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Abstract. We study the influence of collision-finding attacks on the security
of time-stamping schemes. We distinguish betweenclient-side hash functions
used to shorten the documents before sending them to time-stamping servers and
server-side hash functionsused for establishing one way causal relations between
time stamps. We derive necessary and sufficient conditions for client side hash
functions and show by using explicit separation techniquesthat neither collision-
resistance nor 2nd preimage resistance is necessary for secure time-stamping.
Moreover, we show that server side hash functions can even benot one-way.
Hence, it is impossible by using black-box techniques to transform collision-
finders into wrappers that break the corresponding time-stamping schemes. Each
such wrapper should analyze the structure of the hash function. However, these
separations do not necessarily hold for more specific classes of hash functions.
Considering this, we take a more detailed look at the structure of practical hash
functions by studying the Merkle-Damgård (MD) hash functions. We show that
attacks, which are able to find collisions for MD hash functions with respect to
randomly chosen initial states, also violate the necessary security conditions for
client-side hash functions. This does not contradict the black-box separations re-
sults because the MD structure is already a deviation from the black-box setting.
As a practical consequence, MD5, SHA-0, and RIPEMD are no more recom-
mended to use asclient-side hash functionsin time-stamping. However, there is
still no evidence against using MD5 (or even MD4) asserver-sidehash functions.

1 Introduction

Cryptographic hash functions are intended for transforming a messageX of an arbi-
trary length into a digesth(X) of a fixed length, which, in a way, represents the orig-
inal message. Hash functions have several applications, such as electronic signatures,
fast Message Authentic Codes (MACs), secure registries, time-stamping schemes, etc.
Without any doubt, modern information technology needs hash functions as much as it
needs stream and block ciphers. Therefore, the importance of research on hash function
security can hardly be overestimated.
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Unfortunately, the speed of developing suitable theoretical basis for hash function
security cannot be compared to the expansion rate of hash function applications. Not
much is known about suitable design criteria, nor about how to formalize the secu-
rity requirements that originate from practical applications. A remarkable fact which
characterizes the shortage of information in this field is that in many cases when theo-
reticians are looking for ways of modeling hash functions they just replace them with
“random oracles”.

Theoretical models of hash functions often deal with a limited number of “univer-
sal” security properties – collision-freedom, one-wayness, etc. –, which are possibly
neither sufficient nor necessary in the context of particular practical applications. Re-
cent success in finding collisions for practical hash functions (MD4,MD5, RIPEMD,
SHA-0) by Wang et al [16, 17, 19] and later improvements [12, 18, 9, 10] raise an im-
portant question: For which practical implementations arethe collisions a real threat?
Modifications in software are always expensive and it would clearly not be economical
to replace hash functions in all applications “just in case”.

The problem addressed in this paper is to clarify and formalize the security proper-
ties of hash functions which are necessary and sufficient in the context of time-stamping
schemes, and more general in secure registries. Considering the increasing use of elec-
tronic registries and databases, it is important to know to what extent and how their
security depends on the security of hash functions:

– Which properties of hash functions would guarantee the security of time-stamping
schemes?

– What kind of practical attacks (collisions, second preimages, etc.) are a suitable
basis for replacing the hash functions in time-stamping schemes?

Just a few years after the birth of the first practical hash functions, it was pointed out
that the specific security properties as well as their mutualrelationships should deserve
more attention. For example, Ross Anderson [1] listed several “freedom properties”
(different from collision-freedom) arising from cryptographic constructions and appli-
cations. Rogaway and Shrimpton [13] presented an exhaustive study about “classical”
security properties of hash functions and their mutual relationships. Hsiao and Reyzin
[7] pointed out a fundamental difference between so-calledpublic-coinhash functions
andsecret-coinhash functions by showing that the former cannot be constructed from
the latter in a black-box way.

In the context of time-stamping, it has been shown [4] that the chain-resistance
property, which is necessary in time-stamping schemes, is not implied by classical
properties like collision-resistance or one-wayness. As apositive result, it was shown
recently [5] that if time-stamping schemes have an additional audit functionality, then
even the strongest reasonable (universally composable) security level is achievable if
the hash functions used are universally one-way, which is a weaker property than colli-
sion resistance.

Time-stamping schemes use hash functions for two differentgoals: (1) to shorten
the messages on the client side and (2) create one-way temporal (casual) relationships
on the server side. Hence, it is natural to think that the client-side hash function and the
server-side hash function have different security requirements. Thus far, the security
proofs of time-stamping schemes [4, 5] assume the collision-resistance of client-side



hash functions. Hence, it is important to study if we can replace collision-resistance on
the client side with weaker requirements like2nd preimage resistanceor one-wayness.

In this paper, we derive necessary and sufficient conditionsfor client side hash func-
tions and show by using explicit separation techniques thatneither collision-resistance
nor 2nd preimage resistance is necessary for secure time-stamping. Moreover, we also
show that server side hash functions can even be not one-way.More precisely, we prove
that if secure hash-based time-stamping (as used in practical schemes like [15]) is pos-
sible at all, then we can replace client side hash functions with hash functions that are
not 2nd preimage resistant and use server side hash functions, which are not one-way.
In spite of using two “insecure” hash functions, we are able to achieve a new and rather
strong security requirement for time-stamping schemes. Hence, it is impossible by us-
ing black-box techniques to transform collision-finders into wrappers that break the
corresponding time-stamping schemes. Each such wrapper should analyze the structure
of the hash function. Still, the results mentioned above do not necessarily apply to more
specific classes of hash functions.

Considering the above, we will take a more detailed look at the structure of practical
hash functions by studying the Merkle-Damgård (MD) style hash functions. We will
show that the attacks which are able to find collisions to MD hash functions with respect
to randomly chosen initial statealso violate the necessary security conditions for client-
side hash functions. This still does not mean that the recentattacks to MD hash functions
render the practical hash functions insecure, because the attacks mostly consider the
fixed (standard) initial state (IV) of the hash function. However, it is claimed by Klima
[9, 10] that MD5 collisions can be find for random initial states, which (when true)
would mean that MD5 cannot be used as aclient-side hash functionin time-stamping
schemes. However, there are still no convincing arguments against using MD5 (or even
MD4) as aserver-side hash function.

This paper mainly focuses on the so calledhash-based time-stamping, in which
cryptographic (signature) keys are not used. However, the results aboutclient-side hash
functionsalso apply to the so-calledsignature-based time stamps[11] that consist of
client-computed hash values, time values, and digital signatures of trusted servers.

The paper is organized as follows. Section 2 provides the reader with necessary no-
tation and definitions. Section 3 outlines the basics of secure hash-based time-stamping
schemes. Section 4 introduces a new security requirement and derives sufficient condi-
tions for the client side and the server side hash functions that together imply the new
condition. In Section 5, we show that 2nd preimage resistance is not necessary for client
side hash functions. Section 6 shows that server side hash functions are not necessarily
one-way. In Section 7, we show that certain multi-collisionattacks to MD hash func-
tions violate the necessary condition for client side hash functions. Section 8 presents
some open problems related to this work.

2 Notation and Definitions

By x ← D we mean thatx is chosen randomly according to a distributionD. If A is
a probabilistic function or a Turing machine, thenx ← A(y) means thatx is chosen
according to the output distribution ofA on an inputy. By Un we denote the uni-



form distribution on{0, 1}n. If D1, . . . ,Dm are distributions andF (x1, . . . , xm) is a
predicate, thenPr[x1 ← D1, . . . , xm ← Dm : F (x1, . . . , xm)] denotes the probability
thatF (x1, . . . , xm) is true after the ordered assignment ofx1, . . . , xm. For functions
f, g : N → R, we writef(k) = O(g(k)) if there arec, k0 ∈ R, so thatf(k) ≤ cg(k)

(∀k > k0). We write f(k) = ω(g(k)) if lim
k→∞

g(k)
f(k) = 0. If f(k) = k−ω(1), then

f is negligible. A Turing machineM is polynomial-time(poly-time) if it runs in time
kO(1), wherek denotes the input size. LetFP be the class of all probabilistic functions
f : {0, 1}∗ → {0, 1}∗ computable by a poly-timeM.

A distribution family{Dk}k∈N is poly-sampleableif there isD ∈ FP with output
distributionD(1k) equal toDk. A poly-sampleable distribution family{Dk} is unpre-
dictableif Pr[x′ ← Π(1k), x ← Dk : x = x′] = k−ω(1) for every predictorΠ ∈ FP.
Two distribution familiesD(1) andD(2) areindistinguishableif for every distinguisher
∆ ∈ FP: | Pr[x← D

(1)
k : ∆(1k, x) = 1]− Pr[x← D

(2)
k : ∆(1k, x) = 1] |= k−ω(1).

Let {Fk}k∈N be a distribution family such that everyh ← Fk is a (deterministic)
function h : {0, 1}ℓ → {0, 1}k, whereℓ is polynomial ink. We say that{Fk} is a
function distribution family. For everyx, x′ ∈ {0, 1}k let C(x, x′) denote the condition
that(x, x′) is a collision forh, i.e.x 6= x′ andh(x) = h(x′). By following the security
notions in [13] we say that a randomly chosenh← Fk is:

– Collision-Resistantif ∀A ∈ FP : Pr[(x, x′)←A(1k, h) : C(x, x′)] = k−ω(1).
– Everywhere 2nd Preimage Resistant(eSec) if ∀A ∈ FP:

max
x∈{0,1}ℓ

Pr[x′←A(1k, h) : C(x, x′)] = k−ω(1) .

– 2nd Preimage Resistantif ∀A∈FP : Pr[x← Uℓ, x
′←A(x) : C(x, x′)]=k−ω(1).

– One-Wayif ∀A ∈ FP : Pr[x← Uℓ, x
′←A(h(x)) : h(x′) = h(x)] = k−ω(1).

If for every k there existshk so thatPr [h← Fk : h = hk] = 1 then we have a fixed
family of functions, i.e. for eachk we have a single unkeyed hash function, e.g. SHA-1.

3 Security of Time-Stamping Schemes

In this paper, we focus on the security ofhash functionsused in time-stamping schemes.
The other primitives supporting the time stamping schemes (like signature schemes or
encryption schemes) are not studied in this paper. A time-stamping procedure consists
of the following general steps:

– Client computes a hashx = H(X) of a documentX (whereH is called aclient-
side hash function) and sendsx to the Server.

– Server bindsx with a time valuet (a positive integer), either by using a digital
signature or a hash-chain created by using another (server-side) hash functionh.

For the self-consistency of this paper, we outline the basicfacts about hash-chains and
how they are used in time-stamping. In the definition of a hash-chain we use the follow-
ing notation. We will follow the notation and definitions introduced in [4] except some
technicalities which we change in order to make the definitions more usable for this
work. By ⌊⌋ we mean the empty string. Ifx = (x1, x2) ∈ {0, 1}2k andx1, x2 ∈ {0, 1}k

then byy ∈ x we meany ∈ {x1, x2}.



Definition 1 (Hash-Chain). Let h : {0, 1}2k → {0, 1}k be a hash function.5 By an
h-chain from x ∈ {0, 1}k to r ∈ {0, 1}k we mean a (possibly empty) sequencec =
(c1, . . . , cℓ) of pairsci ∈ {0, 1}2k, such that the following two conditions hold:

(1) if c = ⌊⌋ thenx = r; and
(2) if c 6= ⌊⌋ thenx ∈ c1, r = h(cℓ), andh(ci) ∈ ci+1 for everyi ∈ {1, . . . , ℓ− 1}.

We denote byFh(x; c) = r the proposition thatc is anh-chain fromx to r. Note that
Fh(x; ⌊⌋) = x for everyx ∈ {0, 1}k.

Time-stamping involvesServer, Publisher, and two procedures fortime-stampinga
bit-string and forverifying a time stamp. It is assumed thatPublisher is write-once
and receives items fromServer in an authenticated manner. Time-stamping procedure
is divided into rounds of equal duration. During each round,Server receives requests
x1, . . . , xN ∈ {0, 1}k from the users. If thet-th round is over,Server computes a digest
rt = T h(x1, . . . , xN ) ∈ {0, 1}k by using a hash functionh : {0, 1}2k → {0, 1}k and
a tree-shaped hashing schemeT h. After that,Server issues a hash chainc (certificate)
for each requestx, such thatFh(x; c) = rt. In the scheme of Fig. 1, the time-certificate
for x2 is ((x1, x2), (y1, z1)), wherey1 = h(x1, x2). Certificatec of a requestx is
verified by obtaining a suitablert form Publisher and checking whetherFh(x; c) = rt.
Intuitively, this proves thatx existed at timet whenrt was published.
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Request Certificate
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x2 c2 = ((x1, x2), (y1, z1))

Fig. 1. Time-stamping by using a hash-functionh.

Security condition for time-stamping[4] is inspired by the following simplistic attack-
scenario with a maliciousServer:

– Server computesr ∈ {0, 1}k (not necessarily by usingT h) and publishes it.

5 Twice-compressing hash functions are sufficient in the server side, and strictly for this purpose
it is not necessary to apply hash functions with long input length. Whenh is implemented by
using a practical hash function like MD5, it is sufficient to use only one input block. This detail
is very important for the conclusions of this work.



– Alice, an inventor, creates a descriptionXA ∈ {0, 1}∗ of her invention and (possi-
bly) obtains a certificate for the hashxA = H(XA) of the description.

– Some time later, the invention is disclosed to the public andServer tries to steal it
by showing that the invention was known toServer long before Alice time-stamped
it. He creates a slightly modified versionX of XA, i.e. changes invertor’s name,
modifies the creation time, and possibly rewords the document in a suitable way (to
have a “desired” hash value).

– Finally, Server computes a hashx = H(X), and back-datesx, by finding a certifi-
catec, so thatFh(x; c) = r.

To formalize such a scenario, a two-staged adversaryA = (A1, A2) is used. The first
stageA1 computesr (and an advice stringa) after which the second stageA2 on input a
new bit-stringx ∈ {0, 1}k (modeled as an output of an unpredictable distributionDk)
tries to findc, so thatFh(x; c) = r. The second stage can also use the advice stringa
if necessary. Ash is the only cryptographic primitive used in the formal scenario, the
security condition can be represented as a general requirement for a hash functions:

Definition 2 (Chain resistance –Chain). A function distribution family{Fk} of two-
to-one hash functionsh : {0, 1}2k → {0, 1}k ischain resistantif for every unpredictable
poly-sampleable distribution family{Dk}k∈N on{0, 1}k:

Pr[h←Fk, (r, a)←A1(1
k, h), x←Dk, c←A2(x, a) : Fh(x, c) = r] = k−ω(1) . (1)

Remark. In the definition above,a denotesstate informationstored byA1 when com-
puting the digestr. The reason whya is introduced is completely technical – we prefer
ordinary Turing machines, which (unlikeinteractingmachines) cannot save the state
information between two calls. Informally,A1 andA2 are parts of a single adversary,
and henceall inputs and random coins ofA1 are available toA2.

To be more practical, we should take into account that lengthy documents are shortened
by using another hash functionH : {0, 1}ℓ(k) → {0, 1}k, which is not necessarily the
same hash function ash, which is used byServer. Let{Fc

k} and{Fs
k} be the correspond-

ing function distribution families producing functions oftypes{0, 1}ℓ(k) → {0, 1}k and
{0, 1}2k → {0, 1}k respectively.

Definition 3 (Secure(H, h)-time-stamping). For everyA = (A1, A2) ∈ FP and for
every unpredictableDk on{0, 1}ℓ(k) the following probability is negligible:

Pr[H←F
c
k, h←F

s
k, (r, a)←A1(1

k,H,h), X←Dk, c←A2(X, a) : Fh(H(X), c)=r] . (2)

This security definition may seem confusing for those who have got used to a ”folklore”
belief that collision-resistance is essential for time-stamping. What if the inventor cre-
ates two colliding files, time-stamps one, and later tries toclaim credits for the other? It
is important here to notice thatthis is not an attack in terms of time-stamping! Indeed,
both colliding files were created by the inventor approximately at the same time, and so
there is nothing wrong in proving that the other file also existed at that time.

So far, security proofs exist only for time-stamping schemes which are “bounded”
somehow. For example, ifH andh are collision-resistant, then a(H, h)-time-stamping



can be proven secure if the number of the allowed hash chain “shapes” is restricted to
polynomial [4], or if there is an additional audit functionality included into the scheme
[5]. It is also known [4] that the claim “h is collision-resistant⇒ h is chain-resistant”
cannot be proven in a black-box way. One of the main objectives of this paper is to clar-
ify whether collision-resistance ofh (and ofH) is necessary for secure time-stamping.

4 New Security Condition

There are several concerns related to the security condition (2). First, chain-resistance
is a necessaryproperty forh but it is not yet known whether it issufficient, i.e. if H
is collision resistant andh is chain-resistant, there are no known results for concluding
that the time-stamping scheme (that usesH andh) is secure.

Another concern about (2) is that the adversary does not participate in the gener-
ation of X , i.e. X is picked independent of the adversary. This does not match with
the informal description of the back-dating attack, whereX was created by the ad-
versary based on another documentXA and hence it is quite natural to assume that
the adversary is able to “tune” the distributionDk according to which the new docu-
mentX is chosen. Based on these ideas, we give a new stronger security condition for
(H, h)-time-stamping in whichX is chosen byA2. We still have to assume thatX is
unpredictable and hence we have to allow only those adversaries that produce unpre-
dictableX . It is also important to require thatA2 adds ”his own randomness” intoX ,
i.e.X should be unpredictable even if the output and the random coins ofA1 are known.

We derive a necessary and sufficient security condition for the client side hash func-
tionH . Roughly saying,H must not destroy the computational entropy in a catastrophic
way – unpredictable input distributions transform to unpredictable output distributions.

We prove that the new condition is not weaker than (2). We alsopropose a new
stronger condition forh – Strong Chain-Resistance(sChain), which is sufficient for se-
cure time-stamping. We prove that ifH is unpredictability-preserving andh is strongly
chain-resistant, then we have a secure(H, h)-time-stamping scheme in terms of (2).

4.1 New Security Definition

Let FPU be the class of all two-staged probabilistic poly-time adversaries(A1, A2),
such that the first output component is unpredictable, even if the output ofA1 is known
to the predictor, i.e. for every poly-time predictorΠ:

Pr[(r, a)← A1(1
k), x′ ← Π(r, a), (x, c)← A2(a) : x′ = x] = k−ω(1) .

Note that as the additional inputs(r, a) of Π are generated by a uniform machineA1(1
k)

this definition does not imply unpredictability in thenon-uniformmodel. Note also that
is is reasonable to assume that the advice stringa contains all internal random coins of
A1 because concealing these coins byA1 certainly would not make any attacks easier.
Moreover, as the main role ofΠ is to measure the capability ofA1 to predict the future,
then for this measure to be adequateΠ has to know the random coins ofA1.



Definition 4 (Secure(H, h)-time-stamping). A (H, h)-time-stamping scheme is se-
cure if for every(A1, A2) ∈ FPU the next probability is negligible:

Pr[H←F
c
k, h←F

s
k, (r, a)←A1(1

k, H, h), (X, c)←A2(a) : Fh(H(X); c)=r] . (3)

It is easy to see that (3) implies the old condition (2). Indeed, if (A1, A2) ∈ FP breaks
(H, h)-time-stamping in terms of (2) with successδ(k), then defineA′2(a) that picks
x ← Dk, computesc ← A2(x, a), and outputs(x, c). By definition,(A1, A

′
2) ∈ FPU

breaks(H, h)-time-stamping in terms of (3) with successδ(k).

Remark. It is insufficient to assume thatX is unpredictable without advice, because
then the condition (3) would be not achievable. Indeed, letA1 be an adversary who gen-
eratesX at random and outputs(H(X), X) (whereH is the client-side hash function)
and letA2(1

k, a) be an adversary who always outputs(a, ⌊⌋). For such an adversary

Pr[H←F
c
k, h←F

s
k, (r, a)← A1(1

k, H, h), (x, c)← A2(a) : Fh(H(x), c) = r] = 1 .

4.2 Necessary and Sufficient Requirements ForH

Finding collisions forH does not mean that the time-stamping scheme is insecure ac-
cording to our definitions. A single collision is not sufficient to produce probability
distribution with high uncertainty. In a way, one single collision allows one to backdate
a single document that is known before the digest is produced, leaving the majority
of temporal dependencies intact. It turns out that the following entropy-preservation
property is necessary and sufficient for the client-side hash functionH .

Definition 5 (Unpredictability preservation – uPre). A function distribution family
{Fk} is unpredictability preserving, if for every unpredictable poly-sampleable distrib-
ution family{Dk} and for every predictorΠ ∈ FP:

Pr[H ← Fk, y ← Π(1k, H), x← Dk : y = H(x)] = k−ω(1) .

A fixedH : {0, 1}ℓ(k) → {0, 1}k is uPre iff it converts unpredictable poly-sampleable
distributionsDk to unpredictable output distributionsH(Dk).

Remark: Poly-sampleability ofDk is crucial, because ifHk : {0, 1}ℓ(k) → {0, 1}k

andℓ(k) = k + ω(log k), then there exists a familyDk with Rényi entropyH2[Dk] =
ω(log k), such thatH2[H(Dk)] = 0. Indeed,∃y ∈ {0, 1}k for which | H−1(y) |=
(2k+ω(log k))/2k = kω(1). DefineDk as the uniform distribution onH−1(y).

Theorem 1. Unpredictability preservation is a necessary requirementfor H : in every
secure(H, h)-time-stamping scheme, the client-side hash functionH is uPre.

Proof. Let Dk be unpredictable andΠ be a predictor forH(Dk) with success proba-
bility π(k) = Pr[H ← Fc

k, y←Π(1k, H), x←Dk : H(x) = y]. DefineA1(1
k, H, h) ≡

Π(1k, H) andA2 which on inputx outputs(x, ⌊⌋). As Fh(H(x); ⌊⌋) = H(x) = y
wheneverΠ is successful, the success of(A1, A2) in terms of (2) isπ(k). Hence,π(k)
must be negligible andH is uPre. ⊓⊔



Definition 6 (Strong chain-resistance –sChain). A function distribution family{Fk}
is strongly chain-resistant, if for every(A1, A2) ∈ FPU:

ε(k) = Pr[h←Fk, (r, a)←A1(1
k, h), (x, c)←A2(a) : Fh(x; c) = r] = k−ω(1) .

Theorem 2. For secure(H, h)-time-stamping in terms of (3) it is sufficient thath-is
sChain, H is uPre and the distributionH ← Fc

k is poly-sampleable.

Proof. Let (A1, A2) ∈ FPU an adversary with success

ε(k) = Pr[H←F
c
k, h←F

s
k, (r, a)← A1(1

k, H, h), (X, c)←A2(a) : Fh(H(X); c) = r] .

DefineA′1(1
k, h) that picksH ← Fc

k, computes(r, a) ← A1(1
k, H, h) and outputs

(r, a′), wherea′ = (a, H). Define A′2(a
′) that parsesa′ to obtaina and H , calls

(X, c)←A2(a) and outputs(H(X), c). We have(A′1, A
′
2) ∈ FPU, becauseH is uPre.

Obviously,(A′1, A
′
2) breaksh in terms ofsChain with successε(k). ⊓⊔

5 Unpredictability Preservation vs 2nd Preimage Resistance

It is known that every collision-resistant function isuPre [5]. However, it turns out that
2nd preimage resistance does not implyuPre andvice versa, which means that client-
side hash functions need not be 2nd preimage resistant.

Theorem 3. If uPre hash functions exist (i.e. if secure time-stamping with client side
hashing is possible at all), then there are hash functions which are uPre but not 2nd
preimage resistant.

Proof. Let H : {0, 1}ℓ(k) → {0, 1}k (chosen randomly fromFk) be uPre. Define
H ′(X ′) = H(X ′ or 1) for everyX ′ ∈ {0, 1}ℓ(k), whereor denotes the logical bitwise
OR-operation. LetF′k denote the distribution ofH ′. Obviously,H ′ is not 2nd preimage
resistant. To show thatH ′ is uPre, let us assume thatDk is an unpredictable distribution
andΠ is a poly-time predictor forH ′(Dk). As the distributionD′k = (Dk or 1) is also
unpredictable, the success probability ofΠ is

π(k) = Pr[H ′ ← F
′
k, y←Π(1k, H ′), X ′←Dk : H ′(X ′)=y]

= Pr[H ← Fk, y←Π′(1k, H), X←D′k : H(X)=y] = k−ω(1) ,

becauseH is uPre. HereΠ′(1k, H) just transformsH to H ′ and returnsΠ(1k, H ′). ⊓⊔

On the other hand, it turns out that 2nd preimage resistance does not implyuPre and is
thereby also insufficient for client side hash functions. Recall that collision-resistance
was sufficient on the client side (but still not on the server side [4]).

Theorem 4. If there are hash functions which are 2nd preimage resistant, then there
are hash functions that are 2nd preimage resistant but notuPre.



Proof. LetH : {0, 1}ℓ(k) → {0, 1}k be 2nd preimage resistant andℓ(k) = k+ω(log k).
We construct a functionH ′ : {0, 1}ℓ

′(k) → {0, 1}k which is 2nd preimage resistant but
notuPre. Let ℓ′(k) = ℓ(k − 1) for all k > 1, and for everyX ∈ {0, 1}ℓ

′(k):

H ′k(X) =

{

0k if X = 0k−1‖X1 for anX1 ∈ {0, 1}ℓ(k−1)−k+1

1‖Hk−1(X) otherwise.

DefineD on {0, 1}ℓ
′(k), so thatDk = 0k−1‖Uℓ(k−1)−k+1. D is unpredictable because

it has Rényi entropyH2(Dk) = ℓ(k−1)−k +1 = ω(log k). As the output distribution
H ′(D) has no entropy at all, we conclude thatH ′ is notuPre. At the same time,H ′ is
2nd preimage resistant because the probability that the first k − 1 bits of a uniformly
chosenX ← Uℓ(k) are all zeroes is2−(k−1), which is negligibly small. ⊓⊔

It is interesting to note that if in the everywhere second preimage-resistance (eSec)
condition the adversary is prevented from abusing a small set of pre-computed exis-
tential collisions (which do not affect the security of time-stamping schemes) then we
obtain a weaker conditionweSec which turns out to be equivalent touPre. This shows
thateSec is a sufficient (but not necessary) condition for client-side hash functions. In
this weaker requirement, the class of adversaries is restricted by requiring that the sec-
ond pre-imageX ′ produced by an adversary is distributed according to a high-entropy
distribution. Though the following theorem holds for a fixedfamily H , it is possible to
generalize the definition and the proof to arbitrary function distribution families.

Theorem 5. For fixed familiesH = {Hk}, uPre is equivalent to the followingweak
everywhere 2nd preimage resistance(weSec) condition: For every poly-sampleable un-
predictable distribution familyAk on{0, 1}ℓ(k):

max
X∈{0,1}ℓ(k)

Pr[X ′ ← Ak : X ′6=X, H(X ′)=H(X)] = k−ω(1) .

Proof. weSec =⇒ uPre: LetDk be unpredictable andΠ be a predictor forH(Dk) with
successπ(k) = Pr[y ← Π(1k), X ′ ← Dk : y = H(X ′)] 6= k−ω(1). Hence, there is
y ∈ {0, 1}k such thatPr[X ′ ← Dk : y = H(X ′)] ≥ π(k) and we have

max
X∈{0,1}ℓ(k)

Pr[X ′ ← Dk : H(X ′)=H(X)] ≥ π(k) 6= k−ω(1) .

As Pr
X′←Dk

[H(X ′)=H(X)] = Pr
X′←Dk

[X ′=X ] + Pr
X′←Dk

[X ′ 6=X, H(X ′)=H(X)] and

the first probability in the sum is negligible (becauseDk is unpredictable), the second
one must be non-negligible and henceDk breaksH in the sense ofweSec.

uPre =⇒ weSec: Let Ak be a unpredictable distribution on{0, 1}ℓ(k) and letX ∈
{0, 1}ℓ(k) be a bit-string such thatδ(k) = Pr

X′←Ak

[X ′ 6=X, H(X ′)=H(X)] 6= k−ω(1).

Therefore, Pr
X′←Ak

[H(X ′)=H(X)] ≥ δ(k) 6= k−ω(1) andH(Ak) predicts itself with

successπ(k) = Pr[X ′ ← Ak, X ′′ ← Ak : H(X ′′)=H(X ′)] ≥ δ2(k) 6= k−ω(1). ⊓⊔



6 Strong Chain-Resistance vs One-Wayness

In this section, we show that the server side hash functionh is not necessarily one-way.

Theorem 6. For every secure(H, h)-time-stamping scheme, there is a secure(H, h′)-
time-stamping scheme, whereh′ is not one-way (and hence not collision-resistant and
not 2nd preimage resistant).

Proof. Defineh′ that behaves likeh, except thath′(x, x) = x for everyx ∈ {0, 1}k.
The new functionh′ is clearly not one-way. To show thath′ is strongly chain-resistant,
let A1 ∈ FP andA2 ∈ FPU be an adversaries forh′ with success

ε(k) = Pr[(r, a)← A1(1
k), (X, c)← A2(a) : Fh′(H(X); c) = r] 6= k−ω(1) .

Define a newA′2 that calls(x, c)← A2 and outputs(x, c′), wherec′ is produced fromc
by deleting all elementsci of the form(y, y). It is easy to verify thatFh(H(X); c′) =
Fh′(H(X); c) = r (which is true even ifc′ is empty) and hence(A1, A

′
2) breaks the

(H, h)-time-stamping scheme. A contradiction. ⊓⊔

Note that the proof also shows that strong chain resistant functions are not neces-
sarily one-way functions, i.e. the chain resistance property is quite separated from other
standard requirements for hash functions. Recall that there are no black-box proofs [4]
for showing that collision-resistance implies chain resistance.

7 Implications to Practical Iterated Hash Functions

In this section, we will study what kind of collision-findingattacks to practical (client
side) hash functions would make them insecure for time-stamping. We use the fact that
most of the practical hash functions use the Merkle-Damgård construction, which (in
order to compute hash for long messages) iterates a fixed compression functionf .

Definition 7 (Merkle-Damgård Hash). Let fk : Sk × Mk → Sk be a family of
poly-time compression functions andgk : Sk → Tk be a family of poly-time out-
put functions. Let the state update functionFk : Sk × M

∗
k → Sk be defined by

Fk(s, x1, . . . , xr) = fk(· · · fk(s, x1), . . . , xr). Thenhk : Sk ×M
∗
k → Tk, defined

byhk(s, x) = g(Fk(s, x)), is a family of iterative (Merkle-Damg̊ard) hash functions.

Definition 8 (Collision-resistance w.r.t random initial state). A family{hk} of MD
hash functions iscollision resistant (w.r.t. to random initial state)if for everyA ∈ FP:

Pr
[

s← Sk, (x0, x1)← A(1k, s, hk) : x0 6= x1, hk(s, x0) = hk(s, x1)
]

= k−ω(1) .

The internal state of{hk} is said to becollision resistant w.r.t. random initial stateif
the state update function family{Fk} is collision-resistant w.r.t. random initial state.

Definition 9 (Collision-resistance w.r.t fixed initial state s0). A family of MD hash
functions{hk} is collision resistant (w.r.t. to a fixed initial states0) if for everyA ∈ FP:

Pr
[

(x0, x1)← A(1k, f) : x0 6= x1, hk(s0, x0) = hk(s0, x1)
]

= k−ω(1) .

The internal state of{hk} is said to becollision resistant w.r.t. fixed initial states0 if
the state update function family{Fk} is collision-resistant w.r.t. fixed initial state.



7.1 Discussion on Practical Hash Functions

In practical MD-hash functions the initial states0 (so calledInitial Value – IV) is fixed
by standards and is not chosen randomly. In order to formallydefine the collision-
resistance of such functions, we have to assume that the compression functionf is
chosen randomly in accordance to a distributionF. Otherwise, an adversary can abuse
a single existential collision which always exists becausehash functions compress data.

It is important to distinguish between two kinds of collision-finding attacks: (1)
attacks that find collisions for a fixed (standard) initial state, or more general, for a
limited number of “weak” initial states, and (2) attacks that find collisions for random
initial states (i.e. for a non-negligible fraction of initial states). In some sense these two
types of attacks are incomparable in strength. For example,if the standard initial value
s0 is weak but still almost all other values are strong, then there are attacks of the first
type but no attacks of the second type. If in turn the standards0 is strong and a non-
negligible fraction of other states are weak, then there exist attacks of the second type
but no attacks of the first type. However, these cases are ruled out by the following
heuristic assumptions about the design of practical hash functions:

– Reasonable choice of the standard IV:Widely used hash functions are designed by
specialists with good experience. Hence, it is reasonable to believe thatthe choice
of standard IV is at least as good as a random choice. Hence, the situation where
the standard IV is weak but almost all other IV-s are strong isextremely unlikely.

– Reasonably efficient encoding of the internal state:It is reasonable to believe that
hash functions are designed quite efficiently, i.e. there isno considerable amount
of redundancy in the initial state. Hence, it is also unlikely that the standard IV is
strong but still a non-negligible fraction of other IV-s areweak. This is because the
output of the compression function (in case of random inputs) is intuitively viewed
as a random value, which would mean that weak initial states will eventually occur.
(See the Computational Uniformity assumption below)

Therefore, it is reasonable to believe that efficient collision finders w.r.t. fixed IV
imply the existence of efficient collision-finders w.r.t. random IV. Still, this does not
mean that weknowhow to find collisions for random IV, though the heuristic assump-
tions above suggest that such attacks exist. The latest attacks against MD5 by Wang
[16, 17] and by Klima [10] are claimed to be able to find collisions for arbitrary IV.

We show thatcollision-finding attacks w.r.t. random IV are sufficient torender the
client-side hash functionH insecure for time-stamping, i.e. H is no moreuPre. This
means that MD5 and MD4 are probably insecure asclient-side hash functionsin time-
stamping. However, as we show later, this still does not meanthat MD5 (or even MD4)
are insecure asserver-side hash functions.

The next property of MD hash functions (Computational Uniformity) is not an ex-
plicit design goal, but is often implicitly assumed in heuristic discussions about hash
functions. Indeed, it has been shown [3] that hash functionsmust be almost regular to
withstand birthday attacks. This suggests that some kind ofstatistical uniformity must
hold for secure hash functions and hence the computational indistinguishability from
uniform distribution is not a so far-fetched assumption.



Definition 10 (Computational uniformity). Let ℓ be a polynomial andUℓ(k) denote

uniform distribution onMℓ(k)
k . We say that iterative hash function family{hk} is com-

putationally uniform w.r.t. length restrictionℓ, if hk(s, Uℓ(k)) is computationally indis-
tinguishable from uniform distribution onTk for anys ∈ Sk.

7.2 Collisions of MD-hash Functions AffectuPre

In the following, we will prove two results. First, if a collision finder has non-negligible
success probability for every initial state, then the iterative hash function violates the
uPre property. The second result states that the average-case and worst-case complexi-
ties for collision finding are roughly the same, if we assumecomputational uniformity
from the compression function. Thus, it is quite likely thatuPre implies collision resis-
tance w.r.t. random initial value for all practical iterative hash functions.

Theorem 7. Let{hk} be a fixed family of iterative hash functions. Then unpredictabil-
ity preservation implies negligible worst-case success probability for all collision find-
ers of{Fk} , i.e. for everyA ∈ FP:

min
s0∈Sk

Pr [(x0, x1)← A(s0) : x0 6= x1, Fk(s0, x0) = Fk(s0, x1)] = k−ω(1) .

Proof. For the sake of contradiction, assume that there exists an algorithmA that the
worst-case success probability is larger thank−c for infinitely many indices. Then run-
ning A sufficiently many times (polynomial ink) assures that we fail with negligible
probability. Denote this algorithm byA′. Then we startA′ on s0 and get a collision
pair (x0

1, x
1
1) such thats1 = Fk(s0, x

0
1) = Fk(s0, x

1
1). Similarly, we can find the fol-

lowing collisionssi = Fk(si−1, x
0
i ) = Fk(si−1, x

1
i ), i = 1, . . . , k. The total failure

probability is still negligible. Now, for anyb ∈ {0, 1}k, the corresponding hash value
hk(xb1

1 . . . xbk

k ) is the same. The distributionD = {xb1
1 . . . xbk

k : b ∈ {0, 1}k} is poly-
sampleable and has min-entropyk, butH(D) has no min-entropy. A contradiction.⊓⊔

Theorem 8. Let{Fk} be a fixed family of computationally uniform compression func-
tions. Then the negligible worst-case success probabilityfor all collision finders of{Fk}
implies collision resistance w.r.t. random initial state.

Proof. Since{Fk} is computationally uniform for a polynomialℓ(k), we know that
Fk(s, Uℓ(k)) must be computationally indistinguishable from the uniform distribution
on Sk. The latter implies that the success probability of any collision finderA that
works on the initial states = Fk(s0, x), x ← Uℓ(k) can differ from the average case
probability

Pr [s← Sk, (x0, x1)← A(s) : x0 6= x1, Fk(s, x0) = Fk(s, x1)]

by a negligible amount. Otherwise, we convertA to an efficient distinguisher that out-
puts1 if a collision was found, and0 otherwise. Hence, if{Fk} is not collision resistant
(w.r.t. random IV), the worst-case success is not negligible for all collision finders. ⊓⊔

Having an adversary that finds collisions for random IV, it ispossible to construct a
poly-sampleable high-entropy distributionD and launch the next back-dating attack:



1. Given1k as input,A1 computes a lista = [(x0
1, x

1
1), (x

0
2, x

1
2), . . . , (x

0
k, x1

k)] of
colliding pairs like in Theorem 7, computesd = H(x0

1x
0
2 . . . x0

k) and outputs(d, a).
2. Given(d, a) as input,A2 picksb1, . . . , bk ← {0, 1}and outputs(xb1

1 xb2
2 . . . xbk

k , ⌊⌋).

The adversary(A1, A2) has success probability1 in terms of Definition 4, which means
that the time-stamping scheme is insecure. Note however that this still does not mean
one is able to back-datemeaningful documentsin practice.

7.3 MD-Hash Functions at the Server Side

If the server side hash functionh : {0, 1}2k → {0, 1}k is implemented by using a
practical MD hash function, then it is sufficient to apply thecompression functionf
only once:h(x1, x2) = f(IV, x1‖x2‖Padding), where IV denotes the standard initial
value. In the proof of Theorem 7 we needed multiple applications off to construct the
high-entropy distributionD that was mapped to a single output value. Hence, Theorem 7
does not have practical implications for server-side hash functions.

To breakh as a server-side hash function (i.e. to back-date ”new” hashvalues), we
should be able to find collisions forf , if one of the argumentsx1 or x2 is randomly
fixed, i.e. an attackerA is successful if for randomly chosenx1 ← {0, 1}k it is able to
find a pairx2 6= x′2 such thatf(IV, x1‖x2‖Padding) = f(IV, x1‖x

′
2‖Padding).

To our knowledge, no such attacks have been presented to MD5 or even to MD4,
which means that there are no rational reasons not to use MD5 as the server-side hash
function in a time-stamping scheme.

7.4 Separation of Collision Resistance and Computational Uniformity

The proof above may raise the following concern. We assumed that the hash function
is broken in terms of collisions but still the compression function is computationally
uniform. Hence, if collision-resistance is implied by computational uniformity, then the
proof above does not make any sense. We will show that this is not the case.

Theorem 9. There exist Merkle-Damg̊ard hash functions that are not collision-resis-
tant w.r.t. random initial state but have computationally uniform compression functions.

Proof. LetMk = {0, 1}p(k) andSk = {0, 1}k, wherep(k) > k. Define the com-
pression functionfk : Sk × Mk → Sk, so thatfk(s, x) = x{1,...,k}, i.e. fk(s, x),
independent ofs, returns the firstk bits of x. Obviously, the corresponding MD-hash
functionhk and its internal stateFk are not collision-resistant w.r.t. random initial state,
but the compression function is regular, which implies computational uniformity. ⊓⊔

Just for interest, we will also prove a dual separation result, which shows that com-
putational uniformity does not follow from collision-resistance (w.r.t. random initial
state) and hence it is not an ultimate design criterion for collision-free hash functions.

Theorem 10. If there exist collision-resistant Merkle-Damgård (MD) hash functions,
then there exist collision-resistant MD-hash functions inwhich the compression func-
tion is not computationally uniform.



Proof. Let fk : {0, 1}k × {0, 1}p(k) → {0, 1}k be a compression function, so that the
corresponding MD hash functionhk is collision-resistant w.r.t. random initial state.
Define a new compression functionf ′k : {0, 1}k+1 × {0, 1}p(k) → {0, 1}k+1, so that
f ′k(b‖s, x) = 1‖fk(s, x). The new compression function is collision-resistant, because
every collision forh′ w.r.t. initial stateb‖s implies a collision forh w.r.t. initial states.
However,h′ is not computationally uniform, because the first output bitof F ′k is 1 with
probability1, whereas in the case of uniform distributions this probability is 1

2 . ⊓⊔

8 Conclusions and Open Questions

Collision-resistance is unnecessary if the hash-functions in time-stamping schemes are
viewed as black-box functions, i.e. without considering particular design elements it
is impossible to prove that collision-resistance is necessary for secure time-stamping.
This also means that not every collision-finding attack is dangerous for time-stamping.

Still, we proved that for an important and wide class of practical hash functions
(MD hash functions) certain multi-collision attacks also violateuPre, which we proved
is a necessary and sufficient condition for client-side hashfunctions in time-stamping
schemes (both the hash-based and for the signature based ones). We proved thatuPre

implies collision resistance w.r.t. random initial statewhenever the state function is
computationally uniform, which is a natural (though, not ultimate) design criterionfor
practical MD hash-functions. Heuristic arguments show that if the standard IV of a
practical hash function turns out to be weak, then probably also a randomly chosen IV
is weak. Still, in order to draw conclusions on the (in)security of time-stamping it is
important to check whether the collision-finding attacks work in the case of random IV.

We also proved that in hash-based time-stamping, the serverside hash functions
may even be not one-way. Twice-compressing hash functionsh : {0, 1}2k → {0, 1}k in
the server side can be implemented with practical MD hash functions (like MD4, MD5,
SHA-1, etc.) by calling the compression functionf only once. Although we proved
that the chain-resistance condition impliesuPre, we cannot apply Theorem 7 because
to construct a high-entropy input distributionD (with no output entropy) in the proof,
we used multiple calls tof . So, it needs further research, whether there are efficient
attacks that are able to find preimages for thecompression functionsof practical hash
functions (MD4, MD5, SHA-1, etc.) in case a considerable number of input bits are
(randomly) fixed. Only such attacks would be dangerous forserver-sidehash functions.

Considering very black scenarios it would be interesting tostudy whether secure
time-stamping is possible in caseno hash function is collision-free, i.e. if all the known
practical hash functions have collisions or if one proves that the collision-resistance is
not achievable. Recent results suggest that the former situation could be very likely. We
conjecture that even in such a situation, secure time-stamping is still possible. Analo-
gous to the result by Simon [14], this can probably be proven via oracle separation by
constructing an oracle that provides access to a universal collision-finder but relative to
which secure time-stamping schemes still exist.
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