψ◦

i , . . . , ψ◦
n, ψ◦

a) denote
the corresponding output distributions. Then for any pair
of compatible adversaries (A,A◦) the statistical difference

Figure 3 Idealised implementation of a dynamic GMA protocol
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between the distributions ψ and ψ◦ is at least Advforge
π (A).

However, it is also straightforward toprove that this bound
is optimal when all inputs are extractable from the outputs
of honest participants. Namely, there exists a canonical
ideal world adversary A◦ with comparable running time
such that the corresponding output distributions are
Advforge

π (A)-close. Although we state the corresponding
theorem only for group authentication protocols, it holds
for all message authentication protocols considered in this
paper.

Theorem 2: If a group message authentication protocol
π is (t, ε)-secure in the stand-alone model, then for any
t-time real world adversary A there exist a compatible
t + O(1)-time ideal world adversary A◦ such that the
corresponding output distributions ψ and ψ◦ are ε-close.

Proof: For the proof, we construct an universal interface
I between the ideal world and the real world adversary A,
depicted in Figure 4. The interface I acts as a translation
unit. It simulates real world execution to the adversary A
and carries out the corresponding ideal world attack.

Note that the simulation of honest participants is
straightforward, since honest participants forward their
inputs mi to the ideal world adversary A◦ and public
parameters pk are fixed by the challenger. Hence, the
interface I can do all missing computations in behalf of
honest parties. In particular, we can simulate the group
formation, as the actions of the real world adversary
uniquely determine when and which parties are included
into the group. To service a corruption call, the interface
just forwards the call to the ideal world and then adds all
variables that are used in simulation to the released state.

At the end of simulation, the interface I internally
obtains all outputs of honest parties and the adversary
A submits also the remaining outputs. As the simulation
is perfect, the corresponding output vector ψ coincides
with the outputs obtained in the real execution. Now
the interface can extract missing inputs (m̂i)i/∈H from the
outputs of honest parties and submit them to T as the
inputs of corrupted participants. To be precise there are
three possibilities. First, all honest parties can halt with
⊥, then the interface I must send 0 to T. Secondly, all
outputs of honest participants provide the same missing
inputs (m̂i)i/∈H. Then the interface I must send 1 to T.
Thirdly, the outputs of honest participants lead to different
inputs (m̂i)i/∈H. Then the interface has failed. To conclude

the ideal world attack, the interface forwards the outputs
(ψi)i/∈H and ψa to the challenger.

Evidently, the failure probability must be less than ε or
otherwise the protocol cannot be (t, ε)-secure. Therefore,
the compound adversary I〈A〉 consisting of I and A has
indeed the desired properties. �

Note that stand-alone security model covers only the
case where no other protocols are executed together with
the protocol π. In particular, it is not clear whether
a concurrent execution of several different protocol
instances remains secure. We will return to this issue in
Section 6 and show that such concurrent compositions
remain secure if some natural assumptions are satisfied.

4 Two-party authentication protocols

Message authentication protocols either use pre-shared
information such as long-term secret keys or alternatively
rely on limited authentic OOB communication. In the
following, we give a systematised treatment of common
user-aided data authentication protocols, where a user is
allowed to transfer �-bits of information over authentic
OOB channel. Such protocols are normally used to
bootstrap other more complex authentication methods.

For instance, many practical communication protocols
like SSH, PGP and GPG send public key over the insecure
channel and then validate their integrity with OOB
communication. In the most naive setting, the fingerprint
of a transferred message is just its hash value. The
corresponding protocol was first formalised by Balfanz
et al. (2002). The protocol has two main drawbacks. First,
an adversary can always conduct offline attacks by seeking
messages with coinciding fingerprints. Secondly, due to the
birthday paradox one can find collisions in time Θ(2�/2)
and thus the fingerprint must be several hundred bits long.
Hence, the solution is not user-friendly despite the trials
to transform the tedious hexadecimal representation into
a nice word-based representation.

The possibility of offline attacks can be defeated
with message salting. As a result, fingerprints vary
even for a fixed message and the corresponding generic
collision attacks are guaranteed to run in time Θ(2�).
Pasini and Vaudenay were the first to design such a
protocol (Pasini and Vaudenay, 2006a). They proposed to
send commitment decommitment pair (c, d) ← compk(m)

Figure 4 The canonical interface for the real world adversary
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instead of the message m and use the hash value h(c)
as a fingerprint. Of course, using a commitment scheme
as a mechanism for message salting is not the most
optimal design choice. Therefore, several authors have
proposed alternative methods that rely only on specific
properties of cryptographic hash functions, see Mashatan
and Stinson (2006) and Reyhanitabar et al. (2007). Note
that a commitment scheme can be built just using a hash
function and so the protocol from Pasini and Vaudenay
becomes also simple.

However, such non-interactive authentication
protocols are still vulnerable against online computation
attacks when the fingerprint is short enough. In many
practical settings, users are not willing to transfer OOB
messages that are more than 4–6 decimal digits long.
Consequently, generic collision finding strategies with
complexity Θ(2�) become feasible. To overcome this
shortcoming, Gehrmann, Mitchell, and Nyberg proposed
three protocols known as the MANA family Gehrmann
et al. (2004). Although the MANA I and MANA II
protocols are known to be secure against unbounded
adversaries, the corresponding deception probability is
sub-optimal. Namely, if a user is willing to transfer �-bit
OOB messages, then there are still attacks with success
probability at least 2−�/2.

Vaudenay noticed this drawback and proposed a
protocol (Vaudenay, 2005) that achieves the optimal
deception bound 2−�. This paper was soon followed by
slew of works (Pasini and Vaudenay, 2006b; Laur and
Nyberg, 2006; Laur and Pasini, 2008) that described
asymptotically optimal protocols for many other settings.
In a certain sense, all these solutions are just enhancements
of the MANA I and the MANA II protocols. The
corresponding generic technique that substitutes a private
pre-shared secret with a public OOB message is depicted
in Figure 5.

Figure 5 The simplified MANA II protocol (see online version
for colours)

The protocol uses a (universal) hash function to protect the
integrity of the message m. Due to the protocol structure,
the adversary must deliver a possibly altered message m̂
and a digest t̂ before the key r is released. Hence, the
setting is equivalent to the classical attack scenario, where
partiesP1 andP2 pre-share the secret key r. Consequently,
standard lower bounds on deception probabilities derived
by Simmons are still adequate, see Simmons (1984) and
Maurer (2000). Namely, the hash function must satisfy
contradictory security requirements in order to preserve
security against substitution or impersonation attacks.
As a result, the deception probability is guaranteed to be at

least 2−�/2. Secondly, the protocol contains an extra OOB
message that prevents too early key release.

The SAS protocol proposed by Vaudenay is free of
these limitations although its structure is very similar to the
simplified MANA II protocol, see Figure 6. Indeed, note
that the committed pair (m, r1) corresponds to the simplest
message authentication code that achieves optimal security
against impersonation attacks but is completely insecure
against substitution attacks. However, the commitment
creates an extra bond between m and r1 that makes
simple substitution attacks infeasible. The second in-band
message has the same function as the notification message
in the simplified MANA II protocol.

Figure 6 The Vaudenay SAS protocol (see online version
for colours)

Indeed, note that the corresponding key r1 is transferred
over the OOB channel in an encrypted form r1 ⊕ r̂2.
Hence, the adversary cannot predict the decrypted value
oob ⊕ r2 before getting the secret key r2. Consequently,
the adversary can either learn (m, r1) and carry out
an impersonation attack or alternatively try to alter
the commitment. The latter is destined to fail when
the commitment is assumed to be non-malleable. For the
completeness, we give also the formal proof, since the
original paper (Vaudenay, 2005) required more exotic
properties from the commitment scheme, see Appendix A.

Theorem 3: For any t there exists τ = t + O(1) such
that if the commitment scheme is (2τ, εb)-binding and
(τ, εnm)-non-malleable, then the SAS protocol with �-bit
oob is (t, 2−� + εb +

√
εb + εnm)-secure in the stand-alone

model.

As a final detail, note that the commitment scheme
is only used to bind the message together with the
digest. Therefore, one can use more efficient tag-based
commitments that do not hide the value of m but still bind
the pairm and r1 together. In particular, signature schemes
can be used as tag-based commitments (Vaudenay, 2005).

The SAS protocol provides only unilateral message
authentication and thus can be used to secure the transfer
ofpublic keys.However, commonkeyagreementprotocols
such as the Diffie-Hellman protocol consist of many
moves.Now if one uses the SASprotocol for eachmessage,
the cumulative security drop is significant as the deception
probability is non-negligible. Also, the amount of user
interaction increases significantly. Alternatively, we could
use theSASprotocol to authenticate the entire transcript of
the key agreement protocol. The latter leads to the generic
cross-authentication technique described below.
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Any unilateral message authentication protocol can be
turned into a cross-authentication protocol with a cost of
an extramove.Namely, the recipientP2 must send its input
m2 toP1. Now ifP1 authentically transfers (m1, m̂2) toP2,
then P2 can additionally verify that m2 has been correctly
transferred, i.e., m̂2 = m2. Thus, a successful completion
of the authentication protocol assures that both parties
have coinciding outputs (m1, m2).

Hence, it makes sense to design cross-authentication
protocols that make at most three moves over the insecure
channel. Two such protocols were almost simultaneously
proposed by Pasini and Vaudenay (2006b) and by Laur
and Nyberg (2006). These protocols send a message digest
h(m, r) over the OOB channel instead of the hash key r.
Since the hash key can be arbitrarily long, one can bypass
Simmons’s bounds and achieve the optimal deception
probability. Nevertheless, we still have to guarantee that
the adversary has no access to the key r before both
parties have acquired the common output. Such structural
restrictions are enforcedby clever use of commitments. The
correspondingmethodology is particularly apparent in the
optimised SASprotocol proposed by Pasini andVaudenay
(2006b) as depicted in Figure 7.

Figure 7 The optimised SAS-MCA protocol (see online version
for colours)

For a moment, assume that m1 is fixed, i.e., we have
an unilateral message authentication protocol for m2.
Then the usage of one-time pad h(m̂2, r1) ⊕ r̂2 assures
that the adversary cannot succeed unless he transfers the
commitment ĉ before the decommitment d is released.
But if the adversary just forwards c, then we arrive at
the standard XOR-universality game, where the adversary
must find m2 �= m̂2 such that h(m1, r1) ⊕ h(m̂2, r1) =
r2 ⊕ r̂2 for an unknown key r1 ∈u {0, 1}s. Alternatively,
the adversary can try to alter the non-malleable
commitment but this is guaranteed to fail. For the same
reason, the message m1 is also guaranteed to reach P2
without modifications. As a result, we can easily establish
the following security guarantee, see Appendix B for the
proof.

Theorem 4: Assume that the hash function h is εr-almost
regular and εu-almost XOR-universal. Then for any t
there exists τ = t + O(1) such that if the commitment
scheme is (τ, εh)-hiding, (2τ, εb)-binding and (τ, εnm)-
non-malleable, then the optimised SAS-MCA protocol
with �-bit oob is (t, max {εr, εu} + εh + εb +

√
εb + εnm)-

secure in the stand-alone model.

The MANA IV protocol (see Figure 8) proposed by Laur
and Nyberg (2006) also uses commitments to temporarily
hide hash keys. But differently from the SAS protocol
family, the message pair (m1, m2) is directly authenticated
with the hash function. Again, the protocol structure
guarantees that the adversary cannot succeed if messages
are transferred abnormally, i.e., m̂2, r̂2 arrive before m̂1, ĉ
or d̂ is received before m̂2, r̂2. Now for the normal runs,
the adversary has to fix messages m̂1, m̂2 before both
sub-keys r1 and r2 become public. As a result, information
theoretical properties of the hash function are sufficient
to guarantee authenticity. See the paper Laur and Nyberg
(2006) for the formal proof.

Figure 8 The MANA IV protocol (see online version
for colours)

Theorem 5: Assume that the hash function h is εr-almost
regular w.r.t. sub-keys and εu-almost universal w.r.t. the
sub-key r1. Then for any t there exists τ = t + O(1) such
that if the commitment scheme is (τ, εh)-hiding, (2τ, εb)-
binding and (τ, εnm)-non-malleable, then the MANA IV
protocol with �-bit oob is (t, max {εr, εu} + 2εh + εb +√

εb + εnm)-secure in the stand-alone model.

Finally, observe that protocols with an optimal deception
bound utilise similar techniques. First, all of them use
one-time pad encryption to assure that the adversary
preserves the temporal order between protocol messages.
Secondly, the commitment scheme is used as an additional
measure against substitution attacks. Thirdly, it seems that
there are no other designs patterns that could overcome
the shortcomings of the MANA II protocol.

5 Group authentication protocols

The methodology presented in the previous section can be
naturally extended to group settings. However, there are
some important differences. First, it is much more difficult
to assure proper temporal order for send and receive
events, since there are more events to be synchronised.
Secondly, the set of participants might be determined
dynamically during the protocol execution based on
participation. Hence, we must also authenticate the group
description.

Note that an authenticated broadcast primitive is
sufficient for group message authentication. Namely,
participants Pi can first send all messages mi to a
leader Pid∗ who then uses the authentic broadcast
primitive to transfer the gathered input m∗ = (mi)i∈G

and the group description G to all participants. Next, all
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participants Pi, i ∈ G verify that received message m̂∗
is consistent with their input mi. The protocol is halted
if a complaint is raised over the OOB channels. The
authenticated broadcast primitive itself can be achieved
running several unilateral authentication protocols in
parallel. However, the latter automatically increases the
number of different OOB messages. Alternatively, we can
design specific protocols, where the same OOB message
is transferred to all group members. Although this does
not formally decrease the amount ofOOBcommunication,
it makes the protocol more user friendly. The first such
broadcast protocol was sketched in Valkonen et al.
(2006). The corresponding Group-MANA protocol is a
simple extension of the MANA IV protocol. However,
we do not discuss it here for two reasons. First, the
SAS-GMA protocol (depicted in Figure 9) is more round
efficient. Second, the corresponding security proof is rather
technical and gives no additional insight.

The SAS-GMA protocol was designed by Laur and
Pasini to achieve group message authentication directly,
see Laur and Pasini (2008). As the SAS-GMA protocol
is symmetric, Figure 9 only specifies the behaviour of a
single party Pi who wants to participate in the protocol.
Here Ĝi denotes the group of participants who joined Pi

during the first round before the timeout. Of course, if
the group Ĝi is known beforehand then Pi can wait until
all other group members have sent their first messages.
For clarity, variables m̂ji, ĉji, d̂ji denote the values from
Pj that are received by Pi. The output vector m̂i = (m̂ji)
and the sub-key vector r̂i = (r̂ji) are ordered w.r.t. sender
identities. To be exact, m̂ii = mi, r̂ii = ri and j ranges
over Ĝi. Also note that (i, ri) and (Ĝi, m̂i) are shorthands
for binary strings that uniquely encode the corresponding
elements. Finally, we assume that a participant Pi halts if
there is any hint of an attack:

• some group member halts;

• there are duplicates (j, m̂ji, ĉji) �= (j, m̂′
ji, ĉ

′
ji);

• a sub-key is invalid: (j, �) �= openpk(ĉji, d̂ji);

• some OOB messages do not match: oobi �= oobj .

The SAS-GMA protocol does not directly force proper
orderof sendand receive events, since the latter is extremely

difficult to achieve in the group setting. Instead, the
protocol uses a commitment scheme to temporarily hide
many sub-keys ri of the hash function. As a result, the
adversary must deliver the data m̂i to the node Pi before
the sub-key ri is released. Now if the hash function is both
almostuniversal andalmost regularw.r.t. all sub-keys, then
all impersonation and substitution attacks are guaranteed
to fail unless the adversary alters commitments. On the
other hand, non-malleability of a commitment scheme
together with almost regularity defeats all attacks that use
altered commitments. The corresponding formal proof is
given in the paper (Laur and Pasini, 2008).

Theorem 6: Let n be the maximal size of the group G.
Assume that the hash function h is εu-almost universal
w.r.t. all sub-key pairs and εr-almost regular w.r.t. all
sub-keys. Then for any t there exists τ = t + O(1) such
that if the commitment scheme is (τ, εb)-binding and
(τ, εnm)-non-malleable, then the SAS-GMA protocol with
�-bit oob is (t, max {εu, εr} + εb + n · εnm)-secure in the
stand-alone model.

6 Security in complex settings

The stand-alone security model is adequate only if
a protocol is executed in isolation. This assumption
is rarely fulfilled in practice, as protocols are often
executed concurrently to complete more elaborate tasks.
In such settings, stand-alone security guarantees are
commonly insufficient, as the adversary can utilise external
information that leaks from the other protocols. For
example, the adversarymay repeat or swapmessages when
several instances of the same protocol are executed at the
same time. Bellare and Rogaway were the first to define
a formal attack model (Bellare and Rogaway, 1993, 1995)
that considers attacks against several instances of the same
authentication protocol. However, the Bellare-Rogaway
model does not cover the cases when the authentication
protocol is executed together with other kind of protocols.
In the following, we prove that all stand-alone secure
authentication protocols are universally composable.
In other words, an authentication protocol π always
preserves security in a computational context �〈·〉 that uses
the protocol π in a black-box way, i.e., the context �〈·〉

Figure 9 The SAS-GMA protocol (see online version for colours)
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provides only the inputs and uses only the outputs of the
authentication protocol π.

We emphasise that universal composability does not
automatically guarantee security in the Bellare-Rogaway
model. The main cause follows from the fact that all
classical authentication protocols rely on a trusted setup
procedure πst that generates long-term secrets. As a
result, the universal composability guarantees security
only if all protocol instances use independently generated
long-term secrets. The Bellare-Rogaway model considers
a setting where all protocol instances share the same
long-term secrets and thus universal composability might
be insufficient. Obviously, these security notions coincide
if we can guarantee security in the stand-alone model a
without trusted setup. The lattermakes user-aidedmessage
authentication protocols special.

6.1 Universal composability

As emphasised above, protocols are seldomly executed
in isolation. Indeed, a protocol π is often only a small
part of the entire computational procedure also known
as computational context. Now if a context �〈·〉 has only
black-box access to the protocol, we can freely use different
protocols as long as they implement the same functionality.
In particular, we can compare the behaviour of the real
and ideal implementations π and π◦. To be precise, we
must compare the corresponding compound protocols
�〈π〉 and �〈π◦〉.

Definition 7: Let φ = (φ1, . . . , φm, φa) denote the inputs
of the participants P1, . . . ,Pm and the adversary A
at the beginning of the context �〈·〉. Similarly, let the
vectors ψ = (ψ1, . . . , ψm, ψa) and ψ◦ = (ψ◦

1 , . . . , ψ◦
m, ψ◦

a)
denote the outputs of the compound protocols �〈π〉 and
�〈π◦〉. Then a protocol π is (tre, tid, t�, ε)-universally
composable if for any input distribution φ ← D, for any
t�-time computational context �〈·〉 and for any tre-time
adversary A against the protocol �〈π〉, there exists a
tid-time adversaryA◦ against �〈π◦〉 such that the statistical
difference between the output distributions of ψ and ψ◦ is
at most ε.

Definition 7 remains ambiguous unless we completely
specify the execution and communication model. In the
following, we consider the classical setting, where the
adversary has full control over the protocols scheduling
and message delivery. Namely, the execution of a protocol
is divided into fine-grained micro-rounds. All parties
are initially inactive except the adversary. The adversary
can activate other participants so that only one of them
is active in each micro-round. During a micro-round, the
active participant can either read one incoming message
or compose a single outgoing message. After that the
party is suspended and the control goes back to the
adversary who can choose next party for activation.
All in-band messages are routed through the adversary
who can delay, read, delete and insert messages. The OOB
communication is authentic but the adversary can still

read, delay and reordermessages. The execution endswhen
all participants have halted. See the manuscript (Canetti,
2000) for detailed discussion and for further references.

Finally, we remark that the approach outlined above
corresponds to the most intuitive formalisation (Lindell,
2003) of universal composability but there are severalmore
popular alternatives such as the treatments (Canetti, 2001;
Pfitzmann and Waidner, 2001).

6.2 Protocols with shared setup

Many protocols rely on pre-shared information like
long-term secret keys or certificate chains. Such protocols
can be divided into two phases. In the first phase, a
trusted dealer creates and securely distributes the necessary
pre-shared data. The second phase corresponds to the
actual execution of the protocol. Hence, the protocol
π itself is a pair of sub-protocols (πst, πne) where πst
corresponds to the trusted setup and πne corresponds
to the actual execution. Normally, we want to reuse
pre-shared data and thus different protocols must share
the same setup phase πst. As a result, messages from
different protocols become correlated and this creates
new attack opportunities. The security model proposed by
Bellare andRogaway formalises the corresponding threats
for authentication protocols, see the papers (Bellare and
Rogaway, 1993, 1995).

Differently from the stand-alone model, the adversary
A can simultaneously attack many protocol instances
π

(1)
ne , . . . , π

(q)
ne that share the same setup phase πst. More

formally, the adversary A can adaptively launch new
protocol instances π

(i)
ne by specifying the set of participants

G(i) and the corresponding inputs m(i). The adversary A
succeeds in deception if at least one protocol instance ends
with successful deception.

Definition 8: A message authentication protocol π is
(t, q, ε)-strongly self-composable if any t-time adversary
A that can launch up to q protocol instances π(i) with
i ∈ {1, . . . , q} succeeds in deception with probability less
than ε.

Note that a shared setup phase may weaken protocol
instances even if we reuse only public parameters. Hence,
wemust prove that security in the common reference string
model guarantees security in the Bellare-Rogaway model.

6.3 Composability guarantees

Regardless of the desired idealised implementation it is
straightforward to prove that all message authentication
protocols are universally composable if they are secure
in the stand-alone model. For brevity, we prove the
corresponding result only for group authentication
protocols and discuss the limitations of this proof
technique below.

Theorem 9: Let π be a (t, ε)-secure group message
authentication protocol. Then there are constants
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c1, c2 such that the protocol is (tre, tid, t�, ε)-universally
composable whenever tid ≥ c1 · tre and tre + t� ≤ t − c2.

Proof: Let �〈·〉 be a t�-time computational context and
let A be a tre-time adversary against the compound
protocol �〈π〉. Then for the proof we construct an efficient
interface I∗ between the real world adversary A and the
ideal world protocol �〈π◦〉. Now note that the interface
I depicted in Figure 4 and described in the proof of
Theorem 2 is sufficient for this purpose if we can separate
protocol and non-protocol messages. The corresponding
construction is depicted in Figure 10. That is, we direct
non-protocol messages past the interface I. To be precise,
we must guarantee that the simulation is perfect, i.e., the
adversary sees the messages in the same order as in the
real execution. Hence, we must additionally assume that
there is a general (possibly dynamic) scheduling policy that
uniquely determines in which order an honest participant
Pi outputs protocol and non-protocolmessages. Secondly,
the corruption calls are handled by the interface I that
corrupts the honest participant and adds the variables used
in simulation to the state of released participant.

Now it is straightforward to verify that the simulation
of the protocol is perfect and that there can be a
discrepancy between the real and ideal world outputs ψ
and ψ◦ only if the adversary A succeeds in deception.
The corresponding deception probabilitymust be less than
ε or otherwise the real world adversary A together with
the context �〈·〉 forms a new stand-alone adversary A∗

that achieves Advforge
π (A∗) > ε. The latter leads to a

contradiction, since the running time of A∗ is tre + t� +
O(1). Now the claim follows, as the overhead in the
simulation is constant. �

As a first limitation, note that the interface I may
completely fail if protocols share the same trusted setup
πst. For obvious reasons, such failures are caused by
protocols π

(1)
ne , . . . , π

(q)
ne that share the long-term secrets.

If the trusted setup πst is run independently from the
interface I, then it does not know the corresponding
long-term secrets and cannot simulate the execution of
honest parties. Alternatively, if the setup πst is a part of
the interface I, then we can replace only a single protocol
instance π

(i)
ne with the ideal implementation. After that the

corresponding adversary I〈A〉 knows all long-term secrets

and all other protocol instances π
(1)
ne , . . . , π

(q)
ne become

insecure. Hence, one needs more elaborate security proofs
for all authentication protocols that are based on long-
term secrets. The latter is expected result, as some of these
protocols are known to be secure in the stand-alone model
but insecure in the Bellare-Rogaway model.

However, if the trusted setup phase generates only
public values, then these problems disappear, as the
knowledge of public parameters is sufficient to simulate the
behaviour of honest parties. In particular, the adversary
A∗ is still a valid stand-alone standalone adversary and the
proof of Theorem 9 still holds.

Corollary 10: Let π be a group authentication protocol
that is (t, ε)-secure in the common reference string
model. Then there are constants c1, c2 such that
the protocol is (tre, tid, t�, ε)-universally composable
whenever tid ≥ c1· tre and tre + t� ≤ t − c2 even if the
protocol shares the setup phase with other protocols.

This result represents the main technical difference
between classical and user-aided data authentication.
User-aided data authentication protocols are not based
on long-term secrets and thus they remain secure
in any computational context. Classical authentication
protocols are also universally composable as long
as secret keys are used only once. If we want to
reuse secret keys, then we must prove security in
the Bellare-Rogaway model. The corresponding proof
implicitly shows that we can treat πst, π

(1)
ne , . . . , π

(q)
ne as

single complex multi-round authentication protocol and
replace it with the corresponding ideal implementation.
The formal proof is analogous to the proof of Theorem 9
and thus we can use classical authentication protocols in
any computational context as soon as they are secure in
the Bellare-Rogaway model.

6.4 Message identification

As a second subtle detail, note that the proof outlined
above is valid only if the interface I∗ can correctly
separate protocol messages from non-protocol messages.
Otherwise, messages may become switched between
different protocols and the corresponding synchronisation
errors can cause arbitrary failures. To avoid such subtle

Figure 10 The canonical interface for complex settings
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issues, theoretical treatments often assume that each
message contains a specific tag that uniquely determines
the corresponding protocol instance (Canetti, 2000).
Consequently, we can always avoid synchronisation
errors for in-band communication without excessive
performance penalties. However, the latter is not true
for OOB messages, since we do not want to increase
the amount of authenticated communication. Of course,
these tags can be dropped as long as they can be
restored from the available information, i.e., the source
and destination information uniquely determines the
corresponding protocol instance. Thus, a user-aided data
authentication protocol remains universally composable if
the following restrictions hold:

R1: Randomness used in the protocol instance is
freshly generated.

R2: The outputs are never used before all parties reach
accepting state.

R3: All group members have different identities, i.e., G
is indeed a set.

R4: The OOB messages determine a unique protocol
instance.

Restrictions R1 − R3 are natural requirements and we can
force the restriction R4 if we guarantee that no more
than one protocol instance for the same group is run at
the same time. The latter is a relatively mild limitation,
since two or more parallel instances of an authentication
protocol can be replaced with a single protocol instance.
Hence, several papers (Laur and Nyberg, 2006; Laur and
Pasini, 2008) have just postulated the usage restrictions
R1 − R4 and have not studied themaximal damage caused
by synchronisation errors. For the two party protocols, the
corresponding extra advantage has been estimated in the
papers (Vaudenay, 2005; Pasini and Vaudenay, 2006b).

Theorem 11: Let π be a (t, ε)-secure cross authentication
protocol between P1 and P2. If P1 launches up to q1 and
P2 up to q2 concurrent instances of the protocol π, then
the deception probability can increase up to q1q2 · ε.

Proof sketch: Note that a successful deception pairs an
instance launched by P1 and an instance launched by P2.
Let εij denote the probability that the first deception
event happens for the ith instance launched by P1 and
for the jth instance launched by P2. Then the overall
deception probability Advforge

π,...,π(A) is just a sum of all
εij . Hence, one can create a stand-alone adversary with
the success probability Advforge

π (A) ≥ 1
q1q2

· Advforge
π,...,π(A)

by simulating all protocol instances except for a random
instance pair that is substitutedwith the challenge instance.
The claim follows. �

As a protocol with an optimal deception bound has
uniformly distributed OOB message (Laur and Nyberg,
2006), the bound is also quite tight. A similar result holds
also for the group setting. However, there the decrease in

security level ismuch steeper, since the number of potential
matches is significantly bigger. Therefore, it is much wiser
to follow the restriction R4.

7 Key agreement protocols

Themainapplicationofuser-aidedmessage authentication
protocols is to protect key agreement protocols against
active attacks. In the following, we outline how to achieve
this goal with minimal amount of user interaction.

Note that there is an inevitable trade-off between the
security andusability. Inmanypractical applications, users
are willing to transfer onlyOOBmessages that are up to six
digits long. Hence, such authenticationmechanisms can be
bypassed with probability 2−20. On the other hand, 2−20

is also the probability of not noticing an active attack. The
latter is small enough to demotivate most attackers and
thus the subjective security level can be much higher. For
instance, if the probability of an active attack is below 10−6

then the achievable security level is 2−40.
Of course, true cryptographic security can be achieved

only with sufficiently long OOB messages. Hence, it is
important to minimise the total amount of manually
authenticated communication. In particular, it should be
easy to exclude corrupted nodes from a group without
transferring any additional OOB messages.

7.1 Formal definitions

A group key agreement protocol π between n participants
G = {id1, . . . , idn} starts with no input, is independent
from the current state, andoutputsG anda shared common
secret key sk ∈u K.

Definition 12: A group key agreement protocol π is
(t, ε)-immune against active attacks if for any t-time
adversary A that can choose a group G = {id1, . . . , idn}
then the probability that uncorrupted parties do not detect
active attack is less than ε.

Obviously, any key agreement protocol that is (t, ε1)-
immune against active attacks and (t, ε2)-secure against
passive attacks is also (t, ε1 + ε2)-secure, as long
as both definitions are given in the same attack
model. In particular, we can construct also universally
composable user-aided key agreement protocols as
long as the underlying key agreement protocol is
universally composable against passive attacks.3 However,
stand-alone security is sufficient for many practical
settings, since the key agreement protocols are often
executed in isolation to set up the communication network.

7.2 General construction

The most straightforward way to achieve (t, ε)-immunity
against active attacks is to authenticate the entire
protocol transcript. Namely, participants must first
execute the group key agreement protocol and then
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use the group message authentication protocol to
verify that all transferred message were unaltered.
A naive implementation, where protocols are executed
sequentially, adds three extra rounds to the key agreement
protocol. However, since message authentication
protocols are universally composable, we can execute
them in parallel and save two messages for two-party and
one complete round for group protocols. It is also possible
to fuse both protocols more tightly and thus obtain a more
efficient protocols, see Laur and Nyberg (2006).

For two-party protocols, it is reasonable to combine
the Diffie-Hellman key agreement protocol with one of
the message cross-authentication protocols discussed in
Section 4. The Burmester-Desmedt (BD) key agreement
protocol (Desmedt and Burmester, 1994) is a suitable
starting point for group settings, since it is provably
secure against passive attacks (Burmester and Desmedt,
2005). Though the Burmester-Desmedt key agreement
protocol is a generalisation of the Diffie-Hellman key
agreement protocol, it can also be generalised for other
two-party key agreement protocols, see the compiler
of Just and Vaudenay (1996). For simplicity, consider
a group of n participants P0, . . . ,Pn−1 arranged in a
ring. The Burmester-Desmedt protocol is depicted on
Figure 11. It consists of two rounds over an authenticated
channel, while most of the schemes requires O(n)
rounds. Here, let g be a generator of a q-element
secure Diffie-Hellman Decision Group. At the end of the
protocol, each participant Pi obtains the same secret key
sk = gk1k2+k2k3+···+knk1 .

In many practical settings, we must be able to expel
group members that behave maliciously. Ideally, this
operation should not use additional OOB messages.
Consequently, a simple key agreement protocol is not
suitable for our needs, since a sharedkey gets compromised

as soon as a group member gets corrupted. To avoid
this problem, we need a key agreement protocol that
also fixes long-term pairwise authentication keys so that
we can re-run key agreement protocols without OOB
communication. In particular, we can use public keys
corresponding to Diffie-Hellman key agreement protocol.
The corresponding key agreement protocol was proposed
by Laur and Pasini (2008) and it is depicted in Figure 12.

As the transcript of the Burmester-Desmedt protocol
is authenticated with the SAS-GMA, the protocol is
immune against active attacks with the same guarantees
as Theorems 6 and 9 specify. Moreover, any two parties
α, β ∈ H can establish a pairwise secret key skα,β =
f(gxαxβ ), as they both know the corresponding long-term
public keys yi = gxi for all group members i ∈ G. Hence,
they can use any classical authentication protocol to
protect new instances of group key agreement protocols
against active attacks. In particular, we can merge small
groups G1,G2, if there is an honest party Pi ∈ G1 ∩ G2, by
sending all intergroup communication through Pi.

Of course, if the formed group is known to have a
static nature, then one can skip the setup of long-term
Diffie-Hellman keys skα,β .

8 Conclusions and open problems

As explained in the introduction, setting up a secure
communication between two or more parties requires
authenticated communication channels. As a solution to
this problem, we presented several user-aided two-party
message authentication protocols in Section 4. Note that
three of these protocols are optimal which means that
no protocol can achieve a better security using the same
amount of authentic data. We conclude that we cannot

Figure 11 The Burmester-Desmedt group key agreement protocol

Figure 12 The final SAS-based AKA protocol with simplified notations (see online version for colours)
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do much better in two-party settings. However in group
settings, the use of two-party protocols is not optimal.

Indeed, suppose we want to setup a shared secret key
for more than two parties. Using two-party protocols, we
should run several peer-to-peer (two-party) protocols and
this solution increases the amount of user interaction. In
Section 5 we addressed this concern and presented a group
message authentication protocol that is significantly better
in that respect and achieves the optimal security level.

Another remarkable aspect in this paper is a
well-adapted adversarial model (see Section 3) and a
systematic treatment of various executionmodels (covered
by Sections 4–6). More precisely, we first proved that
all presented protocols are secure in the stand-alone
model and then showed that any user-aided message
authentication protocol that is secure in the stand-alone
model remains secure in more complex settings.

As a last step in securing communication links, we
presented a general methodology how to protect ordinary
key agreement protocols against active attacks. Since the
corresponding technique is well established for two-party
case, we gave the detailed description only for the group
setting. We emphasise here that the final protocol depicted
in Figure 12 has an optimal security with respect to the
amount of authentic data as well as an optimal number
of rounds. Additionally, the clever use of long-term public
keys provides an efficient way to manage dynamic groups.

To emphasise differences between various protocols,
we have gathered the most important aspects into Table 1.
For brevity,weuse the acronymMAfor unilateralmessage
authentication, MCA for cross-authentication, GKA for
group message authentication. To distinguish between
unkeyed and keyed hash functions, we use shorthands
h(·) and hK(·). A tick indicates that the protocol has the
property that is specified by the column.

Table 1 Main features of user-aided message authentication
protocols

Type Protocol Interactive Optimal Primitives

MA Fingerprint h(·)
MANA I and II hK(·)
MANA III � hK(·)
SAS (original) � � com(m)
Pasini-Vaudenay � com(m), h(·)

MCA SAS MCA � com(m)
MANA IV � � com(m), hK(·)
Optimal SAS-MCA � � com(m), hK(·)

GMA G-MANA IV � � com(m), hK(·)
SAS-GMA � � com(m), hK(·)

As an intricate theoretical detail, note that it is quite
straightforward to prove that all user-aided authentication
protocols with optimal security level must have at least
three moves over insecure channel, see for example Laur
andNyberg (2006).However, the result doesnot specify the
maximal security level for two-move protocols. Hence, it is
theoretically interesting to knowwhat is the corresponding
lower bound on deception probability and whether all

two-move protocols are as sub-optimal as the MANA II
protocol.

There is also a tension between theoretical
constructions and practical instantiations. Most practical
user-aided key agreement protocols such as Zfone
protocol (Zimmermann et al., 2000) and wireless USB key
agreement protocol (WUS, 2006) use collision resistant
hash functions to mimic the functionality of commitment
scheme. Although this approach cannot be used in general,
it should be appropriate for securing key agreement
protocols, since the corresponding authenticatedmessages
have uniform distribution.

More formally, a collision resistant hash function
as a deterministic commitment cannot be hiding
and non-malleable for arbitrary message distribution.
However, hiding and non-malleability w.r.t. uniform
distribution makes sense also for hash functions.
Consequently, it should be possible to give a formal
security proof for these practical protocols. On the
other hand, the corresponding security requirements are
very different from the standard ones such as one-
wayness and collision resistance. Hence, interpretation
of corresponding security requirements is an interesting
theoretical and practical problem.
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Notes

1We always assume that the group G is ordered w.r.t. the sender
identities id1 < id2 < · · · < idn.

2Strictly speaking, such an assumption is unnecessary but it
guarantees reusability of a common reference string.

3In fact, the Diffie-Hellman key agreement is known to satisfy
this requirement modulo minor details (Canetti and Krawczyk,
2002).

Appendix

A Security of the SAS protocol

For the proof of Theorem 3, we have to show that the
inequalities (1)–(3) defined below hold for any t-time
adversary A whenever the assumptions of Theorem 3 are
satisfied. Let forge denotes the event that B succeeds in
deception. Then we can express

Advforge(B) ≤ Pr [forge ∧ c �= ĉ] + εb, (1)

since a successful forgery such that c = ĉ reveals a double
opening and thus Pr [forge ∧ c = ĉ] ≤ εb. For further
analysis, let ĉ ≺ d denote the event thatP2 receives ĉ before
than P1 releases d. Then

Pr [forge ∧ c �= ĉ ∧ ĉ ≺ d] ≤ 2−� · Pr [ĉ ≺ d] + εnm (2)

or otherwise we can construct t + O(1)-time adversary A
that simulates the stand-alone model for B in order to win
the corresponding non-malleability games.

Namely, the adversary A1 feeds pk to B and gets
back corresponding input message m. Next, A1 defines
MGen as a uniform distribution over pairs (m, r1)
where r1 ∈ {0, 1}� and uses the challenger’s reply as
c in the SAS protocol. To be precise, A1 faithfully
simulates the SAS protocol to B and halts if d ≺ ĉ. As
an intermediate output (σ, ĉ1, . . . , ĉn), the adversary
A1 outputs σ = (m, m̂, r̂2, r2) and ĉ. As a final output
(d̂1, . . . , d̂n),A1 outputs the corresponding decommitment
value d̂. Now A2(σ, xi, ŷ) resumes the SAS protocol:
sets (m, r1) ← xi and (m̂, r̂1) ← ŷ and output 1 only if
m �= m̂ and r1 = r̂1. Now by construction Pr [Gnm

0 = 1] =
Pr [forge ∧ c �= ĉ ∧ ĉ ≺ d] and Pr [Gnm

1 = 1] ≤ 2−� ·
Pr [ĉ ≺ d], since x1 is independent of the protocol run and
thus Pr [r1 = r̂1|A1 �= ⊥] = 2−�.

As a final detail, we have to prove the inequality

Pr [forge ∧ c �= ĉ ∧ d ≺ ĉ] ≤ 2−� · Pr [d ≺ ĉ] +
√

εb. (3)

The corresponding proof is technically tedious, as the
adversary does not directly violate the binding property.
Consequently, we have to construct a collision-extractorA
that runs in time 2t + O(1) and finds the double opening
with high enough probability. We give here only the proof
sketch, since analogous proof that covers all details can be
found in Laur and Nyberg (2006). Consider an adversary
A that simulates the protocol to B with two independent

r2 values r0
2 and r1

2 to get two protocol transcripts with
the same commitment value ĉ but different decommitment
values d̂0 and d̂1.

That is, A first simulates the protocol with r0
2 and then

rewinds B and submits r1
2 and outputs the corresponding

triple (ĉ, d̂0, d̂1). Let succ denote the event that A gets a
double opening. Then we can lower bound the success
probability Pr [succ|d ≺ ĉ] by the conditional averages

Eĉ(Pr [forge|ĉ]2 |d ≺ ĉ) − Eĉ(Pr [forge|ĉ] · 2−�|d ≺ ĉ).

Hence, the Jensen inequalityE(X2) ≥ E(X)2 assures that

Pr [succ | d ≺ ĉ]≥Pr [forge | d≺ ĉ]2− 2−� · Pr [forge | d ≺ ĉ].

Now if the inequality (3) is violated, then we can also
conclude that Pr [forge|d ≺ ĉ] ≥ 2−�. Consequently,

Pr [succ|d ≺ ĉ] ≥ (Pr [forge|d ≺ ĉ] − 2−�)2

and we have derived a contradiction

Pr [succ] ≥ Pr [d ≺ ĉ]2 · (Pr [forge|d ≺ ĉ] − 2−�)2 ≥ εb.

B Security of the optimised SAS-MCA protocol

For the proof of Theorem 4, we show that the
inequalities (4)–(6) defined below hold for any t-time
adversary whenever the assumptions of Theorem 4 are
satisfied. Again, we assume that B is a t-time adversary.
First, note that the proof of the inequality

Pr [forge ∧ d ≺ ĉ] ≤ 2−� · Pr [d ≺ ĉ] +
√

εb, (4)

is analogous to Appendix A. Secondly, note that the case
c = ĉ requiresmore detailed analysis, as adversary can also
alter the second message m2. In fact, the corresponding
upper bound is also more complex

Pr [forge ∧ c �= ĉ ∧ ĉ ≺ d]
≤ εu · Pr [m1 = m̂1 ∧ c = ĉ ∧ ĉ ≺ d] + εb + εh. (5)

For the proof, note that c can be opened to (m̂1, r̂1) that is
different from (m1, r1) with probability at most εb. Now
consider a t + O(1)-time adversary A that simulates the
protocol to B in order to win the hiding game. Namely,
given message m, A submits two messages x0 = (m, r1)
and x1 = (m, r∗

1)where r1, r
∗
1 ∈u {0, 1}s to the challenger,

then uses the challenge commitment cs in the simulation
and then stops when we need the decommitment d. Next,
A halts if d ≺ ĉ or c �= ĉ. Otherwise, A computes oob1 ←
h(m̂2, r1) ⊕ r̂1 and oob2 ← h(m2, r1) ⊕ r2. A outputs 0 if
B succeeds in deception, i.e., oob1 = oob2 and m2 �= m̂2
and 1 otherwise. Now it is straightforward to verify that if
the inequality (5) is violated then Advhid(A) > εh.

Finally, note that non-malleability property assures

Pr [forge ∧ c �= ĉ ∧ ĉ ≺ d]
≤ εr · Pr [c �= ĉ ∧ ĉ ≺ d] + εnm, (6)



86 S. Laur and S. Pasini

or otherwise we can construct a t + O(1)-time adversary
A for the non-malleability games. The adversary A1
simulates the protocol execution analogously to the one
described in Appendix A. The target relation A2(σ, xi, ŷ)
still outputs 1 only in the case of successful deception, i.e.,
(m1, m̂2) �= (m̂1, m2) and h(m̂2, r1) ⊕ r̂2 = h(m2, r̂1) ⊕
r2. The only difference in the argumentation comes

from the fact that A can win the Gnm
1 with probability

at most Pr [Gnm
1 = 1|A1 �= ⊥] ≤ εr, since r1 is chosen

independently of all other values needed to compute OOB
messages. Secondly, Pr [A1 �= ⊥] = Pr [c �= ĉ ∧ ĉ ≺ d] and
thus Advnm(A) > εnm as soon as the inequality (6)
violated.


