
Cryptographically Private Support Vector Machines

Sven Laur
Laboratory for Theoretical

Computer Science
Helsinki University of

Technology

slaur@tcs.hut.fi

Helger Lipmaa
Institute of Computer Science,

University of Tartu
and Cybernetica AS

lipmaa@cs.ut.ee

Taneli Mielikäinen
HIIT Basic Research Unit,
Department of Computer

Science, University of Helsinki

tmielika@cs.helsinki.fi

ABSTRACT
We propose private protocols implementing the Kernel Ada-
tron and Kernel Perceptron learning algorithms, give pri-
vate classification protocols and private polynomial ker-
nel computation protocols. The new protocols return
their outputs—either the kernel value, the classifier or the
classifications—in encrypted form so that they can be de-
crypted only by a common agreement by the protocol par-
ticipants. We show how to use the encrypted classifications
to privately estimate many properties of the data and the
classifier. The new SVM classifiers are the first to be proven
private according to the standard cryptographic definitions.

Categories and Subject Descriptors
E.3 [DATA ENCRYPTION]: Public key cryptosystems;
H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications—Data mining ; H.2.7 [DATABASE MAN-
AGEMENT]: Database Administration—Security, in-
tegrity, and protection

General Terms
Theory, Algorithms, Security

Keywords
Privacy Preserving Data Mining, Kernel Methods

1. INTRODUCTION
Private classification like ordinary classification comprises

of two subtasks: learning a classifier from data with class
labels—often called a training data—and predicting the
class labels for unlabeled data using the learned classifier.
However, the main emphasis is on privacy, i.e., how to dis-
close only the minimal amount of data. There are two fun-
damentally different ways algorithms can disclose sensitive
information: algorithms can leak some side information that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

is not specified by desired output or the end result itself re-
veals sensitive aspects of the data. As common in crypto-
graphic literature, we address only the first question, i.e.,
we design algorithms that only reveal the desired output.

For simplicity, we assume that the data can be stored as
vectors with fixed length, often called feature vectors. As an
example, consider the classification task of detecting email
spam. The training data comprises of emails with labels
“spam” or “nospam”. More precisely, classified emails are
converted to word count vectors and then the classifier is
learned from these vectors. The classifier itself can be, e.g.,
a linear threshold function on the word frequencies in the
bodies of the messages. The learned classifier is used to
predict which of the unlabeled emails are spam.

Private classification considers the scenario where the
training data is divided between two or more parties with
possibly conflicting interests, so that they are not willing to
reveal their data. However, the parties are willing to train
a common classifier provided that none of them can use it
without others and that their data remains private. Such
examples are quite common in the case of medical studies,
e.g., when finding out risk groups for a diseases without
leaking the identities of infected patients and the medical
data. Other similar examples include military surveillance
and identity-specific content providing services.

We derive private versions of the Kernel Perceptron and
Kernel Adatron algorithms that extend the basic linear clas-
sification techniques. In particular, the Kernel Adatron al-
gorithm can be used to implement both hard and soft mar-
gin Support Vector Machines. See [14, 13] for references.
As SVMs have excellent statistical stability and sensitivity,
they have been successful in many application areas. Hence,
our work is an important extension of the research on cryp-
tographically private classifiers [2, 8, 6, 15, 16].

Data perturbation combined with robust aggregation
techniques provides also privacy-preserving methods for
classification. However, there the context is completely dif-
ferent: the training data is owned by a single entity and
data perturbation is used to protect privacy of individual
records. Basic applications are various statistical question-
naires and databases that must preserve anonymity of each
participant. Such techniques have several intrinsic limita-
tions: privacy guarantees are somewhat heuristic and there
is a tradeoff between privacy and accuracy.

By using classical results of secure multi-party computa-
tion [5], any protocol can be implemented without leakage
of any side information, though with “polynomial” slow-
down. Thus, secure multi-party computation methods can

be applied to any protocol to avoid unnecessary disclosure.
However, such generic techniques are usually too resource-
consuming in practice. This is especially true in the case of
data mining protocols that handle enormous amount of data,
and are often themselves on the verge of being (im)practical.
In the current article, we combine several well-known cryp-
tographic techniques such as homomorphic encryption, se-
cret sharing and secure circuit evaluation to get reasonably
efficient private classification algorithms. As an important
restriction, all proposed algorithms are private only in the
semi-honest model where all participants follow the protocol
but try to deduce extra information.

We derive protocols for the three basic steps of kernel
based classifiers: evaluation of the kernel matrix, prediction
and training. The complexity of the algorithms depends on
how the data is divided between participants. Due to the
space limitations, we cover completely only the simplest case
when the feature vectors are owned by Server, and Client
possesses only the classification labels. General horizontal
and vertical split have slightly more complex solutions, since
there Client and Server must first share the kernel matrix. In
this shortened version, we outline only the main differences
between the simplified and the complex case.

A few methods for privacy-preserving learning of Support
Vector Machines have been proposed [18, 17] but they re-
veal the kernel and the Gramm matrix of the data. Since the
Gramm matrix consists of scalar products between all data
vectors, such leak is extremely dangerous. If more than m
linearly independent vectors leak out, where m is the dimen-
sionality of the data, then all other vectors can be restored
knowing only the Gramm matrix. Hence, these methods are
unusable for horizontally partitioned data, where each par-
ticipant possesses many complete feature vectors. Moreover,
other kernel methods like the Kernel-PCA reveal statisti-
cally relevant information about data points without any
auxiliary knowledge beyond the kernel matrix.

2. CLASSIFICATION
Let X be the set of all possible data points and Y be

the set of possible classes. Let G be a family of functions
g : X → Y that we consider being potential classifiers, and
let D be a multiset of data points with class labels, i.e., D
comprises of pairs (x1, y1), . . . , (xn, yn) ∈ X × Y. Usually
the pairs in D are assumed to be drawn independently from
the same unknown probability distribution, often referenced
as i.i.d. data. We consider only the case when vectors are
real, X ⊆ Rm, and there are two classes Y = {−1, 1}.

The classifier learning task is, given the function class G
and the dataset D, to find the best classifier g∗ ∈ G. Ideally,
one would like to have a classifier with smallest misclassifica-
tion probability Pr [g(X) 6= Y], where X and Y are random
variables with joint probability distribution over X ×Y. As
the actual probability distribution on X ×Y is unknown, we
must relay on a partial information revealed by D.

We consider only linear classifiers and their extensions.
Linear classifiers are described by the normals of the hyper-
planes ~w ∈ Rm. The classification of a point ~x ∈ Rm is then
determined by the sign of the scalar product f~w(~x) := 〈~w, ~x〉
that is also known as the discriminative function. The most
common linear classification algorithm is known as Percep-
tron. The idea of the Perceptron algorithm is to find a linear
combination ~w of the points ~xi such that sign 〈~w, ~xi〉 = yi
for all (~xi, yi) ∈ D. The algorithm updates the weight vec-

tor ~w (initially ~0) by adding to ~w each data point ~xi that is
misclassified by the current ~w. See [13, 14] for more details.

A major drawback of the Perceptron algorithm is that it
assumes that the data is linearly separable, i.e., that there is
an hyperplane ~w ∈ Rm that separates the positive examples
from the negative ones. Therefore, data is often mapped
into a higher dimensional Hilbert spaceH to make it linearly
separable using some (nonlinear) mapping φ : X → H. Such
a mapping is often called a feature mapping and the Hilbert
space a feature space. Common feature spaces have very high
or even infinite dimensionality and computations in feature
spaces are done implicitly using kernels. A kernel of a feature
map φ is a function κ such that κ(~xi, ~xj) = 〈φ(~xi), φ(~xj)〉
for all ~xi, ~xj ∈ X . Many machine learning algorithms can
be written in dual form by expressing sought feature vectors
as linear combination of φ(~x1), . . . , φ(~xn). In particular, if
~w = α1φ(~x1) + · · ·αnφ(~xn) for some ~α ∈ Zn, then

f~w(~xi) =

n∑
j=1

αj · 〈φ(~xi), φ(~xj)〉 =

n∑
j=1

κ(~xi, ~xj)αj ,

i.e., it suffices to compute only the kernel values κ(~xi, ~xj).
Furthermore, the values kij = κ(~xi, ~xj) have to be computed
only once for a particular D and φ. Let K = (kij)

n
i,j=1 de-

note the kernel matrix of D. Then the Perceptron algorithm
can be written down as Algorithm 1.

Algorithm 1 Kernel Perceptron algorithm

Input: A kernel matrix K and class labels ~y ∈ {−1, 1}n.
Output: A weight vector ~α ∈ Zn.

Function Kernel-Perceptron(K, ~y)

1: ~α← ~0
2: repeat
3: for i = 1, . . . , n do
4: if yi ·

∑n
j=1 kijαj ≤ 0 then αi ← αi + yi

5: end for
6: until convergence

end function

By Novikoff’s Theorem [14], the number of iterations be-
fore convergence is less than R2/γ2

∗ , where R is the radius of
the smallest origin-centered ball containing all data points,
and γ∗ is the maximal margin. Recall that the margin of a
given weight vector ~w w.r.t. the dataset D is defined as

γ = min
(xi,yi)∈D

yi · 〈~w, ~xi〉
‖~w‖

and γ∗ = max {γ(~w) : ~w ∈ Rm}. However, the output of the
Perceptron algorithm is ambiguous, as it finds some sepa-
rating hyperplane for data if such exists, but basically any
separating hyperplane will do. It is more natural to se-
lect the separating hyperplane that maximizes the margin γ,
i.e., the maximum margin hyperplane ~w∗. Intuitively, such
choice minimizes the risk of misclassification. The maxi-
mum margin hyperplane is justified also by the generaliza-
tion error bounds [13, 14]. Learning algorithms that output
a maximum margin separating hyperplane are called Sup-
port Vector Machines (SVM-s in short) [14]. A particularly
flexible and simple Support Vector Machine is the Adatron
algorithm [13].

The Adatron algorithm has several nice properties. First,
it is based on iterative gradient descent and has a simple

structure. Therefore, it is a perfect starting point for a
privacy-preserving learning algorithm, since there are only
a few operations that require complex cryptographic solu-
tions. Second, the Adatron algorithm allows to implement
both hard and soft margin Support Vector Machines with
few changes. Recall that a hard margin SVM finds the max-
imal margin hyperplane if the dataset is linearly separa-
ble. For linearly non-separable datasets, the hard margin
SVM returns a solution where outliers—points that cause
non-separability—have large impact on classification results.
Soft margin SVM-s bound these harmful disturbances: ei-
ther αj ∈ [0, C] is forced (`1-norm SVM) or a regularizing
term C > 0 is added to the main diagonal of the kernel ma-
trix (`2-norm SVM). Algorithm 2 implements the `1-norm
soft margin SVM, which is the most popular SVM. We get
a hard margin SVM by setting C =∞, and a `2-norm SVM
by adding C to the main diagonal.

Algorithm 2 Kernel Adatron algorithm

Input: A kernel matrix K, class labels ~y ∈ {−1, 1}n and
the soft margin parameter C.

Output: A weight vector ~α ∈ Zn+.

Function Kernel-Adatron(K, y, C)

1: ~α← ~0
2: repeat
3: for i = 1, . . . , n do
4: αi ← αi +

(
1− yi ·

∑n
j=1 kijαjyj

)
5: αi ← min {max {αi, 0} , C}
6: end for
7: until convergence

end function

3. CRYPTOGRAPHIC AIMS AND TOOLS
Our main assumption is that data is divided between two

parties, Client and Server, that are willing to train a com-
mon classifier if nothing beyond the expected end results are
revealed. In the matrix evaluation and training phase, Client
and Server must learn nothing new. In the prediction phase,
Client must learn only the predicted label f~w(~x) and Server
must learn nothing. In case of secure aggregation, even the
individual class labels must remain secret and Client should
learn only the aggregate value, e.g., the training error.

Feature vectors can be divided horizontally, vertically or
in a more complex way. Essentially, there is no difference in
private learning algorithms, unless the data is divided be-
tween Client and Server so that Client possesses the label
vector ~y and Server has the corresponding feature vectors
~xi. We call such scenario a restricted vertical split. As the
vectors ~xi correspond to the real life objects, it is quite plau-
sible that Client can still classify the objects although the
features ~xi are not known. Examples of restricted vertical
split naturally emerge when Client must use a confidential
database for classification, e.g., medical and genetic studies.
Since Server owns all feature vectors, the kernel matrix K
can be locally computed. Recall that Algorithms 1 and 2
require efficient evaluation of linear forms f~w(~xi). If Server
knows all entries of K, then an additively homomorphic en-
cryption is sufficient for secure evaluation of f~w(~xi).

In all other data sharing models, Client and Server must
use cryptographic methods to share K, such that neither of

them learns anything about K. Then, for the secure eval-
uation of f~w(~xi), we need a two-party homomorphic cryp-
tosystem where decryption requires collaboration between
Client and Server. Due to the space constraints, we con-
sider only restricted vertical split. Complete treatment of
all data sharing models along with corresponding security
proofs are given in the full version [7].

Next, we introduce the formal security model and three
basic cryptographic techniques: homomorphic encryption,
secret sharing and secure circuit evaluation. Since all these
techniques can natively handle only integer inputs, classifi-
cation algorithms must be discretized, i.e., fixed point arith-
metics must be used instead of floating point calculations.
This introduces some intricate questions about numerical
stability that are discussed further in the later sections.

First lets establish some notation. For a finite set X, let
x ← X denote that x is chosen uniformly from X. For
an algorithm A with inputs x1, . . . , xn, let A(x1, . . . , xn)
denote the output distribution of A. Let k be the security
parameter. A function f(k) is poly(k) if f(k) = kO(1), i.e.,
if f(k) increases asymptotically not faster than kc for some

c > 0. A function f(k) is negligible if f(k) = k−ω(1), i.e., if
f(k) decreases asymptotically faster than k−c for any c > 0.

Formal security model.Let Πf denote a protocol (a well-
specified distributed algorithm) between Client and Server
for computing the functionality f = (f1, f2). Let % be
Client’s private input and σ Server’s private input. Intu-
itively, the protocol Πf preserves privacy if Client learns
nothing but f1(%, σ), and Server learns nothing but f2(%, σ).
This intuitive notion is formalized by using the non-uniform
polynomial security model [5, p. 620–624, 626–631]. A pro-
tocol is private if any probabilistic polynomial-time honest-
but-curious adversary (that follows the protocol) obtains ad-
ditional information with a negligible probability w.r.t. the
security parameter k (e.g., the key length). That means
that in this case, one can choose a sufficiently small security
parameter k, such that the protocol is still efficient but the
adversarial success probability is reasonably small, say 2−80.
See the full version of the article [7] for a detailed discussion.

The next (sequential) composition property allows to sim-
plify cryptographic security proofs and omit unnecessary
details. Let Πg|f denote a sequential protocol for comput-
ing functionality g, where parties can access a trusted third
party TTP that computes functionality f . In other words,
parties can send their arguments to the incorruptible TTP
that privately replies with the answers f1 and f2. Now, let
Πf |g ◦ Πf denote the protocol, where parties execute Πg|f

but instead of TTP use Πf to compute f . Then the following
sequential composition theorem [5, p. 637] holds.

Composition Theorem 1. Let protocols Πg|f and Πf be
private in the semi-honest model. Then the combined proto-
col Πg = Πf |g ◦Πf is also private in the semi-honest model.

If the protocol Πg|f contains many invocations of f , then
all of them can be safely replaced by an invocation of Πf ,
provided that TTP always computes a single value of f .
That is, we cannot run two instances of Πf in parallel or
otherwise the composition theorem might not hold.

Homomorphic encryption.Homomorphic cryptosystems
provide an efficient way to securely evaluate linear forms

when data is divided between Client and Server as it facili-
tates computations with ciphertexts. Formally, a public-key
cryptosystem is a triple of algorithms (G,E,D), where the
key generation algorithm G with input 1k returns a secret
key sk and a public key pk corresponding to the security
parameter k, E is the encryption algorithm, and D is the
decryption algorithm. Let P and C denote the plaintext and
ciphertext space. Then encryption with key pk implements
a function Epk : P ×R → C, where R denotes the random-
ness space used by the encryption algorithm. For the sake of
brevity, we denote Epk(x) := Epk(x; r) for a uniformly chosen
r ←R. It is required that always Dsk(Epk(x)) = x, i.e., it is
possible to decrypt cryptograms.

A cryptosystem is additively homomorphic if for any
(sk, pk), (a) the plaintext space P = ZN ; (b) for x, y ∈ ZN

Epk(x+ y mod N) = Epk(x) · Epk(y) ,

Epk(x · y mod N) = Epk(x)y ,

and Epk(x; r) · Epk(0) has the same output distribution as
Epk(x). Hence, given sk and Epk(x) · Epk(y) · Epk(0), Client
can deduce only x + y mod N . If cryptosystem is secure
then Server without sk leans nothing from Epk(x).

Security of a cryptosystem is defined as follows. Con-
sider two experiments EXP0 and EXP1. In experiment EXPi,
i ∈ {0, 1}, G(1k) is first executed to generate a new key
pair (sk, pk). Then an adversary A, given pk, computes two
messages x0, x1 ∈ P. Next, A receives Epk(xi). A cryp-
tosystem is IND-CPA secure, if for any polynomial-time
non-uniform algorithm A, the next difference is negligible:
Adv(A) =

∣∣Pr
[
A = 1

∣∣EXP0

]
− Pr

[
A = 1

∣∣EXP1

]∣∣. Here, the
probability is taken over the random choices of G, E and A.
Essentially all our security results follow from the composi-
tion theorem and from the next straightforward fact.

Fact 1. Let Π be an IND-CPA secure cryptosystem. As-
sume Server is a polynomial-time non-uniform algorithm.
If during a protocol execution, Server sees only pk and

Epk(xi)
poly(k)
i=1 then Server learns no new information.

Several additively homomorphic cryptosystems [3, 12] are
proven to be IND-CPA secure under reasonable complexity
assumptions. All of them are based on modular exponenti-
ations of large integers, say 1024 bits long, and thus quite
resource consuming. Still thousands of encryption and de-
cryption operation can be done per second, at least using
dedicated hardware.

Secret sharing.Algorithms 1 and 2 above contain vari-
ables that can leak information about data points. There-
fore, neither Client or Server must learn the values of
these variables, however, together they must be able to
manipulate with them. We use additive and multiplica-
tive sharing for such variables. Let N be a public
modulus. If (s1, s2) are chosen uniformly from the set{

(s1, s2) ∈ Z2
N : s1 + s2 = x mod N

}
then the knowledge

of si reveals nothing about x, as si has uniform distri-
bution. We call it the additive sharing of x. For in-
vertible elements Z∗N = {a ∈ ZN : a · b = 1 mod N}, mul-
tiplicative sharing is defined by using the set of shares{

(s1, s2) ∈ (Z∗N)2 : s1 · s2 = x mod N
}

.

Conditional oblivious transfer.To efficiently implement
private classification, we have to rely on conditional oblivi-
ous transfer (COT), also known as secure circuit evaluation.

Conditional oblivious transfer protocol for a public pred-
icate π is defined as follows. Client has an input % and
Server’s input is a triple (σ, r0, r1). At the end of the proto-
col, Client learns r0 if π(%, σ) = 0. Otherwise, Client learns
r1. Server learns nothing. If Sender sets r0 = −s2 mod N
and r1 = 1 − s2 mod N for random s2 ∈ ZN , and Client
stores the output of COT as s1 then they have additively
shared s1 + s2 = π(%, σ) mod N .

In 1-out-of-2 oblivious transfer (OT), Server holds a two-
element database (r0, r1) and Client holds an index %. At
the end of the protocol, Client learns r% if % ∈ {0, 1} and
nothing otherwise. Server learns nothing. This can be seen
as a special case of COT. The protocol must be secure even
if Client is malicious (deviates arbitrarily from the protocol).
For efficiency reasons, the OT protocol must remain secure
even if a multiple instances of it are run in parallel and still
have low amortized complexity, see, e.g., [1, 9].

A COT protocol, popularized and analyzed in [11], con-
sists of three phases. First, Server sends a garbled circuit
E(Cπ) to Client. Second, for each input bit, Client makes
OT call to get the corresponding input for E(Cπ). Third,
Client emulates computations in E(Cπ), and obtains k-bit
string r0 if π(µ, σ) = 0 and string r1 otherwise. This pro-
tocol has two rounds, is private in semi-honest model, and
has even a freeware Java implementation Fairplay [10].

The following facts follow from the construction of [11].
Let the circuit Cπ consist of `2 binary or duplication gates
and `3 ternary gates (Unary gates are redundant, as they
can be combined into binary or ternary gates). Then the
size of garbled circuit E(Cπ) is (4`2 + 8`3 + 4 log2(m

k
))k

bits, for k ≈ 80. The computational complexity needed to
construct and emulate computations in E(Cπ) is linear in
the size of the circuit π. The main computational workload
comes from n parallel executions of 1-out-of-2 OT protocols,
i.e. bit length of % must be as small as possible. Several
instances of COT protocol can be run in parallel without
loosing privacy in the semi-honest model.

In practice, thousands of OT protocols can be executed
in parallel per second. Therefore, private comparison be-
tween n-bit integers is efficient, as latter can be done with n
ternary gates. Still, we will consider several techniques how
to decrease the bit-size of inputs of the COT protocol.

4. PRIVATE KERNEL SHARING
Kernel methods are typically applied to continuous data,

and therefore most kernels operate over the real domain, ex-
cept the discrete kernels that are used for text classification.
As cryptographic methods natively support discrete ranges,
we have to embed kernel values in ZN = {−L, . . . , L}, where
the odd integer N = 2L + 1 is sufficiently large to prevent
overflows in computations.

If data points contain non-integer values then we need to
map data vectors into the discrete domain. Let toint : Rm →
Z
m be the corresponding embedding that, say, multiplies its

arguments by some large constant and then rounds them
to the nearest integer value. Let κ̂ : Zm × Zm → ZN be
the corresponding kernel approximation. We say that kernel
approximation is δ-precise with respect to scaling factor c >
0 and domain X , if for all ~x, ~y ∈ X ,

|c · κ̂(toint(~x), toint(~y))− κ(~x, ~y)| ≤ δ .

Obviously, approximation errors can change classification
results. On the other hand, numerical approximation er-

rors emerge also in floating-point implementations where the
precision is usually 32 bits (float precision). Moreover, it is
reasonable to assume that if approximation is sufficiently
precise then the modeling error, made by the choice of ker-
nel, has much larger impact on the classification errors. As
linear classification requires only evaluation of linear forms
〈~α,~κ〉, then 64-bit relative precision δ ≈ 2−64 is sufficient to
mimic float computations, as smaller values are rounded to
zero even in case of floating-point operations. Such precision
is achievable with a 64 bit modulus N , provided that κ(·, ·)
is scaled into the proper range.

If Server does not own all feature vectors ~xi then Client
and Server have to privately share K. We consider only
polynomial kernels; private evaluation of more complex ker-
nels is an independent research topic. Evaluation of the
scalar product kernel κ(~xi, ~xj) = 〈~xi, ~xj〉, widely used in the
text classification, reduces to private evaluation of shared
scalar product for which several solutions are known [4, 15].

Higher-degree polynomial kernels κ(~xi, ~xj) = 〈~xi, ~xj〉d can
be efficiently evaluated using share conversion: first the ad-
ditive shares s1 + s2 = 〈~x, ~y〉 mod N are computed, then
the shares are converted to multiplicative shares t1 · t2 =
〈~x, ~y〉 mod N and finally the exponentiated shares are con-

verted back u1 + u2 = td1 · td2 = 〈~xi, ~xj〉d mod N . These
share conversions are straightforward to implement with ho-
momorphic encryption. (See the full version [7] for further
discussion.) Compared with other methods, the computa-
tional workload and communication are small, as the expo-
nentiation is done locally.

Share manipulation requires that 〈~xi, ~xj〉 and N are co-
prime, since otherwise multiplicative sharing modulo N does
not exist. Because homomorphic encryption forces the use
of N with nontrivial factors that are at least 512-bit inte-
gers, then it is sufficient that 〈~xi, ~xj〉 6= 0 for all “reasonable”
input ranges X . For many interesting cases, z1, . . . , zm ≥ 0
for all ~z ∈ X and a kernel κ(~xi, ~xj) = (〈~xi, ~xj〉+ 1)d can be
used instead. Finally, if 〈~xi, ~xj〉 = 0 then one can escape the
problem by remapping the shares of 0 to shares of a special
symbol ζ ∈ Z∗N , and then later mapping the shares of ζd

back to shares of 0. This requires costly circuit evaluation
and should be avoided if possible.

5. PRIVATE PREDICTION
Private prediction has several interesting applications

even if the classifier is directly provided by Client, e.g., in
finding potential patients without revealing private medi-
cal data. Then Client has to send encrypted weight vector
Epk(~α) = (Epk(α1), . . . ,Epk(αm)) to Server before the proto-
col. For brevity, denote ~κ := (κ(~x1, ~x), . . . , κ(~xn, ~x)), where
~κ has integer coordinates. Then f~α(~x) = α1κ1 + · · ·+αnκn.

A private prediction protocol that works in the case of
restricted vertical split is depicted by Protocol 1. There,
the parties first privately compute the additive shares of a
scalar product and then use circuit evaluation to determine
the shares of class label. Note that Prot. 1 can be modified
so that Client learns the predicted label.

Theorem 1. Assume that Π is an IND-CPA secure addi-
tively homomorphic cryptosystem and that the circuit evalu-
ation step is private. Then Protocol 1 is correct and private.

Recall that in the general case vector ~κ is additively shared
between Client and Server, i.e., ~κ = ~κ1 + ~κ2 mod N where

Protocol 1 Private prediction for restricted split

Common parameters: Π with plaintext space ZN .
Inputs: Client has a secret key sk. Server has the public

key pk, feature vectors ~x, ~x1, . . . , ~xn, vector ~κ, and
encrypted weight vector Epk(~α).

Output: Client and Server share a predicted class label.

1. Server sends c← Epk(−s2) ·
∏n
j=1 Epk(αj)

κj , for s2 ← ZN .

Client sets s1 ← Dsk(c). // I.e., they share s1 + s2 = 〈~α,~κ〉.
2. Client and Server use circuit evaluation to share
t1 + t2 = sign(s1 + s2) mod N .

ZN is the plaintext space. Hence, given Epk(~α) both parties
can compute Epk(〈~κi, ~α〉) similarly to Protocol 1. However,
neither of them can have secret key sk or otherwise ~α or
~κi leaks out. Therefore, one needs a two-party version of
additive homomorphic encryption scheme [3] where parties
can only together decrypt values. Essentially, parties have to
execute two copies of Protocol 1 with switched identities to
share sign f~α(~x). The corresponding protocol along with the
security proof is present in the full version of the paper [7].

Targeted optimizations.Protocol 1 relies on circuit eval-
uation. We can use two-round COT protocol (described in
Section 3) to evaluate say the “greater than” predicate, but
additional share conversion can significantly increase the ef-
ficiency. For example, to guarantee the security of homomor-
phic encryption, N must usually be at least a 1024-bit inte-
ger. On the other hand, if we use 64-bit precision for ~κ and
~α then the shared values fit roughly into 140 bits. Hence,
it is advantageous to convert random shares s1 + s2 = x
mod N to random shares r1 + r2 = x mod M where M is
significantly smaller, say M = 2140.

For clarity, Protocol 2 is depicted for the representation
ZN = {0, . . . , N − 1}. The same result applies for the signed
representation ZN = {−L, . . . , L} where N = 2L + 1. If
M < N and in the signed representation −M

4
< x < M

4
,

then 0 ≤
⌊
M
4

⌋
+ x < M

2
, and the parties can directly apply

Protocol 2 and then subtract the public value 2 ·
⌊
M
4

⌋
from

the result. Similar techniques can be used for M > N .

Protocol 2 Share conversion algorithm.

Input: Additive shares s1 + s2 = x mod N , N is odd.
Output: Additive shares r1 + r2 = 2x mod M .
We assume ZN = {0, . . . , N − 1}, 0 ≤ x < M

2
and M < N .

1. Parties locally compute ti ← 2si mod N, i = {1, 2}.
2. Server prepares an OT-table (m0,m1) for r2 ← ZM :

a) If t2 is even then
m0 ← t2− r2 mod M and m1 ← t2− r2−N mod M .

b) If t2 is odd then
m0 ← t2− r2−N mod M and m1 ← t2− r2 mod M .

3. Client uses a 1-out-of-2 OT protocol to set r1 ← mb + t1
where b denotes the parity of t1.

Theorem 2. Protocol 2 is private and correct, provided
that the oblivious transfer protocol is private and correct, N
is odd, 0 ≤ x < M

2
and M < N .

The correctness of Prot. 2 is clear as t1 + t2 = 2x mod N .
Thus if 0 ≤ t1 + t2 < N then both t1 and t2 are either odd
or even. If n ≤ t1 + t2 < 2N then t1 and t2 have different
parity. Hence, r1 + r2 = 2x mod N . Security follows from
the composition theorem.

If r1+r2 = 2x mod 2` then the sign of x is determined by
the highest bit of the sum and latter can be evaluated using
` ternary gates. Hence, it is advantageous to use Protocol 2
to reduce the input size of garbled circuit. As a result, Step
2 can be implemented with ` ternary gates for Protocol 1
and the size of the garbled circuit is roughly O(`). More-
over, we need only `+ 1 invocations of OT counting also the
one needed for share conversation. The communication and
computation costs decrease at least by a factor of 10.

Secure Aggregation.Note that if Client and Server lo-
cally add together shares of different class labels, they can
straightforwardly count the number of positive examples.
Recall that the class labels are ±1, hence the sum of shares
reveals difference between positive and negative examples.
Moreover, due to the properties of the COT protocol (Sec-
tion 3), all shares can be computed in parallel by first run-
ning Step 1 in Prot. 1 for all feature vectors and then exe-
cute Step 2. The resulting protocol takes four rounds, i.e.,
all protocol messages can be combined into four larger ones.

One can straightforwardly modify Protocol 1 so that the
parties obtain the shares t1 + t2 = 0 mod N , if predicted
value corresponds to the true label y, and 1, otherwise. Then
the sum of the shares counts the number of misclassified data
points and we can privately estimate training and validation
error or even do private cross-validation.

Stopping criterion and KKT violators.Protocol 1 can
be extended to count the number of Karush-Kuhn-Tucker
violators. Recall that a feature vector ~xi is a KKT violator
if one of the next three conditions does not hold:

αi = 0⇔ f~α(~xi)yi ≥ 1 ,

0 < αi < C ⇔ f~α(~xi)yi = 1 ,

αi = C ⇔ f~α(~xi)yi ≤ 1 .

Circuit for detecting the KKT violators has O(`) ternary
gates. The number of the KKT violators is often used as an
indicator for stopping: algorithm has converged if there are
no KKT violators. Alternatively, one can stop if the num-
ber of the KKT violators is below some threshold or has
not significantly changed during several iterations. How-
ever, private counting of the KKT violators or training er-
ror is resource consuming, and should be done after several
iterations of the Kernel Adatron or Perceptron algorithm.

6. PRIVATE TRAINING ALGORITHMS
Private training algorithms have the same structure as

private prediction algorithms. Whenever possible, we use
homomorphic properties of the cryptosystem to compute
shares directly. If this is not possible, we use circuit evalua-
tion to circumvent the problem. Protocol 3, presented next,
is private in the sense that Client and Server learn noth-
ing except the number of iterations. Learning the latter is
unavoidable in practice, since the amount of computations
always provides an upper bound to the number of iterations.
One can achieve better privacy by doing extra rounds but
this would seriously affect the efficiency.

Due to the space limitations, we present explicitly only a
secure analog of Algorithm 1, depicted by Protocol 3. The
corresponding secure protocol for the Kernel Adatron algo-
rithm has the same structure. We explain only how Step 2
is implemented, the rest is the same as in Prot. 3.

Protocol 3 Private Kernel Perceptron

Common parameters: Π with plaintext space ZN .
Inputs: Client has a secret key sk and labels ~y. Server has

the public key pk and vectors ~x1, . . . , ~xn.
Server’s output: An encrypted weight vector ~c = Epk(~α).
Allowed side information: the number of iterations.

1. Server sets ~c = Epk(~0).

2. Client and Server execute the next cycle:
for i = 1 to n do

a) They compute shares s1 + s2 = f~α(~xi) mod N.

b) They use circuit evaluation to compute shares

t1 + t2 =

{
yi, if yi(s1 + s2) ≤ 0

0, if yi(s1 + s2) > 0
mod N .

c) Client sends d = Epk(t1), Server sets ci ← cid · Epk(t2).
end for

3. If not converged then repeat Step 2.

Theorem 3. Protocol 3 is a correct and private imple-
mentation of the kernel Perceptron algorithm (Algorithm 1)
provided that (1) the cryptosystem is additively homomor-
phic and IND-CPA secure; (2) all substeps are implemented
correctly and privately; (3) the constraints |f~α(xi)| < N

2
and

|αi| < N
2

always hold.

Correctness follows as Substep 2b) implements incremental
update ci = Epk(αi + t1 + t2 mod N) = Epk(αi + yi) if ~xi
is incorrectly classified. Since N is at least 1024 bits long,
|αi| � N/2 for all iterations. Similarly, there are no over-
flows in computation of f~α(~xi) provided that kernel matrix
has reasonable discretization.

The update step of the Kernel Adatron algorithm can be

restated as βi ← βi + yi − f~β(~xi), where ~β = (αiyi)
n
i=1 and

f~β(~xi) = ki1β1 + · · ·+ kinβn. The corresponding correction
Step 5 in Algorithm 2 implements the constraint 0 ≤ yiβi ≤
C. Hence, Client and Server can still use private prediction
to compute shares s1 + s2 = βi + yi− f~β(~xi) mod N . Then
the correction step must be done with circuit evaluation

t1 + t2 =

0, if yi(s1 + s2) < 0

yiC, if yi(s1 + s2) > C

s1 + s2, otherwise

mod N .

Finally, Server computes Epk(βi) as Epk(t1)Epk(t2). It can be
shown that correction step can be implemented with 2`+ 1
ternary gates. Thus, the size of the garbled circuit is roughly
O(2`) for both the Kernel Perceptron and Kernel Adatron.
The parties have to do `+1 invocations of OT counting also
the one needed for share conversation.

Batch processing.Both algorithms are instances of
stochastic gradient descent method, as the update changes
a single coordinate of ~α. Alternatively, one can use a full

gradient descent step instead, i.e., compute all values f~α(~xi)
simultaneously and the update all coordinates of ~α also si-
multaneously. Such batch updates tend to stabilize gradi-
ent descent methods but they also decrease the number of
rounds, i.e., latency. Due to the properties of COT protocol,
Substeps 2a) and 2b) can be executed in parallel and the
number of rounds decreases from 6n to 6 per iteration.

7. CONCLUDING REMARKS
We have described cryptographically secure protocols for

Kernel Perceptron and kernelized Support Vector Machines.
We have also provided cryptographically secure protocols
for evaluating polynomial kernels and also shown how to
securely aggregate encrypted classification results.

An interesting open question is how to securely hide the
convergence speed of the Kernel Perceptron and the Kernel
Adatron algorithms. Recall that our private implementa-
tions did not leak anything but the number of rounds.

Another, more practical, question is whether there are
any iterative private linear classification methods that need
no costly circuit evaluation. The Widrow-Hoff classification
algorithm is a good candidate, as it contains only addition
and multiplication operations. Unfortunately, there one has
to also round the values, so it is not clear whether one can
escape circuit evaluation.

The proposed classification and classifier learning proto-
cols are not limited to data represented as feature vectors,
but can be used on any data with secure kernel evaluation.
Hence, another relevant issue is private computation of en-
crypted kernel matrices for structured data.

Acknowledgments
We thank Matti Kääriäinen, Juho Rousu and Sandor Szed-
mak for valuable discussions on the nature of SVMs and
the current state of the art in kernel methods. The first au-
thor was supported by Finnish Academy of Sciences, and by
Estonian Doctoral School in Information and Communica-
tion Technologies. The second author was supported by the
Estonian Science Foundation, grant 6848. The third author
was supported by the European Union IST programme, con-
tract no. FP6-508861, Application of Probabilistic Inductive
Logic Programming II.

8. REFERENCES
[1] Aiello, W., Ishai, Y., and Reingold, O. Priced

Oblivious Transfer: How to Sell Digital Goods. In
Advances in Cryptology — EUROCRYPT 2001 ,
vol. 2045 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 119–135.

[2] Chang, Y.-C., and Lu, C.-J. Oblivious Polynomial
Evaluation and Oblivious Neural Learning. In
Advances on Cryptology — ASIACRYPT 2001 ,
vol. 2248 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 369–384.

[3] Damg̊ard, I., and Jurik, M. A Generalisation, A
Simplification and Some Applications of Paillier’s
Probabilistic Public-Key System. In Public Key
Cryptography 2001 , vol. 1992 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 119–136.

[4] Goethals, B., Laur, S., Lipmaa, H., and

Mielikäinen, T. On Private Scalar Product

Computation for Privacy-Preserving Data Mining. In
Information Security and Cryptology - ICISC 2004 ,
vol. 3506 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 104–120.

[5] Goldreich, O. Foundations of Cryptography: Basic
Applications. Cambridge University Press, 2004.

[6] Kantarcioglu, M., and Clifton, C. Privately
Computing A Distributed k-nn Classifier. In PKDD
(2004), vol. 3202 of LNCS, Springer, pp. 279–290.

[7] Laur, S., Lipmaa, H., and Mielikäinen, T.

Cryptographically Private Support Vector Machines.
Tech. rep. 2006/198, International Association for
Cryptologic Research, 2006. Available at
http://eprint.iacr.org/2006/198.

[8] Lindell, Y., and Pinkas, B. Privacy Preserving
Data Mining. Journal of Cryptology 15, 3 (2002),
177–206.

[9] Lipmaa, H. An Oblivious Transfer Protocol with
Log-Squared Communication. In The 8th Information
Security Conference (ISC’05), vol. 3650 of Lecture
Notes in Computer Science, Springer-Verlag,
pp. 314–328.

[10] Malkhi, D., Nisan, N., Pinkas, B., and Sella, Y.

Fairplay - Secure Two-Party Computation System. In
Proceedings of the 13th USENIX Security Symposium,
USENIX, pp. 287–302.

[11] Naor, M., Pinkas, B., and Sumner, R. Privacy
Preserving Auctions and Mechanism Design. In The
1st ACM Conference on Electronic Commerce, 1999.

[12] Paillier, P. Public-Key Cryptosystems Based on
Composite Degree Residuosity Classes. In Advances in
Cryptology — EUROCRYPT ’99 , vol. 1592 of Lecture
Notes in Computer Science, Springer-Verlag,
pp. 223–238.

[13] Shawe-Taylor, J., and Cristianini, N. Kernel
Methods for Pattern Analysis. Cambridge University
Press, 2004.

[14] Vapnik, V. N. The Nature of Statistical Learning
Theory. Statistics for Engineering and Information
Science. Springer, 2000.

[15] Wright, R. N., and Yang, Z. Privacy-Preserving
Bayesian Network Structure Computation on
Distributed Heterogeneous Data. In Proceedings of
The Tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining , ACM,
pp. 713–718.

[16] Yang, Z., Zhong, S., and Wright, R. N.

Privacy-preserving classification of customer data
without loss of accuracy. In SDM (2005).

[17] Yu, H., Jiang, X., and Vaidya, J. Privacy
Preserving SVM Using Secure Set Intersection
Cardinality. In The 21st ACM Symposium on Applied
Computing , ACM 2006.

[18] Yu, H., Vaidya., J., and Jiang, X., Privacy
Preserving SVM Classification on Vertically
Partitioned Data, In PAKDD 2006 , Springer-Verlag
2006.

