
Mobile Web Service Provisioning – QoS and Discovery
Issues

Satish Narayana Srirama1, Matthias Jarke1,2, and Wolfgang Prinz1,2

1 Information Systems Group, RWTH Aachen University
Ahornstr. 55, 52056 Aachen, Germany

2 Fraunhofer FIT
Schloss Birlinghoven, 53754 Sankt Augustin, Germany

{srirama, jarke}@cs.rwth-aachen.de
wolfgang.prinz@fit.fraunhofer.de

Abstract. The advanced features of today’s smart phones and hand held
devices, like the increased memory and processing capabilities, allowed them to
act even as information providers. Thus a smart phone hosting web services is
not a fancy anymore. During one of our projects, we have developed such a
Mobile Host and analysed its performance and application scope. While Mobile
Host is technically feasible, the ability to provide proper QoS in the vulnerable
and volatile mobile ad-hoc topologies is quite challenging. The QoS should
ensure secure and reliable web service communication in the resource
constrained radio link. While many standards exist in the wired network,
ensuring the QoS of web services, not much has been analysed and
standardized for mobile web services. Our study contributes to this work and
we tried to adapt some of the existing QoS standards to mobile web services
domain.
 Mobile Host opens up a new set of applications and it finds its use in many
domains like mobile community support, collaborative learning, social systems
etc. But the relevant discovery of the services provided by the smart phones has
became quite complex, because of the volume of services possible with each
Mobile Host providing some services. Centralized registries have severe
drawbacks in such a scenario and alternate means of service discovery are to be
addressed. P2P domain with its resource sharing capabilities comes quite handy
and here in this paper we provide an alternate approach to centralized registry
for discovering mobile web services. The services are published into the P2P
network as JXTA modules and the discovery issues of these module
advertisements are addressed. The P2P discovery approach also provides
alternate means of identifying and addressing the Mobile Host.

Keywords: Mobile web service provisioning, QoS, WS-Security, peer to peer
(P2P), JXTA and mobile web service discovery.

1 Introduction

It is well accepted by now that the Internet can be seen as a large-scale distributed
information system with numerous information providers and users. From the

information systems engineering’s view-point, the Internet has lead the evolution
from static content to web services. Web services are distributed software components
which can be accessed over the Internet using well established web mechanisms and
XML-based open standards and transport protocols such as SOAP [1] and HTTP [2].
Public interfaces of web services are defined and described using W3C based
standard, Web Service Description Language (WSDL) [3], regardless of their
platforms and implementation details. Web services have wide range of applications
and primarily used for enterprise integration. The biggest advantage of web services
lies in their simplicity in expression, communication and servicing. The
componentized architecture of web services also makes them reusable, thus reducing
the development time and costs. [4]

Concurrently, the capabilities of high-end mobile phones and PDAs have increased
significantly, both in terms of processing powers and memory capabilities. The smart
phones are becoming pervasive and are being used in wide range of applications like
location based services, mobile banking services, ubiquitous computing etc. The
market capture of such smart phones is quite evident and in fact in 2003 itself 12.1
million PDA-sized devices were sold, including all PDA-phones and smart phones.
The number of Java enabled mobile phones sold, in the same time, has outnumbered
the number of PCs sold [5]. The higher data transmission rates achieved in wireless
domains with 3G [6] and 4G [7] technologies and the fast creeping of all-ip
broadband based mobile networks also boosted this growth in the cellular market. The
situation brings out a large scope and demand for software applications for such high-
end smart phones. The statistic analysis provided by Idealliance [5] further enhances
the point that in the very near future; best part of the requirement will end up at a
device called high-end mobile phone/handset.

To meet this demand of the cellular domain and to reap the benefits of the fast
developing web services domain and standards, the scope of the mobile terminals as
both web services clients and providers is being observed. Mobile web services
enable communication via open XML web service interfaces and standardized
protocols also on the radio link, where today still proprietary and application- and
terminal-specific interfaces are required. To support the mobile web services, there
exist many organisations such as OMA [8], LA [9] on the specifications front; some
practical data service applications such as OTA (over-the-air provisioning),
application handover etc. on the commercial front; and SUN, IBM toolkits [10], [11]
on the development front. Thus, though this is early stages, we can safely assume that
mobile web services are the road ahead. Mobile web services lead to manifold
opportunities to mobile operators, wireless equipment vendors, third-party application
developers, and end users. While mobile web service clients are common these days
[12], we have studied the scope of mobile web service provisioning, in one of our
previous projects. In this project, we have developed a Mobile Host [13], capable of
providing basic web services from smart phones. Once the Mobile Host was
developed, extensive performance analysis was conducted to prove its technical
feasibility. [14]

While service delivery and management from Mobile Host are technically feasible,
the ability to provide proper Quality of Service (QoS), especially in terms of security
and scalability, for the Mobile Host is observed to be very critical. In terms of
security, the Mobile Host has to provide secure and reliable communication in the

vulnerable and volatile mobile ad-hoc topologies. Moreover with the easily readable
mobile web services, the complexity to realize security increases further. For the
traditional wired networks and web services, a lot of standardized security
specifications, protocols and implementations like WS-Security [15], SAML [16] etc.,
exist, but not much has been explored and standardized in wireless environments.
Some of the reasons for this poor state might be the lack of widely active commercial
data applications, to-date. Our study contributes to this work and tries to bridge this
gap, with main focus at realizing some of the existing security standards in the mobile
web services domain. In this study we have analyzed the adaptability of WS-Security
to the mobile web service provisioning domain. Mainly we observed the latency
caused to performance of the Mobile Host, with introduction of security headers into
the exchanged SOAP messages. The performance penalties of different encryption
and signing algorithms were calculated, and the best possible scenario for securing
mobile web services communication is suggested. [17]

In terms of scalability, the layered model of web service communication,
introduces lot of message overhead to the exchanged verbose XML based SOAP
messages. This consumes lot of resources, since all of this extra information is to be
exchanged over the radio link. Many compression techniques are being studied to
reduce the size of messages being exchanged in mobile web service communication.
But this approach comes with a trade-off that, now the compressed techniques need
some extra processing power at the smart phones and thus adding further performance
latencies.

Mobile Host opens up a new set of applications and it finds its use in many
domains like mobile community support, collaborative learning, social systems etc.
Primarily, the smart phone can act as a multi-user device without additional manual
effort on part of the mobile carrier. Many applications were developed and
demonstrated, for example in a distress call; the mobile terminal could provide a
geographical description of its location (as pictures) along with location details. The
Mobile Host in a cellular domain is of significant use in any scenario which requires
polling that exchanges significant amount of data with a standard server, for example
a mobile checking for the updates of RSS feeds provided by a server.

While the applications possible with mobile web services are quite welcoming, the
huge number of web services possible, with each Mobile Host providing some
services in the wireless network, makes the discovery of these services quite complex.
Proper discovery mechanisms are required for successful adoption of mobile web
services into commercial environments. The traditional centralized UDDI based
registries [18] have many limitations in this aspect and might not be the perfect
solution for the mobile web service discovery. The dynamic nature of the mobile
nodes further enhances this problem. Considering these difficulties, we are proposing
an alternative approach of discovering mobile web services. The method uses the peer
to peer (P2P) [19] network for advertising the web services and depends on the
network for discovering the services. We have developed the solution using the JXTA
network [20] and its features, and were able to publish mobile web services and
discover them from the smart phones, with reasonable performance latencies.

In summary, the paper discusses our project “Mobile Web Service Provisioning“,
with its QoS issues, challenges and difficulties in inducing the current existing QoS
standards into mobile web services domain. The paper also discusses the issues with

mobile web service discovery and tries to provide alternate solution for centralized
registry based web service discovery mechanism. The rest of the paper is organized as
follows:

Section 2 discusses the concept, performance analysis and applications of mobile
web service provisioning. Section 3 addresses the QoS issues considering both the
security and scalability challenges in the mobile web services domain. The section
describes existing and emerging standards in mobile and web services domains and
discusses some of the QoS realization details and their analysis on our Mobile Host.
Section 4 discusses the challenges with mobile web service discovery and tries to
provide alternatives for centralized registries, with the adaptation of Mobile Host into
the JXTA network. Section 5 concludes the paper with future research directions.

2 Mobile Web Service Provisioning

Service Oriented Architecture (SOA) [21] is the latest trend in information systems
engineering. It is a component model, presenting an approach for building distributed
systems. SOA delivers application functionality as services to the end-user
applications and other services, bringing the benefits of loose coupling and
encapsulation to the enterprise application integration. SOA defines participating
roles as, service provider, service client, and service registry. SOA is not a new notion
and many technologies like CORBA [22] and DCOM [23] at least partly represent
this idea. Web services are newest of these developments and by far the best means of
achieving SOA. Using web services for SOA provides certain advantages over other
technologies. Web services are based on a set of still evolving, though well-defined
W3C standards, that allow much more than, just defining interfaces.

The web service architecture [4] defined by the W3C enables application-to-
application communication over the Internet. Web services are self-contained,
modular applications whose public interfaces are described using Web Services
Description Language (WSDL). Web services allow access to software components
through standard Web technologies and protocols like SOAP and HTTP, regardless of
their platforms, implementation details. A service provider develops and deploys the
service and publishes its description and binding/access details (WSDL) with the
UDDI registry [18]. Any potential client queries the UDDI, gets the service
description and accesses the service from service provider using SOAP. The
communication between client and UDDI registry is also based on SOAP. [24]

Web services and its protocol stack are based on open standards and are widely
accepted over the internet community. Web services have wide range of applications
and range from simple stock quotes to pervasive applications using context-awareness
like weather forecasts, map services etc. The biggest advantage of web services lies in
its simplicity in expression, communication and servicing. The componentized
architecture of web services also makes them reusable, thereby reducing the
development time and costs.

The quest for enabling these open XML web service interfaces and standardized
protocols also on the radio link, with the current developments in cellular domain,
lead to new domain of applications mobile web services. Traditionally, the hand-held

cellular devices have many resource limitations like limited storage capacities, low
computational capacities, and small display screens with poor rendering potential.
Most recently, the capabilities of these wireless devices like smart phones, PDAs are
expanding quite fast. This is resulting in quick adoption of these devices in domains
like mobile banking, location based services, social networks, e-learning etc. The
situation also brings out a large scope and demand for software applications for such
high-end wireless devices. Moreover, higher data transmission rates, in the order of
few Mbs, were achieved in cellular domain, with interim and third generation mobile
communication technologies like GPRS [25], [26], EDGE [27] and UMTS [28]. Most
recently with the advent of 4G technologies and their deployment in south Asian
countries suggests that mobile data transmissions of the rate of few Gbs is also
possible [29].

WSWS

Service
Requester

WSDL

SOAP

UDDI
Registry

Mobile Host

Find

Refers

Describe
Publish

WSWS

Service
Requester

WSDL

SOAP

UDDI
Registry

Mobile Host

Find

Refers

Describe
Publish

Fig. 1. Basic mobile web services framework with the Mobile Host.

In mobile web services domain, the resource constrained mobile devices are used
as both web service clients and providers. Web services have a broad range of service
distributions and on the other hand cellular phones have large and swiftly expanding
user base. Combining these two domains brings us a new trend and lead to manifold
opportunities to mobile operators, wireless equipment vendors, third-party application
developers, and end users. While mobile web service clients are common these days,
and many software tools [10], [11] are already existent in the market, easing their
development and adoption, the research with providing web services from smart
phones is still sparse. In our mobile web service provisioning project one such Mobile
Host was developed and its performance was extensively analyzed, proving the
feasibility of concept. Figure 1 shows the basic mobile web services framework with
web services being provided from the Mobile Host.

2.1 Architecture and Implementation Details of Mobile Host

Mobile Host is a light weight web service provider built for resource constrained
devices like cellular phones. Though it was developed for resource constrained
devices, it followed the same architecture as general web services. The Mobile Host
has been developed as a web service handler built on top of a normal web server.
Mobile web service messages can be exchanged using the SOAP [1] over different
transportation protocols like HTTP, UDP, and WAP etc. In our Mobile Host’s
implementation the web service requests sent by HTTP tunneling are diverted and
handled by the web service handler. The key challenges addressed in Mobile Host’s
development are threefold: to keep the Mobile Host fully compatible with the usual
web service interfaces such that clients will not notice the difference; to design the
Mobile Host with a very small footprint that is acceptable in the smart phone world;
and to limit the performance overhead of the web service functionality such that
neither the services themselves nor the normal functioning of the smart phone for the
user is seriously impeded.

Figure 2 shows the core architecture of the Mobile Host. At the HTTP interface,
the Mobile Host listens for incoming HTTP GET/POST requests on a sever socket.
When the Mobile Host receives a request, the server socket accepts it, creates a socket
for communication, and initiates a new thread of execution by creating an instance of
the request handler. The request handler extracts the incoming message from the input
stream of the socket, and checks for web service requests sent via HTTP tunneling. If
it is normal HTTP request, the request handler processes the HTTP request just as the
standard web server, and returns the response by writing the message to the output
stream of the socket.

Request Handler

SOAP Processor

KSOAP

KXML

Service Handler

MPS WS GPS

WS Handler

MOBILE HOST
HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

Request Handler

SOAP Processor

Request Handler

SOAP Processor

KSOAP

KXML

KSOAP

KXML

Service HandlerService Handler

MPSMPS WSWS GPSGPS

WS Handler

MOBILE HOST
HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

HTTP
Interface

(Java
ServerSocket
Listener)

HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

File
System
File
System

External
devices
like GPS
Receiver
etc.

External
devices
like GPS
Receiver
etc.

Bluetooth
/ IR

HTTP
request

Request Handler

SOAP Processor

KSOAP

KXML

Service Handler

MPS WS GPS

WS Handler

MOBILE HOST
HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

Request Handler

SOAP Processor

Request Handler

SOAP Processor

KSOAP

KXML

KSOAP

KXML

Service HandlerService Handler

MPSMPS WSWS GPSGPS

WS Handler

MOBILE HOST
HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

HTTP
Interface

(Java
ServerSocket
Listener)

HTTP
Interface

(Java
ServerSocket
Listener)

Request

Response

File
System
File
System

External
devices
like GPS
Receiver
etc.

External
devices
like GPS
Receiver
etc.

Bluetooth
/ IR

HTTP
request

Fig. 2. Core architecture of the Mobile Host

If the message comprises a web service request, the Web Service Handler
component of the Mobile Host processes the message. The request handler reads the
HTTP message body and de-serializes the SOAP request to Java objects, using the
SOAP processor. The request handler passes these objects to the service handler,
which extracts the service details and invokes the respective service. The business
logic of the service method is then executed and the service handler returns the
response to the request handler. The web services deployed on the Mobile Host can
access the local file system, or any external devices like a GPS receiver, using
Infrared, Bluetooth etc., and can implement business logic. The request handler
serializes the response and prepares the HTTP response message, which is returned to
the client as a HTTP response by writing to the output stream of the socket.

The Mobile Host was developed in PersonalJava [30] on a SonyEricsson P800
smart phone. The footprint of our fully functional prototype is only 130 KB. Open
source kSOAP2 [31] was used for creating and handling the SOAP messages.
kSOAP2 is thin enough to be used for resource-constrained devices and provides a
SOAP parser with special type mapping and marshalling mechanisms. Considering
the low-resource constraints of smart phones, no deployment environment can be
easily provided. Hence, all services have to be deployed at the installation of the
Mobile Host. Alternatively, the Mobile Host was configured to look for services at

other locations apart from the main JAR location, where the services could then be
deployed at runtime. Similar implementations of Mobile Host are also possible with
other Java variants like J2ME [32], for smart phones. We also have developed a
J2ME based Mobile Host and its performance was observed to be not so significantly
different from that of the PersonalJava version.

Even though the web service provider is implemented on the smart phone, the
standard WSDL can be used to describe the services, and the standard UDDI registry
can be used for publishing and un-publishing the services. An alternative for the
UDDI-based discovery is being studied, where we are trying to realize Mobile Host in
a Peer to Peer (P2P) [33] network, there by leveraging the advertising and searching
of WSDL documents to the P2P network [34]. The approach is addressed in later
sections of this paper, while discussing the discovery issues of mobile web services.

Alternate architectures for mobile web service provisioning are also possible with
SOAP compliant proxy or gateway in between the Mobile Host and the web service
requester. The communication between the client and the proxy is using SOAP and
the communication between the proxy and the Mobile Host would be using a
protocol, efficient for the data transport across the mobile networks. Many such
proprietary protocols and implementations have evolved like WSOAP [35], gSOAP
[36], eSOAP [37], etc. Wireless SOAP (WSOAP) [35] is basically a set of
optimization techniques. The WSOAP aims to provide static encoding based on
SOAP schema, leverages WSDL service description to create adaptive encoding for
web service interfaces, limits computational cost, and concentrates on functional
message equivalence rather than exactness. This protocol can be extremely useful
between mobile devices and gateways where the resources are very limited as
WSOAP can reduce SOAP message sizes by 3-12 times.

The gSOAP toolkit is a platform-independent development environment for C and
C++ web services [36]. gSOAP provides transparent SOAP API through the use of
compiler technology that hides irrelevant SOAP-specific details from the user. The
compiler automatically maps native and user-defined C and C++ data types to
semantically equivalent SOAP data types and vice-versa. As a result, full SOAP
interoperability is achieved with a simple API. Similarly, eSOAP is small lightweight
implementation of the SOAP specifically designed for embedded systems. The
eSOAP toolkit is a C++ library that provides a SOAP processing engine for the
embedded system [37].

We are considering this option of using SOAP proxy in our study, which handles
the security and the scalability issues, there by providing better QoS for the Mobile
Host. For scalability issues of Mobile Host, compression technologies with Fast Web
Services [38] are being considered, instead of proprietary SOAP implementations.
SOAP compression is highly efficient in the mobile web services domain, because of
the poor connectivity and high communication costs of the mobile networks.

2.2 Mobile Terminal Access

Once a mobile web service is developed and is deployed with the Mobile Host, the
mobile terminal, that is registered and connected within the mobile operator network,
requires some means of identification and addressing, which allows the web service to

be accessible also from Internet. Generally, computers and devices in a TCP/IP
network are identified using an IP address. The IP address, that is required for the data
transfer to and from smart phones (as for any other IP communication client as Web
servers, Intranet workstations, etc.), is assigned during the communication
configuration phase. Typically, the IP address assigned to mobile devices using GPRS
is only temporarily available, and is known only within the mobile operator’s
network, which makes it difficult to use the IP address in the client applications.

Our study has identified different means of resolving the IP address in HSCSD
[39] (High-Speed Circuit Switched Data) dial-up connection, GPRS [26] (General
Packet Radio Service) environments and thereby making the data transmission with a
mobile terminal, possible. Here we discuss two of these identified methods.

HSCSD.
Figure 3 illustrates the architecture used to connect the Mobile Host to the prototyping
network using a HSCSD dial-up connection. In this architecture a HSCSD connection
is established between the mobile terminal and the prototyping network, which is
connected to the Internet. The connection uses a Public Land Mobile Network
(PLMN) and the Public Switch Telephone Network (PSTN / ISDN) for making the
data call to the server. The connection is setup by using PPP (Point-to-Point Protocol)
over a circuit-switched data call to a modem that is connected to one of the servers in
the network. On top of this PPP link a TCP/IP end-to-end connection between the
mobile terminal and the dial-in server is established. Hence, as long as the data call
persists, the mobile terminal can be addressed using the IP address assigned to it by
the dial-in server. Thus the web service deployed on the mobile terminal can be
accessed from any client within the network environment.

PLMN PSTN/
ISDN Modem

Network

High speed CS dial-up connection

PPP

TCP/IP

WS

Mobile
Host

PLMN PSTN/
ISDN Modem

Network

High speed CS dial-up connection

PPP

TCP/IP

WS

PLMN PSTN/
ISDN

PLMN PSTN/
ISDN ModemModem

NetworkNetwork

High speed CS dial-up connection

PPPPPP

TCP/IPTCP/IP

WSWS

Mobile
Host

Fig. 3. Architecture for an end-to-end TCP/IP connection between the mobile terminal and the

prototyping network using HSCSD connection.

Using an appropriate NAT configuration, the mobile web service can be accessed
by any service requestor from the Internet. Using the NAT, the network provides a
DNS name for the Mobile Host. The only requirement towards the PPP daemon is
that the mobile terminal should always receive the same IP address when it connects
to the dial-in server.

The main drawback with the HSCSD solution is the circuit switched connection,
which would have to persist as long as the Mobile Host should be available for the

access of its web services. The billing of circuit switched data connection is based on
the time the connection persists, not on the amount of data transmitted across the
network. This makes this scenario unfeasible for commercial purposes. Volume based
charging is a major advantage enabled by GPRS.

GPRS.
Once the GPRS connection is established the mobile can be identified by the
temporary IP provided by the mobile operator network. It is also feasible to have a
public IP for the mobile terminal, a feature provided by very few operators today. The
operational setup for accessing the mobile terminal in a GPRS network is given in
figure 4. The mobile TCP/IP connection between the web service client and the
Mobile Host is deployed on top of a GPRS link into the mobile operator network.
From there the traffic is routed through the Internet to/from the web service client.

Mobile
Operator Internet

Operator proprietary
WS

Mobile Web
Service Provider
(P800)

Web Service
client

GPRS

Mobile
Operator
Mobile
Operator InternetInternet

Operator proprietary
WS

Mobile Web
Service Provider
(P800)

WSWS

Mobile Web
Service Provider
(P800)

Web Service
client

GPRS

Fig. 4. The operational setup of Mobile Host in a live GPRS environment.

The problem of addressing each mobile node with IP is not a big issue and it could
be solved with Mobile IP version 6 (Mobile IPv6) [40]. But the necessity of public IP
for each smart phone is observed to be major hindrance for the commercial success of
Mobile Host, even though IPV6 promises such availability. Alternatives for the
mobile terminal access are studied and we will address one such solution using the
P2P network, when we will be discussing the discovery issues of mobile web
services.

2.3 Sample Web Services Provided by Mobile Host

Before considering the performance analysis of the Mobile Host and its applications,
we describe some of the basic web services provided from our Mobile Host. These
services give an idea of some of the services possible from smart phones and were
used in calculating the performance loads of the Mobile Hosts.

Mobile Photo Album Service.
Today’s high-end mobile terminals become more and more advanced, and are
generally being equipped with an integrated digital camera. The photographs taken
with these smart phones can later be uploaded or transferred to PCs through cables or

by using wireless methods like Infrared or Bluetooth. Using currently available
technologies, if a user wants to publish the photographs he had taken with the mobile
terminal to the public or friends, he has to upload the photos to a Web server, from
which they can be accessed. The user can also send the images through Multimedia
Messaging Service (MMS) [41] or some other means of messaging to the clients.
Here the mobile owner bears the payment for the communication between his smart
phone and the Web server or the receiver’s device. With a mobile web service
provider, implemented and deployed on the smart phone, interested people can access
the Mobile Host using a standard web service client or a Web client, and can browse
through the pictures they are interested in. Here the responsibility for payment shifts
to the actual clients, who are browsing the pictures provided by the Mobile Host. The
service is comparable to any other online image album service or blog service, but
implemented on the mobile terminal.

Location (GPS) Data Provisioning Service
This dedicated web service provides the exact location information of the mobile
terminal, such as GPS (Global Positioning System) data [42]. The service uses a
Socket GPS receiver for getting the GPS co-ordinates. The external device is
connected to the smart phone via Bluetooth. The GPS data can also be collected while
taking the pictures and these two details can be mapped together, giving scope for
many interesting scenarios like the traveller’s diary etc. The GPS co-ordinates can
always be mapped to geo spatial maps.

2.4 Performance Analysis of the Mobile Host

Once the Mobile Host was developed, it was extensively tested for performance
issues like the memory load, server-processing load etc. The evaluation of the system
was conducted using services already described like the mobile photo album service,
the location (GPS) data provisioning service and some more basic services like echo,
‘ls’ services and etc.

The test setup comprised a Mobile Host developed and deployed on the P800 smart
phone and a standalone Apache Axis [43] web service client. The client invokes
different services (Within the context of this discussion, it is assumed that the client
knows the exact location (URI) of the service and the service description;) deployed
on the Mobile Host and the performance of the Mobile Host was observed, by taking
timestamps and memory foot prints, while the Mobile Host was processing the web
service request. The tests were conducted both in HSCSD and GPRS environments.

As the test cases for the mobile photo album service, 15 different images were
selected with memory sizes ranging from 3Kb to 100Kb. The client tried to browse
through these pictures. The location (GPS) data provisioning service uses an external
GPS device for providing the GPS data.

The detailed performance evaluation of the Mobile Host clearly showed that
service delivery as well as service administration can be performed with reasonable
ergonomic quality by normal mobile phone users. Figure 5 shows the time delays of
different activities, for the location data provisioning service. As the most important
result, it turns out that the total web service processing time at the Mobile Host is only

a small fraction of the total request-response invocation cycle time (<10%) and rest all
being transmission delay, in a GPRS network. This makes the performance of the
Mobile Host directly proportional to achievable higher data transmission rates. [13]

Durations for activities

5300

1719

219
47

297
47

250 203 94
0

1000

2000

3000

4000

5000

6000

 No Threads

Du
ra

tio
n

in
 M

S

Total time at client
Time at server
Request stream reding time
Request processing time
Deserialization
SOAP Diversion
Service time
Serialization
Stream push at server

Fig. 5. Time stamps for the GPS data provisioning service.

The second-generation GSM networks delivered high quality and secure mobile
voice and data services like SMS (Short Message Service) [44], circuit switched
Internet access etc., with full roaming capabilities and across the world. The GSM
platform is a widely successful wireless technology and it was the world's leading
mobile standard. But, with the advent of the interim-generation technologies like
GPRS and EDGE, and third-generation technologies like UMTS, still higher data
transmission rates are achieved in the wireless domain, in the order of few hundreds
of Kbs to 2 Mbs. Most recently with the advent of 4G technologies and their
deployment in south Asian countries suggests that mobile data transmissions of the
rate of few Gbs is also possible [29]. These developments make the Mobile Host soon
realizable in commercial environments and applications.

In terms of performance of the Mobile Host, the key question was whether a
reasonable number of clients could be supported with an overhead that would not
prevent the main mobile user from using his or her smart phone in the normal fashion
(either to supply the services or just for usual local phone functions). This study was
also required since it would define the limit for the number of concurrent participants
in the collaborative application environments. The Mobile Host was successful in
handling up to 8 concurrent accesses for reasonable services like location data
provisioning service with response size of approximately 2Kb.

2.5 Applications of the Mobile Host

Mobile Host opens up a new set of applications and it finds its use in many domains
like mobile community support, collaborative learning, social systems etc. Primarily,
the smart phone can act as a multi-user device without additional manual effort on
part of the mobile carrier. Many applications were developed and demonstrated, for
example in a distress call; the mobile terminal could provide a geographical
description of its location (as pictures) along with location details.

Another interesting application scenario involves the smooth co-ordination
between journalists and their respective organizations. The scenario is illustrated in
figure 6. Journalists can be at different locations across the globe, covering different
events like the sport events, conferences etc. An editor can always keep track of the
location of "his" journalists and the content they have gathered. He can browse
through the pictures taken by the journalist at any instance. Standard client
applications can be developed for the editor, which synchronize the information
stored by editor and data at the Mobile Host. The key difference to the more
traditional solutions where journalists upload their contents to a server held by the
editor is that parallel access to the Mobile Host by both the journalist and the editor is
possible; even other journalists in the team can look at the mobile information thus
better synchronizing their activities, e.g. in the coverage of some major distributed
event. Thus, the journalists can concentrate more on their job of collecting, as they
don’t have to upload the data, every time they get something interesting. The data can
later be synchronized with a server for archives, when the journalists are free and off
the event site. [14]

Mobile
Infrastructure

Internet

WS

Journalist 1

GPRS

WS

Journalist 2

GPRS

WS

Journalist 3

WS

Journalist 4

GPRS
GPRS

Editor

Mobile
Infrastructure

Mobile
Infrastructure

InternetInternet

WS

Journalist 1

WSWS

Journalist 1

GPRSGPRS

WS

Journalist 2

WSWSWS

Journalist 2

GPRS

WS

Journalist 3

WSWSWS

Journalist 3

WS

Journalist 4

WSWS

Journalist 4

GPRS
GPRS

Editor
Fig. 6. The Mobile Host in collaborative journalism scenario.

 Most recently the scope of the Mobile Host in m-learning (mobile learning)
domain is also being studied. As the Mobile Host, the mobile terminal can provide
access to information like pictures, audios, videos, tags, documents, location details,
and other learning services [45]. Many m-learning application scenarios can be
envisioned, like podcasting, mobile blogging, mobile learning media sharing service,

expertise finder service etc. In the mobile learning media sharing scenario, learners
can share audio or video lecture recordings or go for the field study and take the
pictures of the location. Peers can then browse through the pictures taken, add tags,
and give their suggestions or comments. In an expertise finder learners can look for
reliable access to learning resources, persons who share the same interests, and
experts with the required know-how that can help achieving better results. In the e-
learning aspect these experts can share the information among the other users.
Examples of these use cases could be exchanging the mathematical formulas [46] and
the experts validating them or even correcting them. The Mobile Host in a cellular
domain is of significant use in any scenario which requires polling that exchanges
significant amount of data with a standard server, for example a mobile checking for
the updates of RSS feeds provided by a server. The Mobile Host can eliminate polling
process as the RSS feeds can now be directly sent to the Mobile Host, when the RSS
feeds are updated.

From the commercial viewpoint, with the Mobile Host, there can be a reversal of
payment structures in the cellular world. While traditionally the information-
providing web service client has to pay to upload his or her work results to a
stationary server (where then other clients have to pay again to access the
information), in the Mobile Host scheme responsibility for payment can be shifted to
the actual clients -- the users of the information/services provided by the Mobile
Host. Thus Mobile Host renders possibility for small mobile operators to set up their
own mobile web service businesses without resorting to stationary office structures
[13].

The Mobile Hosts in an operator proprietary network can also form a P2P network
with other mobile phones and can share their individual resources and services. P2P
offers a large scope for many applications with Mobile Host. Not just the enhanced
application scope, the P2P network also offers better identification and discovery
mechanisms of huge number of web services possible with Mobile Hosts [34]. We
will discuss the approach in mobile web service discovery section.

While Mobile Host is technically feasible and its applications are quite welcoming

in different domains, the ability to provide proper QoS in the vulnerable and volatile
mobile ad-hoc topologies is quite challenging. The QoS should ensure secure and
reliable communication. Secure provisioning of mobile web services needs proper
message-level security consisting data integrity, confidentiality and end-point access
security that constitutes authentication, authorization and access control. In terms of
scalability of the Mobile Host, the key question is whether a reasonable number of
services could be provided by the smart phone in the cellular domain.

3 QoS Aspects in Mobile Web Services Domain

While service delivery and management from Mobile Host are technically feasible,
and its applications are quite welcoming in different domains, the ability to provide
proper Quality of Service (QoS), especially in terms of security and scalability, for the
Mobile Host is observed to be very critical. In terms of security, the Mobile Host has

to provide secure and reliable communication in the vulnerable and volatile mobile
ad-hoc topologies. Moreover with the easily readable mobile web services, the
complexity to realize security increases further. For the traditional wired networks
and web services, a lot of standardized security specifications, protocols and
implementations like WS-Security, SAML etc., exist, but not much has been explored
and standardized in wireless environments. Some of the reasons for this poor state
might be the lack of widely active commercial data applications, to-date. Our study
contributes to this work and tries to bridge this gap, with main focus at realizing some
of the existing security standards in the mobile web services domain. In terms of
scalability, the layered model of web service communication, introduces lot of
message overhead to the exchanged verbose XML based SOAP messages. This
consumes lot of resources, since all of this extra information is to be exchanged over
the radio link. Many compression techniques are being studied to reduce the size of
messages being exchanged. But this approach comes with a trade-off that, now the
compression techniques need some extra processing power at the smart phones and
thus adds further performance latencies.

In this section we will discuss our security and scalability analysis of mobile web
service provisioning. We have analyzed the adaptability of WS-Security to the mobile
web service provisioning domain. Mainly we observed the latency caused to
performance of the Mobile Host, with the introduction of security headers into the
exchanged SOAP messages. The performance penalties of different encryption and
signing algorithms were calculated, and the best possible scenario for securing mobile
web services communication is suggested. We will also discuss briefly about our
ongoing scalability research.

3.1 Security Challenges for Mobile Web Services

Once the web services are deployed with the Mobile Host, the services are prone to
different types of security breaches like denial-of-service attacks, man-in-the-middle
attacks, intrusion and spoofing etc. Mobile web services use message-based
technologies (SOAP over HTTP) for complex transactions across multiple domains.
SOAP by itself does not specify the means of providing the security for the web
service communication. Also many legitimate intermediaries might exist in the web
service communication making the security context requirement to be from end-to-
end. Hence the traditional point-to-point security technologies like the SSL [47],
HTTPS [48] and full encryption provided by the 3G technologies like UMTS
communication technology can’t be adapted for the mobile web services domain.
These methods also affect the transportation independency feature of the SOAP
messages by restricting the messages to particular transportation protocols. Hence, the
need for sophisticated end-to-end message-level security becomes a high priority for
mobile web services.

Internet

WS Providers

Mobile
Operator

WS Requestors

GPRS

Unauthorized
Access

DDOS Attacks!

Spoofing

TamperingNetwork

Eavesdropping

Replay Attacks

Disclosure of
Configuration Data

Communication Network

WS

InternetInternet

WS Providers

Mobile
Operator

Mobile
Operator

WS Requestors

GPRS

Unauthorized
Access

Unauthorized
Access

DDOS Attacks!

Spoofing

TamperingNetwork

Eavesdropping

Replay Attacks

Disclosure of
Configuration Data

Communication Network

WS

Fig. 7. Typical security breaches in the mobile web services.

Figure 7 depicts some of the typical security breaches in web service and wireless
environments, across the mobile web services domain [49]. Spoofing is a means of
accessing a system with false identity. To accomplish this, an attacker can use stolen
user credentials or fake source address that does not represent the actual source
address. The purpose of spoofing would be to hide the original source of an attack or
to gain access to a service as a legitimate user or host, thereby acquiring sensitive
privileges. Proper authentication and authorization principles are to be used to cover
spoofing and unauthorized access.

Tampering is an act of unauthorized modification of the web service message in
the network by any intermediary. Mobile web services are very prone to this attack as
there might be many legitimate intermediaries in the web service communication and
an attacker can spoof any of the intermediaries. Network eavesdropping or sniffing is
the process of monitoring traffic for sensitive data such as plaintext passwords or
configuration information by placing packet sniffers in the middle of the network.
Proper encryption and digital signatures help in avoiding tampering and network
eavesdropping attacks.

Replaying a valid, changed or unchanged message to a web service by
impersonating the client is referred as replay attack. The unchanged message replay
attack also known as basic replay attack can be avoided by using nonce, a
cryptographically unique value, with the web service message. But the most common
types of message replay attacks are man in the middle attacks where the attacker
captures the message, changes the contents and replays them to the web service.
Proper encryption and digital signatures again help in preventing this form of replay
attack.

Denial-of-service (DOS) is a process of making a system, server or application
unavailable, by overloading the system. For each individual service, maintaining and
understanding the collection of data can help in protecting it from denial-of-service

attacks. But having such a scenario implemented on the resource constrained mobile
phones could be impractical. Security policies and high-level access control
mechanisms should help to a certain extent in this regard.

Last but not the least of the security breaches shown in figure 7 is the disclosure of
configuration data. Generally, WSDL documents reveal lot of information about web
services and other sensitive information like configuration data of servers. Proper and
authorized access of WSDL documents is to be allowed, to avoid these unwanted
disclosures.

Considering the security breaches in the mobile web services, the mobile web
service communication should support at least the basic security requirements as
emphasized in figure 8. Secured message transmission is achieved by ensuring
confidentiality and data integrity, while authentication and authorization will ensure
that the service is accessed only by the trusted service requestors. Upon successful
application of these basic security requirements, trust and policy can be considered for
mobile web services domain. Policy and trust ensure proper choreography of services.
Policy defines general security policy assertions over web service security whereas
Trust builds trust relationships on web services security for exchanging security
tokens by providing a proper framework.

Message Security

Third party Security
Authentication serviceAuthentication service

Authorization serviceAuthorization service

Digital SignaturesDigital Signatures

EncryptionEncryption

Authentication /
Authorization

Authentication /
Authorization

Confidentiality /
Data Integrity

Confidentiality /
Data Integrity

TrustTrust PolicyPolicy

Secured Mobile
Web service

Communication

Secured Mobile
Web service

Communication

Basic
Security

Requirements
Message Security

Third party Security
Authentication serviceAuthentication service

Authorization serviceAuthorization service

Digital SignaturesDigital Signatures

EncryptionEncryption

Authentication /
Authorization

Authentication /
Authorization

Confidentiality /
Data Integrity

Confidentiality /
Data Integrity

TrustTrust PolicyPolicy

Secured Mobile
Web service

Communication

Secured Mobile
Web service

Communication

Message Security

Third party Security
Authentication serviceAuthentication service

Authorization serviceAuthorization service

Digital SignaturesDigital Signatures

EncryptionEncryption

Authentication /
Authorization

Authentication /
Authorization

Confidentiality /
Data Integrity

Confidentiality /
Data Integrity

TrustTrust PolicyPolicy

Secured Mobile
Web service

Communication

Secured Mobile
Web service

Communication

Basic
Security

Requirements

Fig. 8. Basic security requirements for mobile web services.

3.2 Existing and Emerging Mobile Web Service Security Standards

Before considering the analysis and circumvention of security challenges for the
mobile web services domain, this section discusses briefly the existing security
standards and specifications and some relevant notable projects in web services and
wireless domains. Listed below are some of the standard committees and
organizations working around web services, wireless domain and their security thus
helping in mobile web services domain security:
• W3C is primarily responsible for SOAP, XML Encryption [50], XML Signature

[51] and WSDL standards.
• OASIS is an organization which has larger interest in web service specific

standards and it owns primary areas of our interest such as WS-Security [15] and
SAML [16] standards.

• Liberty Alliance (LA) [9] group was aimed at providing a framework for
interoperable federated identity.

• Open Mobile Alliance (OMA) [8] was formed to develop and promote
interoperability for mobile data services.

WS-Security.
The WS-Security specification from OASIS is the core element in web service
security realm. It provides ways to add security headers to SOAP envelopes, attach
security tokens and credentials to a message, insert a timestamp, sign the messages,
and encrypt the message. The protocol ensures authentication with security tokens.
Security tokens in combination with XML Encryption ensure confidentiality while
security tokens in combination with XML Digital Signatures ensure integrity, of the
SOAP messages.

SOAP Foundation

WS-Security

WS-Policy WS-Trust WS-Privacy

WS-
SecureConversation WS-Federation WS-Authorization

SOAP FoundationSOAP Foundation

WS-Security

WS-Policy WS-Trust WS-Privacy

WS-
SecureConversation WS-Federation WS-Authorization

Fig. 9. Web service security specifications.

Apart from WS-Security, web service security specifications also include WS-
Policy which defines the rules for service interaction, WS-Trust which defines trust
model for secure exchanges and WS-Privacy which states the maintenance of privacy
of information. Built with these set of basic specifications are the specifications, WS-
SecureConversation that specifies how to establish and maintain secured session for
exchanging data, WS-Federation which defines rules of distributed identity and its
maintenance, and WS-Authorization which processes the access rights and

exchangeable information. The set of web service security specifications are shown in
figure 9. [52]

SAML.
Security Assertion Markup Language (SAML) from OASIS primarily provides single
sign on (SSO), cross domain interoperability, means of implementing the basic WS-
Security standard through assertions, and helps in managing identity control across
domains and organizations - for enhanced user experience. SAML builds on top of the
web service security specifications and provides a means by which security assertions
can be exchanged between different service entity endpoints.

The basic components of interest in SAML are assertions, protocols, bindings and
profiles. SAML assertions carry the authentication information while SAML
request/response protocols tell how and what assertions can be requested. Bindings
define the transportation of SAML protocols over SOAP/HTTP protocol. A SAML
profile can be created using the bindings, protocols along with the assertion structure.
The SAML request or SAML response will reside in SOAP body.

SAML request/response protocol binding over SOAP will provide assertions in the
SOAP body with information about authentication and authorization. Then SAML
assertions are used along with the WS-Security element which will reside in SOAP
header. As the SAML assertions contain key of the holder, it can be used to digitally
sign the SOAP body. At the receiver end, the signature is verified with the help of the
key and the access controls within the assertion.

Extensible Access Control Mark-Up Language (XACML) [53] defines syntax and
semantics of a language to express and evaluate access control policies. SAML can
also be used independently with other access control mechanisms. When both SAML
and XACML are used together, they result in two additional components: Policy
Enforcement Point (PEP) and Policy Decision Point (PDP). When PEP receives
requests from requestor, it accesses assertions from the requestor and extracts other
typical information such as time of request, location etc. and sends it to PDP. PDP
then evaluates the request by obtaining related policies and passes on the decision to
PEP which enforces the decision towards the requestor.

LA.
Liberty Alliance project [54] is the only global body which is working to define and
provide technology, knowledge and certifications to build identity into the
foundations of mobile and web service communication. It mainly concentrated on
federated identity, because of the lack of connectivity between identities for internet
applications in the current wireless technology especially in mobile networks.

The basic components of Liberty Alliance are principal, identity provider and
service provider. Principal is the requestor who needs to be authenticated. Identity
provider is the one which authenticates and asserts the principal’s identity. The basic
provisions of this project are federation which establishes relationship between any
two of the above mentioned components, Single Sign On (SSO) where the
authentication provided to principal by the identity provider can be maintained to
other components such as service providers, and circle of trust where trust will be
established between service providers and identity providers with agreements upon

which principals can make transactions and exchange information in a seamless and
secure way.

OMA.
Open Mobile Alliance (OMA) group is concentrating to have a unique
specification/framework for mobile data services to achieve interoperability. OMA
was formed in June 2002 by nearly 200 companies including the world’s leading
mobile operators, device and network suppliers, information technology companies
and content and service providers. Mobility and roaming are the obvious key
characteristics which are hindrances to mobile web service interactions [8]. The
current possible mobile web service applications have a number of drawbacks as
following. First, the applications should be created through tightly-coupled, costly and
close alliances between value-added service providers. Second, they have to be
created based on a mixture of mostly propriety models and disparate standards such as
WAP, Location, Presence, Identity etc. Furthermore, most of the standards to develop
these applications have been devised specifically for the mobile environment from the
ground up. All these drawbacks will draw high complexity to deploy, integrate and
use these applications and services.

 The OMA Web Services Enabler specification [55] is destined to cover all the
drawbacks mentioned above and envisioned to support the following mobile web
service interactions:
• Server-to-server
• Server-to-mobile terminal
• Mobile terminal-to-server
• Mobile terminal-to-mobile terminal (peer-to-peer)

3.2 Security Realization and Analysis

As discussed earlier, secure provisioning of mobile web services needs proper
message-level security consisting data integrity, confidentiality and end-point access
security that constitutes authentication and authorization. Since, there exists no
approved specific mobile web service standards and lot of propriety interfaces are
involved, the security was analyzed on a case-by-case scenario.

Security Analysis Design Model.
To secure the communication of our mobile web services provisioning, first we have
analyzed the adaptability of WS-Security in the mobile web services domain [17].
The WS-Security adds many performance overheads to the mobile web service
invocation cycle. Mainly, extra CPU capabilities are required to process the WS-
Security related header elements. The transportation delays also increase significantly
as the SOAP message size increases with the added security headers. Figure 10
depicts our architecture to analyze the basic security principles for the Mobile Host.

Internet
Mobile

OperatorWS Clients

Mobile Host

GPRS

WS

Message Level
Security

End-Point Security
Provider

Internet
Mobile

OperatorWS Clients

Mobile Host

GPRS

WS

Message Level
Security

End-Point Security
Provider

Fig. 10. Proposed security realization scenario of Mobile Host.

The Mobile Host was developed and deployed on a smart phone. Once a web
service is deployed on Mobile Host; any web service client can request for the
service. The SOAP message along with the WS-Security information is routed across
the Internet and mobile operator proprietary network to the Mobile Host. The
message-level security information is extracted and addressed at the Mobile Host
while the end-point access security is handled by a third party on behalf of the Mobile
Host. Then the corresponding service details are extracted and the service is invoked.
The SOAP response is sent back to the client across the same route. The performance
of the Mobile Host and the network latency were observed while processing the client
request.

For providing proper end-point security for the mobile web service provisioning,
the basic service-level authentication and user-intervened authorization were realized.
In the service-level authentication, an authentication service is provided at the Mobile
Host which accepts a username and password and validates the client. Authentication
can be password based, Public Key Infrastructure (PKI) based or certificate based.
We have considered password based over PKI based authentication due to platform
restrictions. The Mobile Host stored the authentication details at the smart phone
itself. This posed further problems with the resource constraints of the smart phone, as
the authentication information needed extra resources. An alternative for this scenario
is provided, where the Mobile Host generates an authentication request to a
standalone web service, deployed on an Axis [43] based web service provider (End-
point security provider), on behalf of the client, using the authentication information
provided by the client. The client can then access any service provided by the Mobile
Host. Both the authorization-service request and the service request must be generated
in a single session. An alternative for the authentication would be the single sign on
addressed by SAML and LA specifications.

 In the user-intervened authorization, each of the services provided at the Mobile
Host can be configured to obtain the providers (person using the Mobile Host)
acceptance before providing the respective service to the web service requestor.
Critical issues like disapprovals, user being busy and timeouts were also considered.
The process was also automated by using an access control mechanism, based on the
authentication details. Realization of single sign on, where identity and credentials
can be maintained for multiple sessions and parties is currently under study and our

future publications will address this issue. The following sections provide our analysis
and results with message-level security for mobile web services.

The message-level security was further broken-down and the performance
penalties of different encryption and signing algorithms were analyzed at the Mobile
Host, individually. The breakdown was required to observe the best possible scenario
for securing mobile web services communication. This has left us with four different
test cases for the analysis of message-level security for mobile web services.
• Unsecured mobile web service communication
• Encrypted mobile web service communication
• Signed mobile web service communication
• Encrypted and Signed mobile web service communication

Security Analysis Implementation Model.
To analyse the WS-Security for Mobile Host, we have used two Sony Ericsson P910i
smart phones as web service requestor and the Mobile Host. The smart phones had an
internal memory of 64 Kb and ARM9 processor clocked at 156MHz. The phones
were connected to the Internet using a GPRS connection. The Mobile Host was
rebuilt using J2ME for the security analysis. The P910i device supports MIDP2.0 [56]
with CLDC1.0 [57] configuration. For cryptographic algorithms and digital signers,
Java based light weight cryptographic API from Bouncy Castle crypto package [58] is
used. KSOAP2, the Java API based on KXml2, is adapted according to WS-Security
standard and utilized to create the request/response web service messages.

WS Handler

SOAP Processor

Security Handler

KSOAP

KXML

LWC API

Service Handler

MPS WS GPS

WS Handler

SOAP Processor

Security Handler

KSOAP

KXML

LWC API

Service Handler

MPSMPS WSWS GPSGPS

Fig. 11. Web Service Handler of the Mobile Host

The web service security enabled WS Handler component of the Mobile Host is
shown in figure 11. The WS Handler receives the web service messages from the
HTTP interface of the Mobile Host. The SOAP Processor extracts the SOAP
messages from web service requests. The security handler does the respective security
tasks/checks over the message and transfers decrypted message to the service handler,

which extracts the service details and invokes the respective service. Effectively, the
WS Handler manages the full message-level security and assists in end-point security.

To analyze confidentiality, the message was ciphered with symmetric encryption
algorithm and the generated symmetric key is exchanged by means of asymmetric
encryption method. The message was tested against various symmetric encryption
algorithms [59] including the WS-Security mandatory algorithms, namely,
TRIPLEDES [60], AES-128, AES-192 and AES-256 [61]. The PKI algorithm used
for key exchange was RSA-V1.5 [62] with 1024 and 2048 bit keys. Upon successful
analysis of confidentiality, we tried to ensure data integrity of the messages. The
messages were digitally signed and were evaluated against two signature algorithms,
DSAwithSHA1 (DSS) [63] and RSAwithSHA1 with 1024 and 2048 bit keys. The
effect of signing on top of encryption was also studied later, considering the best
algorithms from the individual analysis of encryption and signing. Note that, as said
earlier, all the algorithms mentioned above have been implemented using Java based
light weight bouncy castle cryptographic API.

All of the above test cases were observed with different message sizes. The size of
the request message was 1 Kb while the size of the response messages ranged from 1-
10Kb. All the experiments were repeated at least 5 times and the mean of the values
were observed for drawing conclusions, to have statistically valid results.

Performance Model of the Mobile Host.
To analyze the performance of the Mobile Host with the security load, the durations
of different activities across the mobile web service invocation cycle are observed.
The client initiates the call for the web service and the Mobile Host processes the
request, populates the response, and sends response back to the client. Similar model
was primarily considered for analysing the performance of Mobile Host with out the
security incorporation. The model is extended and explained here to contain the
security parameters as well.

WS request transmission

-

Decrypting Request

Client Mobile Host

WSSE Encrypted request

Request de-serialization

Serialize the request

WS Response transmission

TREQST

TT REQD

TREQDCT

T PROCESST

Create the request
CC

T

REQEC
T

WSSE Encrypted Response

Response serialization

Request processing

T
RESEC

TRESS

Response Processing

Response de-serialization

Decrypting Response

TCPT

RESDC
T

RESD
T

TT REQT

TREST

WS request transmission

-

Decrypting Request

Client Mobile Host

WSSE Encrypted request

Request de-serialization

Serialize the request

WS Response transmission

TREQSTTREQST

TT REQDTT REQD

TREQDCTTREQDCT

T PROCESSTT PROCESST

Create the request
CC

T
CC

T

REQEC
T

REQEC
T

WSSE Encrypted Response

Response serialization

Request processing

T
RESEC

T
RESEC

TRESSTRESS

Response Processing

Response de-serialization

Decrypting Response

TCPTTCPT

RESDC
T

RESDC
T

RESD
T

RESD
T

TT REQTTT REQT

TRESTTREST

Fig. 12. Secured mobile web service invocation: operations and time stamps.

The total time taken for this mobile web service invocation (Tmwsp) constitutes,
the time taken by client for constructing valid SOAP message (Tcc), the time taken to
encrypt the message with security information according to WS-Security standard
(Treqec), the time taken to serialize the encrypted message (Treqs), the time taken to
transmit the SOAP request to Mobile Host (Treqt), the time taken for de-serializing
the XML based SOAP request message (Treqd), the time taken to decrypt the request
message (Treqdc), the time taken by the Mobile Host to execute the respective
business logic and to populate the response (Tprocess), the time taken to encrypt the
response message with security information (Tresec), the time taken for serializing
the encrypted response message back to XML data streams (Tress), the time taken to
transmit the SOAP response back to the client (Trest), the time taken to de-serialize
the response at the client (Tresd), the time taken by the client to decrypt the response
message (Tresdc), and lastly the time taken by the client to process the response
(Tcp). The invocation process is shown in Figure 12 and the total time taken for the
mobile web service invocation is given in equation 1.

Tmwsp = Tcc + Treqec + Treqs + Treqt + Treqd + Treqdc + Tprocess +
Tresec + Tress + Trest + Tresd + Tresdc + Tcp

(1)

The exact estimation of the Treqt and Trest time is not possible as their calculation
process needs the synchronization of time stamps of both Mobile Host and client.
Moreover these transmission times were observed during our previous analysis [14].
Those results showed 90% of total invocation cycle is transmission time. So to
analyze the minute extra delays due to security load, the whole invocation cycle is
observed with both the invocation and processing of the web service request at the
Mobile Host itself, thus eliminating the transmission aspects.

Evaluation of the Security for Mobile Host.
The main idea of our study was to realize the WS-Security standards for the Mobile
Host. For achieving this, different encryption algorithms, signer algorithms and
authentication principles were analyzed in the mobile web service provisioning
domain. The performance of the Mobile Host was observed for reasonable quality of
service. The parameters of interest were extra delay and variation in stability of the
Mobile Host with the introduction of the security overhead. Some of the results are
discussed here.

To analyze the effects of message-level encryption on the mobile web service
invocation cycle, the messages were encrypted with IDEA [64] with 128 and 256 bit
keys, DES [65] with 64 and 192 bit keys and AES with 128, 192 and 256 bit keys.
The keys were exchanged using RSA with key sizes 1024 and 2048 bits. Figure 13
summaries the results of our encryption analysis and shows the comparison of
latencies for different encryption algorithms with keys exchanged using RSA 1024.

71
8

20
04 22

24

19
39 21

01 22
23

20
36 21

46

84
7

24
66 25

47

22
36 24

37

23
10

23
58 24

70

93
8

25
14 26

17

23
28 24

98

23
88

24
26 24
98

11
10

25
81 26

94

24
85

27
23

26
44

26
47

26
92

0

500

1000

1500

2000

2500

3000

No
Security

IDEA-128 IDEA-256 DES-64 DES-192 AES-128 AES-192 AES-256

Tr
an

sm
is

si
on

 la
te

nc
ie

s
(in

 m
ill

is
ec

on
ds

)

1 KB message 2 KB message 5 KB message 10 KB message

Fig. 13. Performance latencies with various symmetric key encryption algorithms and
exchanging keys with RSA 1024.

The results suggest that AES 192 encryption turns out be the best symmetric key
encryption method. But the difference in latencies with AES 192 and AES 256 are not
so significant. So the best means of encrypting the message would be to use AES 256

bit key and to exchange the message with RSA 1024 bit key, both in terms of
provided security and performance penalty. Still the increased latency with this best
scenario is approximately 3 times the latency without any security. The extra delays
mainly constitutes the times taken for encryption of the request at the client (Treqec),
the decryption of the request at the Mobile Host (Treqdc), the encryption of the
response at the Mobile Host (Tresec) and the decryption of the response at the client
(Tresdc). From the performance model, we can derive this mobile web service
message security effort (Tmwsse) as follows:

Tmwsse ~= Treqec + Treqdc + Tresec + Tresdc (2)

To analyze the effects of signing on the mobile web service invocation cycle, the
messages were signed with two digital signature algorithms, DSAwithSHA1 (DSS)
and RSAwithSHA1 with 1024 and 2048 bit key sizes. The results suggested that the
best way to sign the mobile web service message would be using RSA V1.5 with
1024 bit key. RSA algorithm is preferred ahead of the DSA, considering the
performance latencies.

With a key size greater than 1024, both key exchange and signing were observed to
be beyond the resource capabilities of smart phones. It was also observed that the
latency caused by signing is slightly higher than the latency caused by the encryption,
especially, when considering DSS signature.

After successful analysis of encryption and signing, we have analyzed the
performance of signing on top of message-level encryption. Figure 14 depicts times
taken for various phases of a message-level secured web service request/response
cycle. The timestamps does not include the transmission delays. The transmission
delays were deliberately eliminated, to be able to observe the minute timestamps of
the remaining activities in the mobile web service invocation cycle. The original
message was ciphered with AES-256 algorithm and its key is exchanged with RSA-
1024 PKI algorithm. To summarize further, the request message size was 1 Kb and
response message size was 2 Kb. The total cycle for highly secured communication,
AES-256 bit ciphered, cost around ~3 sec with RSAwithSHA1 signature and ~5.5 sec
for DSAwithSHA1 signature. The comparison of mobile web service invocation cycle
time stamps for messages signed with RSAwithSHA1 and DSAwithSHA1 are shown
in figure 15.

Advanced Encryption Algorithm(AES) with 256 bit key analysis
(Key exchange with RSA-1024 bit)

28

797

94 84

669

0

722

87 97

697

028

794

275 256

1603

19

725

150 172

1666

0
0

200

400

600

800

1000

1200

1400

1600

1800

Various phases in test cycle

Ti
m

e
in

 m
ill

is
ec

on
ds

Signed with RSA 28 797 94 84 669 0 722 87 97 697 0

Signed with DSA 28 794 275 256 1603 19 725 150 172 1666 0

T_cc T_req
ec

T_req
s

T_req
d

T_req
dc

T_poc
ess

T_res
ec

T_res
s

T_res
d

T_res
dc

T_cp

Fig. 14. Latencies of various phases of a message-level secured mobile web service invocation

cycle.

Symmetric Encryption Algorithms Analysis
(Key exchange with RSA-1024 bit)

3356 3491 3634 3375 3626 3441 3275

5457 5444
5705 5535

6127
5571 5688

0

1000

2000

3000

4000

5000

6000

7000

IDEA-128 IDEA-256 DES-64 DES-192 AES-128 AES-192 AES-256

Algorithms with key sizes

Ti
m

e
in

 m
ill

is
ec

on
ds

RSA Signature DSA Signature

Fig. 15. Comparison of timestamps of web service invocation cycle with various symmetric
key encryption algorithms.

From the analysis shown in figure 14 and figure 15, we can conclude that the best
way of securing messages in mobile web service provisioning is to use AES

symmetric encryption with 256 bit key, and to exchange the keys with RSA 1024 bit
asymmetric key exchange mechanism and signing the messages with RSAwithSHA1.
But there are still high performance penalties when the messages are both encrypted
and signed. So we suggest encrypting only the parts of the message, which are critical
in terms of security and signing the message. The signing on top of the encryption can
completely be avoided in specific applications with lower security requirements.

Effects of WS-Security on Size of the Message.
The increase in size of the message with the security headers is also quite daunting. A
typical web service message after applying the WS-Security is shown in figure 16.
The SOAP message body can be completely encrypted or only parts of the message
can be encrypted. The ciphered data is stored in the body of the updated message. The
security information like encryption algorithms used, keys, digests, signing
information is maintained in the SOAP header. The message shown below is the
snapshot of a message encrypted with AES, and the key exchanged with RSA V 1.5.
The message was later signed with RSAwithSHA1.

<v:Envelope ...>
 <v:Header>
 <Security>
 <n1:EncryptedKey ...>
 <EncryptedMethod Algorithm="...#rsa-1_5" />
 <CipherData>
 <CipherValue>...</CipherValue>
 </CipherData>
 <ReferenceList>
 <DataReference URI="#4412525"/>

 </ReferenceList>
 </n1:EncryptedKey>
 <n2:Signature ...>
 <SignedInfo>
 <SignatureMethod Algorithm="...#rsa-sha1" />
 <Reference>
 <DigestMethod Algorithm="...#sha1" />
 <DigestValue>...</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>...</SignatureValue>
 <KeyInfo>
 <KeyValue>
 <RSAKeyValue>
 <Modulus>...</Modulus>
 <Exponent>AQAB</Exponent>
 </RSAKeyValue>
 </KeyValue>
 </KeyInfo>
 </n2:Signature>
</Security>

 </v:Header>
 <v:Body>
 <n0:EncryptedData Id="223940028" ...>

<EncryptionMethod Algorithm="...#AESEngine" />
 <CipherData>
 <CipherValue>Ye/qF7...</CipherValue>
 </CipherData>
</n0:EncryptedData>

 </v:Body>
</v:Envelope>

Fig. 16. A typical SOAP message incorporated with WS-Security.

The example showed in figure 16 also hints the increase in size of the message
with the added security header information. With our analysis we have observed that
there is a linear increase in the size of the message with the security incorporation.
The latency in the encrypted message size for a typical 5 Kb message is
approximately 50% [66].

3.3 Scalability Aspects of the Mobile Host

Web services communication is a layered communication and across different
protocols. Considering SOAP over HTTP, at the lowest level is the transportation
protocol, TCP. On top of TCP lies the HTTP communication. Then SOAP
communication is over the HTTP protocol. The application communication and
protocols for example WS-Security lies on top of SOAP. So any message exchanged
over the web service communication, consists some overhead across all the different
layers. Since we are considering wireless environments, and the message exchange is
over the cellular network, the size of the message has to be reduced to the minimum
possible level [67]. So from this discussion, the size of the message

Bmsg = Btp + Bmtp + Bsoap + Bapp (3)

Where Btp, Bmtp, Bsoap, Bapp are the message overheads over transportation,
message transportation, SOAP, application protocols respectively. So to exchange the
messages effectively the Bmsg has to be minimized. So let us consider shedding some
overhead at each level. We also should note that the minimal encoding may not
always be the best solution. First reason for this is that the encoding should be
efficient, both in terms of size reduced and extra performance penalties added. For
example if the size of message is reduced by 50% and the processing of the encoding
takes more than half the time of actual message exchange cycle, the encoding
mechanism is not efficient. Secondly the encoding mechanism should not affect the
interoperability.

So if an attempt is made to reduce the overload at Btp or Bmtp, the interoperability
of the web services is seriously impeded. So the best position to target the encoding
process is at the Bsoap level. So the XML based SOAP messages are to be
compressed. We are currently focusing at different XML compression [68], [69] and
SOAP optimization techniques [70], to reduce the size of the message to be
transmitted, there by improving the scalability of the Mobile Host. The compression
of the web service messages can in turn reduce the security load, as the content to be
encrypted or signed becomes less with compression, and thus improves the
performance of the Mobile Host. But only in terms of security processing there is not

significant difference with increase in size, at least until 10 Kb message sizes, as from
our results shown in figure 13.

From this QoS analysis we can conclude that the results of our security study are

welcoming and the mobile web service messages of reasonable size, approximately 2-
5kb, can be secured with web service security standard specifications. But based on
our till-date realization of security awareness in cellular networks, we conclude that
secure web service provisioning in mobile networks is still a great challenge. The
mechanisms developed for traditional networks are not always appropriate for the
mobile web services environment and this area still holds ample room for further
research. From the analysis we also recommend some support at the hardware level,
handling the security details for the smart phones. But having a hardware support
might effect the interoperability, and the hardware need to be upgraded with each
software update at the security algorithm level. A trade-off between the two
arguments is yet to be met at this level.

Our future research in this domain includes providing proper end-point security for
the Mobile Host with federated identity and appropriate single sign on strategy, using
SAML and LA standards. We also want to have a detailed performance analysis of
the Mobile Host with full security features through real-time applications. We are also
looking for alternatives, to reduce the security and scalability processing load on the
Mobile Host. We are trying to realize an Enterprise Service Bus (ESB) [71] based
Mobile Web Services Mediation Framework (MWSMF) [72], which maintains the
individual user profiles, personalization settings and context sensitive information.
The MWSMF helps in maintaining the QoS of the Mobile Host. With the mediation
framework in place the communication between the client and the middleware could
be based on WS-Security and the communication between the middleware and the
Mobile Host be based on a security mechanism feasible for mobile web services. The
transformation of the messages between the two standards will also be handled at the
mediation framework. Similar transformations can be maintained at the mediation
framework handling the scalability issues. In the scalability scenario the
communication between the client and the middleware is based on the basic web
services standard and the communication between the middleware and the Mobile
Host be based on a technique that compresses web service message exchange.

4 Mobile Web Service Discovery

We have discussed many applications with the Mobile Host, in the previous sections.
While the applications possible with mobile web services are quite welcoming, the
huge number of web services possible, with each Mobile Host providing some
services in the wireless network, makes the discovery of these services quite complex.
Proper discovery mechanisms are required for successful adoption of mobile web
services into commercial environments. The traditional centralized UDDI based
registries [18] have many limitations in this aspect and might not be the perfect
solution for the mobile web service discovery. The dynamic nature of the mobile
nodes further enhances this problem.

4.1 Discovery Aspects of Mobile Web Services

Generally, in standard web services, once a service provider develops and deploys the
service, he publishes the service with a UDDI registry. The registry maintains a
reference of the WSDL documents. The WSDL document, that defines and describes
a web service, consists of information specific to the location of the service (binding
information) and the operations (methods) the service exposes. Any potential web
service client searches for the service in the public registry, gets the description of the
service and tries to access the service using the information specified by the WSDL.
Similar to web service invocation, the communication between client and UDDI
registry is also based on SOAP. Since the Mobile Host is implemented on the smart
phone, mostly by using the basic web services architecture, the standard WSDL and
UDDI registry can theoretically be used to describe and publish the services.
Obtaining the binding information of the mobile web services is tricky as it needs the
IP address of the Mobile Host, where the services are deployed.

But in a commercial environment with Mobile Hosts, and with each Mobile Host
providing some services in the wireless network, the bulk of services expected to be
published could be quite high. In such a situation, a centralized solution is not a best
idea, as they can have bottlenecks and can make single points of failure. Besides,
mobile networks are quite dynamic due to the node movement. Nodes can join or
leave network at any time and can switch from one operator to another operator. This
makes the binding information in the WSDL documents, inappropriate. Hence the
services are to be republished every time the Mobile Host changes the network or its
binding information. This process leaves many stale advertisements in the registry.
Keeping up to date information of the published mobile web services in centralized
registries is really difficult. So we are studying alternate means of discovering the
web services deployed with Mobile Hosts. Here we will be addressing our proposed
solution using P2P networks. Before explaining the discovery of mobile web services
in P2P network, we discuss the issues with Mobile Host’s entry into P2P network.

4.2 Mobile Web Service Provisioning in P2P Networks

During our application analysis of Mobile Host, it was observed that most of the
targeted collaborative applications, somehow converged to P2P applications and P2P
offered a large scope for many applications with Mobile Host. P2P is a set of
distributed computing model systems and applications, used to perform a critical
function in a decentralized manner. Peers are autonomous and in its pure form; each
peer acts as both server and client. P2P takes advantage of resources of individual
peers like storage space, processing power, content and achieves scalability, cost
sharing and anonymity, and thereby enables ad-hoc communication and collaboration.
P2P systems have evolved across time and have wide range of applications and
provide a good platform for many data and compute intensive applications [73], [74].

The first generation P2P systems like Napster [75] used centralized servers for
maintaining an index of the connected peers and their resources. The indexes can later
be queried by the peers and the resources are downloaded from the provider peers
using IP networks. But these centralized systems have single points of failure and

produce giant communication traffic and storage on the server resulting bottlenecks.
These drawbacks lead to the second generation of P2P systems like Gnutella [73]
which used a complete decentralized network. Unlike Napster, Gnutella would
connect users directly to a group of other users and so on. For this, Gnutella uses pre-
existing, extendable list of possible working peers, whose addresses are embedded
inside the application code. But these decentralized networks formed islands in the
P2P network and their search functions were unreliable and may not query entire
network. The third generation P2P systems like eDonkey [76] and Bit Torrent [77] are
a hybrid of the previous two generation technologies and made enhancements to
improve their ability to deal with large numbers of users using concepts like super
peers. Super peers have higher resource capabilities and act as relays for other peers
and super peers. Super peers also have abilities to traverse NAT and firewall.

Analogous to web services, P2P systems can also leverage SOA and are also
designed to enable loosely coupled systems. The concept of services and the
similarities of description stack of both P2P and web services make them comparable
[78]. The major difference being; web services will be well-known hosts with static
IP addresses, and are based on a centralized model and primarily focused on
standardizing messaging formats and communication protocols. P2P systems, on the
other hand, are based on a decentralized model and primarily focused on supplying
processing power, content, or applications to peers in a distributed manner, and less
focused on the semantics of messaging formats and communication protocols. In the
P2P world the peers jump through potential jumble of firewalls, NATs and proxies
trying to connect to other peers.

In order to reap the benefits of P2P, by achieving increased application scope, and
targeting efficient utilization of resources of individual mobile peers, we are trying to
adapt Mobile Host into P2P networks. For this many of the current P2P technologies
like Gnutella, Napster and Magi [79] are studied in detail. Most of these technologies
are proprietary and are generally targeting specific applications. Only project JXTA
[20] offers a language agnostic and platform neutral system for P2P computing. JXTA
technology is a set of open protocols that allow any connected device on the network
ranging from cellular phones and wireless PDAs to PCs and servers to communicate
and collaborate in a P2P manner. JXTA enables these devices running on various
platforms not only to share data with each other, but also to use functions of their
respective peers. JXTA peers use XML as standard message format and create a
virtual P2P network over these devices connected over different networks.

Moreover the JXTA community has developed a light version of JXTA for mobile
devices, called JXME (JXTA for J2ME) [80]. JXME works on MIDP supporting
devices like smart phones. JXME simplified Mobile Host’s entry into P2P domain.
JXME has two versions: proxyless and proxied. The proxyless version works similar
to native JXTA, whereas the proxied version needs a native JXTA peer to be set up as
its proxy. The proxied version is lighter of the two versions and peers using this
version participate in binary communication with their proxies. Considering JXTA
also eliminates many of the low level details of the P2P systems like the
transportation details. The peers can communicate with each other using the best of
the many network interfaces supported by the devices like ethernet, WiFi, GPRS etc.
Moreover JXTA dynamically uses either TCP or HTTP protocols to traverse network
barriers, like NATs and firewalls.

Considering these advantages and features of the JXTA, the Mobile Host was
adapted into the JXTA network, to check its feasibility in P2P networks. Figure 17
shows the architecture of final deployment scenario of Mobile Hosts in the JXME
network.

BTS1

BTS2 BTS3

JXTA Super
peer (Relay &
Rendezvous)

JXTA Relay
peer

JXTA
Rendezvous
peer

JXME edge
peer

JXME edge
peer

JXME edge
peer

JXME edge
peer

BTS1

BTS2 BTS3

BTS1

BTS2 BTS3

JXTA Super
peer (Relay &
Rendezvous)

JXTA Relay
peer
JXTA Relay
peer

JXTA
Rendezvous
peer

JXTA
Rendezvous
peer

JXME edge
peer

JXME edge
peer
JXME edge
peer

JXME edge
peer

JXME edge
peer
JXME edge
peer

JXTA
Rendezvous
peer

JXTA
Network Mobile Operator Network

Virtual P2P Network

BTS1

BTS2 BTS3

JXTA Super
peer (Relay &
Rendezvous)

JXTA Relay
peer

JXTA
Rendezvous
peer

JXME edge
peer

JXME edge
peer

JXME edge
peer

JXME edge
peer

BTS1

BTS2 BTS3

BTS1

BTS2 BTS3

JXTA Super
peer (Relay &
Rendezvous)

JXTA Relay
peer
JXTA Relay
peer

JXTA
Rendezvous
peer

JXTA
Rendezvous
peer

JXME edge
peer

JXME edge
peer
JXME edge
peer

JXME edge
peer

JXME edge
peer
JXME edge
peer

JXTA
Rendezvous
peer

JXTA
Network

BTS1

BTS2 BTS3

JXTA Super
peer (Relay &
Rendezvous)

JXTA Relay
peer

JXTA
Rendezvous
peer

JXME edge
peer

JXME edge
peer

JXME edge
peer

JXME edge
peer

BTS1

BTS2 BTS3

BTS1

BTS2 BTS3

JXTA Super
peer (Relay &
Rendezvous)

JXTA Relay
peer
JXTA Relay
peer

JXTA
Rendezvous
peer

JXTA
Rendezvous
peer

JXME edge
peer

JXME edge
peer
JXME edge
peer

JXME edge
peer

JXME edge
peer
JXME edge
peer

JXTA
Rendezvous
peer

JXTA
Rendezvous
peer

JXTA
Network Mobile Operator Network

Virtual P2P Network

Fig. 17. Virtual mobile P2P network with Mobile Hosts.

As shown in figure 17, the virtual P2P network is established in the mobile
operator network with one of the node in operator proprietary network, acting as a
JXTA super peer. JXTA network supports different types of peers to be connected to
the network. The general peers are called edge peers. An edge peer registers itself
with a rendezvous peer to connect to the JXTA network. Rendezvous peers cache and
maintain an index of advertisements published by other peers in the P2P network.
Rendezvous peers also participate in forwarding the discovery requests across the P2P
network. A relay peer maintains route information and routes messages to peers
behind the firewalls. A super peer has the functionality of both relay and rendezvous
peers. In the mobile P2P network, the super peer can exist at Base Transceiver Station
(BTS) and can be connected to other base stations, thus extending the JXTA network
into the mobile operator network. Any Mobile Host or mobile web service client in
the wireless network can connect to the P2P network using the node at base station as
the rendezvous peer. The super peer can also relay requests to and from JXTA
network, to the smart phones. Standalone systems can also participate in such a
network as both rendezvous and relay peers, if the operator network allows such
functionality, further extending the mobile P2P network.

Mobile Host in JXME network offers many advantages in domains like
collaborative learning, image sharing, and location based services etc., taking
advantage of individual peers’ resources like storage space, processing power.

Moreover, the mobile phone users in the operator network might not use the web
services for the development purpose. General mobile users are interested in
applications rather than individual components or web services. An application might
use one or more web services at the backend and can be provided as an installable
application. In such a situation, the P2P network can offer easy means of storing and
sharing these installable client applications for the participating peers.

Not just the enhanced application scope, the JXME network also provides many
technical advantages to the Mobile Host like enhanced service discovery and access
mechanisms. With in JXTA network, each peer is uniquely identified by a static peer
ID, which allows the peer to be addressed independent of its physical address like
DHCP based IP address. This peer ID will stay forever with that device even though
the device supports multiple network interfaces like Ethernet, WiFi for connecting to
the P2P network. By using peer ID, Mobile Host does not have to worry about
changing IPs and operator networks, and is always visible to the web service client.
Mapping the peer ID to the IP is taken care by the JXTA network, thus eliminating
the need for public IP. The public IP for each of the participating Mobile Hosts was
observed to be the major hindrance for commercial success of Mobile Host.

4.3 Discovery of Mobile Web Services in JXTA Network

In JXTA the decentralization is achieved with the advertisements. All resources like
peers, peer groups and the services provided by peers in JXTA network are described
using advertisements. Advertisements are language-neutral metadata structures
represented as XML documents. Peers discover each other, the resources available in
the network and the services provided by peers and peer groups, by searching for their
corresponding advertisements. Peers may cache any of the discovered advertisements
locally. Every advertisement exists with a lifetime that specifies the availability of
that resource. Lifetimes gives the opportunity to control out of date resources without
the need for any centralized control mechanism. To extend the life time of an
advertisement, the advertisements are to be republished.

Thus to achieve alternate discovery mechanism for mobile web services, the
services deployed on Mobile Host in the JXTA network are to be published as JXTA
advertisements, so that they can be sensed as JXTA services among other peers.
JXTA specifies ‘Modules’ as a generic abstraction that allows peers to describe and
instantiate any type of implementation of behaviour in the JXTA world. So the mobile
web services are published as JXTA modules in the P2P network. The module
abstraction includes a module class, module specification, and module
implementation. The module class is primarily used to advertise the existence of a
behaviour. Each module class contains one or more module specifications, which
contain all the information necessary to access or invoke the module. The module
implementation is the implementation of a given specification. There might be more
than one implementation for a given specification across different platforms. Figure
18 shows the mapping between JXTA modules and web services. The collection of
module abstractions represent the UDDI in a sense of publishing and finding service
description and WSDL in a sense of defining transport binding to the service.

Module
Implementation
Advertise a platform
specific implementation

Module Specification
Advertise how to access a
Service
(API, messages)

Module class
Advertise the existence of
a service

Module
Implementation
Advertise a platform
specific implementation

Module Specification
Advertise how to access a
Service
(API, messages)

Module class
Advertise the existence of
a service

UDDI
Registry

Service
Interface

Service
Implementation

WSDL

Module
Implementation
Advertise a platform
specific implementation

Module Specification
Advertise how to access a
Service
(API, messages)

Module class
Advertise the existence of
a service

Module
Implementation
Advertise a platform
specific implementation

Module Specification
Advertise how to access a
Service
(API, messages)

Module class
Advertise the existence of
a service

UDDI
Registry

Service
Interface

Service
Implementation

Service
Interface

Service
Implementation

Service
Implementation

WSDL

Fig. 18. Mapping between JXTA modules and Web Services.

To publish the mobile web services in the JXTA network, a standard Module Class
Advertisement (MCA) is published into the P2P network, declaring the availability of
a set of web service definitions, in that peer group. Once new web services are
developed for the Mobile Host, the WSDL descriptions of these services are
incorporated into the Module Specification Advertisements (MSA), and are published
into the P2P network. The MSAs are published into JXME network with an
approximate life time that specifies the amount of time the Mobile Host wants to
provide the service. The MSAs are cached at rendezvous peers or any other peers,
with sufficient resource capabilities. Once the life time expires the MSAs are
automatically deleted from the P2P network, thus avoiding the stale advertisements. If
the Mobile Host wants to extend the life time of the provided service, the MSA can be
republished. The MSA can be published into the network by a service developer or
even by the Mobile Host. The structure of the MSA is shown in figure 19.

<?xml version=”1.0” encoding=”UTF-8”?>
<jxta:MSA>
<MSID> . . . </MSID>
<Name> . . . </Name>
<Crtr> . . . </Crtr>
<SURI> . . . </SURI>
<Vers> . . . </Vers>
<Desc> . . . </Desc>
<Parm>
 <WSDL>
 <definitions …>
 <message …> . . . </message>
 <portType …> . . . </portType>
 . . .

</definitions>
 <WSDL>
</Parm>
<jxta:PipeAdvertisement> . . . </jxta:PipeAdvertisement>
<Proxy> . . . </Proxy>
<Auth> . . . </Auth>
</jxta:MSA>

Fig. 19. Structure of module specification advertisement (MSA) advertising a web service.

The MSA contains unique identifier (MSID) that also includes the static module
class ID, which identifies the web services module class advertisement. The other
elements of MSID include name, creator, specification and description of the
advertisement. The optional element Parm consists the description (WSDL) of the
web service being advertised. The PipeAdvertisement consists the advertisement of
the pipe which can be used to connect to the specific web service deployed on the
Mobile Host. The receiving endpoint of the pipe can be addressed with a Peer ID of
the respective peer. Thus if the invocation of mobile web service is across the JXTA
network, using pipes, the need for public IP is eliminated. This sort of invocation is
being studied and for the time being the Mobile Host is addressed with IP and once
the web services are discovered the communication between the Mobile Host and
mobile web service client is still SOAP over HTTP. The remaining two elements,
Proxy and Auth from MSA carry the proxy module and the security (authentication)
information of the wed service module.

The module specification advertisements carrying the web service descriptions can
be searched by name and description parameters. The JXTA API provides a simple
keyword search on the name and description elements of the modules advertised in
mobile P2P network. As we are considering about huge numbers of mobile web
services, these basic parameters might not be sufficient to find out the exact search
results. In fact, some valuable information like context information may not be
included in these basic XML tags. Moreover we would like to extend the search
criteria to the WSDL level. This means that search parameters would not be restricted
to module specification advertisement details. The search will also extend by looking
up the WSDL tags and information. The main idea behind this approach is that people
usually express their opinion by using frequently used words and the frequency of a
keyword in WSDL description is also relevant. To handle this, advanced discovery of
mobile web services in P2P, index searching tools are used to match the best suited
services.

This detailed search mechanism can not be performed at the JXME edge peer
because of the resource limitations of the smart phones. So, the advanced search
mechanism can be shifted to the standalone distributed middleware, MWSMF, just
like the QoS components. In the scenario where the Mobile Host uses the proxied
version of JXME, the proxy node can be a participant in the mediation framework,
handling the discovery issues for the smart phones.

4.4 Advanced Matching/Filtering of Services

As already discussed, the basic mobile web service discovery in JXTA networks,
across module specification advertisements is purely based on text based keywords.
Hence the search returns a large number of resulted services, returning every service
that matches the keyword. Since the discovery client in this scenario is a smart phone,
the result set should be quite small so that the user can scroll through the list and can
select the intended service. Subsequently to order the JXTA search resulted services
according to their relevancy, Apache Lucene tool [81] is used. Lucene is an open

source project hosted by Apache and provides a Java based high-performance, full-
featured text search engine library. Lucene allows to add indexing and searching
capabilities to user applications. Lucene can index and make searchable any data that
can be converted to a textual format. Using the tool and its index mechanism the
search results were ordered/filtered and the advance matched services were returned
to the discovery client.

Modules advertising the web services in JXTA can also be properly categorized
using peer groups. Web services of the same category like services of same publisher,
same business type can thus be published in the same peer groups. Hierarchies of peer
groups can be maintained in JXTA. Categories help in identification or classification
of all the web service types and help in easy discovery of web services. The peer
groups thus simulate the tModel feature of the UDDI. Currently we are studying to
compare the P2P discovery approach with UDDI and are trying to join the best
features of UDDI into our ‘mobile P2P discovery’ approach.

Once the mobile web services were discovered from the P2P network, the mobile
user can scroll through the list of services and can select the best possible service. The
web service invocation client is dynamically generated at the mediation framework
using the WSDL2Java tools [10], [82] and is downloaded and installed into the smart
phone. The deployed client software can then be used to access the service from the
Mobile Host. Alternatively mobile applications were developed by composing
multiple services and the applications were advertised into the P2P network and were
shared using P2P file sharing mechanisms.

4.5 Evaluation of Mobile Web Service Discovery

To evaluate the mobile P2P discovery approach, a JXTA P2P network is established
with smart phones connecting to a stand alone relay peer. The relay also acts as a
JXME proxy for the mobile phones and thus connecting them to the JXTA network.
The relay peer is connected to a stand alone PC, which acts as a rendezvous peer. The
rendezvous peer can further connect to other rendezvous peers. Thus the P2P network
is established and the network is extended to public JXTA network. The JXME P2P
scenario is shown in figure 20.

The mobile web services developed for the smart phones are deployed on the
P910i based Mobile Hosts and the services are advertised according to the mobile P2P
discovery approach at the rendezvous peer1. Later alternate smart phones are
connected to the P2P network using the relay peer, shown in figure 20, searched for
the services in the P2P network. The smart phones are successful in identifying the
services in the P2P network, with reasonable performance penalties for the Mobile
Host. The discovery process took less than a second for most of the services. The
scalability of the approach is yet to be verified once the UDDI mapping is finalized.

Internet

Mobile Host

Relay Peer /
JXME Proxy

GPRS / UMTS

WSWS

Operator
Network

Rendezvous
Peer 1

Service Publisher

Rendezvous
Peer 2

InternetInternet

Mobile Host

Relay Peer /
JXME Proxy

GPRS / UMTS

WSWS

Operator
Network
Operator
Network

Rendezvous
Peer 1

Service Publisher

Rendezvous
Peer 2

Fig. 20. The P2P based mobile web service discovery evaluation scenario.

Since the mobile web service discovery approach is a keyword based search and
the search also extended to WSDL parameters, the relevancy of the resulting services
were observed to be a little indistinguishable. Mobile web service clients generally
prefer using services of the Mobile Host based on several context parameters such as
location, time, device capabilities, profiles, and load on the Mobile Host etc. Most of
these details can not be provided just based on keywords. Once the P2P discovery
approach finds its way in to the real-time environment, with each Mobile Host
providing some services, providing the context information like user profiles and
device capabilities is crucial in achieving much valid results.

Semantic matching of services gives the most appropriate and relevant results for
mobile web service discovery. The service context and device profiles can be
described using ontology-based mechanism. For describing the semantics of services,
the latest research in service-oriented computing recommends the use of Web
Ontology Language (OWL) [83] based Web Ontology Language for Services (OWL-
S) [84]. OWL-S is an ongoing effort to enable automatic discovery, invocation, and
composition of web services. Currently we are studying to realize this semantic
mobile web service discovery process in P2P networks.

But the semantic discovery process is heavy, in terms of both resource
consumption and performance latencies like extra delay. So after the analysis of our
approach, we suggest using the P2P discovery mechanism first to reduce the search
space. The resulted services can then be matched semantically for the most relevant
results. Just as a hint, in terms of numbers, the advanced matching of services should
return a set of approximately 50 matched services, of which the semantic matching
should reduce the resulted services to a scrollable set (5 - 10) for the smart phones.

5 Conclusion and Future Research Directions

This paper mainly discussed our mobile web service provisioning project with the
concepts, performance analysis and application scope of the Mobile Host. Mobile
Host is technically feasible and our performance analysis suggested that many basic
services can be provided from the smart phones with reasonable performance
penalties. From our performance analysis, as the most important result, it turns out
that the total web service processing time at the Mobile Host is only a small fraction
of the total request-response invocation cycle time (<10%) and rest all being
transmission delay, in a GPRS network. This makes the performance of the Mobile
Host directly proportional to achievable higher data transmission rates. Thus the
higher data transmission rates possible with emerging 3G and 4G technologies make
the Mobile Host soon realizable in commercial environments. Mobile Host offers
many applications in different domains and some of the scenarios are addressed here.

The paper later discussed the QoS challenges for the Mobile Host, both in terms of
security and scalability issues, and tried to adapt some of the existing QoS standards
to the mobile web services domain. In terms of security analysis, first we have
discussed mobile Host’s problems and aspects with security and tried to give the best
possible message-level security scenario for mobile web services. The results of our
security analysis are welcoming and the mobile web service messages of reasonable
size, approximately 2-5kb, can be secured with web service security standard
specifications. But based on our till-date realization of security awareness in cellular
networks, we conclude that secure web service provisioning in mobile networks is
still a great challenge. The mechanisms developed for traditional networks are not
always appropriate for the mobile environment and this area still holds ample room
for further research. Our future research in the security domain includes providing
proper end-point security for the Mobile Host with federated identity and appropriate
single sign on strategy, using SAML and LA standards. In terms of scalability, we are
focusing at different XML compression and SOAP optimization techniques, to reduce
the size of the message to be transmitted, there by improving the scalability of the
Mobile Host. The compression of the web service messages can in turn reduce the
security load, as the content to be encrypted or signed becomes less, and thus
improves the performance of the Mobile Host. But only in terms of security
processing at the Mobile Host, there is not significant difference with increase in
encrypted message size, at least until 10 Kb message sizes, as from our results shown
in figure 13.

In terms of providing proper QoS for Mobile Host, we are looking for alternatives
to reduce the security and scalability processing load on the Mobile Host. We are
trying to realize an Enterprise Service Bus (ESB) based Mobile Web Services
Mediation Framework (MWSMF), which maintains the individual user profiles,
personalization settings and context sensitive information. With the mediation
framework in place the communication between the web service client and the
middleware could be based on WS-* specifications and the communication between
the middleware and the Mobile Host be based on the QoS mechanism feasible for
mobile web services. The transformation of the messages between the two standards
will also be handled at the mediation framework. The communication between
mediation framework and the Mobile Host can even be without any QoS parameters,

if the mediation framework can be deployed with the operator network and the
operator maintains the QoS terms in the cellular network. If the later scenario is
possible, the Mobile Host is completely deprived off the additional QoS loads.

The paper also addressed the concept of publishing and discovery of web services
deployed with Mobile Hosts in P2P networks. The approach makes use of the JXTA
modules feature and provides an alternative means for discovering the mobile web
services. The approach clearly solves the problem of discovering huge number of
mobile web services, using resources of individual peers effectively, and at the same
time eliminates the problem of inactive (stale) services. The scalability of the
approach is yet to be verified and its conceptual mapping with UDDI registry is being
studied. We are also interested in extending the approach to the semantic web services
domain. Basically we are looking at context aware service discovery considering
device, location, and time context and user preferences of the smart phones. Apart
from the discovery mechanism, accessing the mobile web service in JXTA network,
in addition to their access from the IP network is also of high interest. The access
mechanism provides alternative means of addressing the Mobile Hosts and thus
eliminates the need for public IP for all participating Mobile Hosts, in an operator
proprietary cellular network.

Acknowledgments. This work is supported by German Research Foundation (DFG)
as part of the Graduate School ”Software for Mobile Communication Systems” at
RWTH Aachen University and partly by the Research Cluster Ultra High-Speed
Mobile Information and Communication (UMIC) (http://www.umic.rwth-aachen.de/)

References

1. Box, D. et al.: Simple Object Access Protocol (SOAP), version 1.1., W3C Note, W3C.
http://www.w3.org/TR/soap/ (2000)

2. IETF: Hypertext Transfer Protocol version 1.1., IETF RFC 2616.
http://www.ietf.org/rfc/rfc2616.txt (1999)

3. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description
Language (WSDL) 1.1., W3C Working group note. http://www.w3.org/TR/wsdl (2001)

4. Booth, D., Haas, H., McCabe, F.: Web Service Architecture, W3C Working group note.
http://www.w3.org/TR/ws-arch/ (2004)

5. Rollman, R., Schneider, J.: Mobile web services, XML 2004 Proceedings by SchemaSof.,
http://www.idealliance.org/proceedings/xml04/papers/73/MobileWebServices.pdf (2004)

6. 3GPP: Third Generation Partnership Project. http://www.3gpp.org/ (2007)
7. Thomas, K: Fourth Generation (4G) wireless communications. http://www.4g.co.uk/ (1999)
8. OMA: Open mobile alliance overview, Open mobile alliance group.

http://www.openmobilealliance.org/docs/OMAShortPaper_May2004v.1.doc (2004)
9. LibertyAlliance: The Liberty Alliance Project. http://www.projectliberty.org/ (2007)
10. Sun: Sun Java Wireless Toolkit. http://java.sun.com/products/sjwtoolkit/ (2007)
11. IBM: WebSphere Studio Device Developer. http://www-

306.ibm.com/software/wireless/wsdd/ (2007)
12. Balani, N.: Deliver Web Services to mobile apps, IBM developerWorks, (2003)
13. Srirama, S., Jarke, M., Prinz, W.: Mobile Web Service Provisioning. In: Int. Conf. on

Internet and Web Applications and Services (ICIW06). IEEE Computer Society (2006)
120-125

14. Srirama, S., Jarke, M., Prinz, W.: Mobile Host: A feasibility analysis of mobile Web
Service provisioning’, 4th International Workshop on Ubiquitous Mobile Information and
Collaboration Systems, UMICS 2006, a CAiSE'06 workshop. (2006) 942-953

15. Atkinson, B. et al.: Web Services Security (WS-Security), Technical report, Microsoft,
IBM and Verisign, April. (2002)

16. Farell, S. et al.: Assertions and Protocol for the OASIS Security Assertion Markup
Language (SAML), V1.1., Committee specification, OASIS. (2003)

17. Srirama, S., Jarke, M., Prinz, W. and Pendyala, K.: Security Aware Mobile Web Service
Provisioning, In Proceedings of the International Conference for Internet Technology and
Secured Transactions, ICITST’06. London, UK, ISBN 0-9546628-2-2, e-Centre for
Infonomics. (2006) 48-56

18. UDDI: Universal Description, Discovery, and Integration (UDDI), Technical report,
UDDI.ORG. http://www.uddi.org (2000)

19. Shirky, C., Truelove, K., Dornfest, R., Gonze, L., Dougherty, D. (Eds.): P2P networking
overview. Sebastopol, CA: O’Reilly. (2001)

20. Gong, L.: JXTA: A network programming environment. IEEE Internet Computing, 5(3).
(2001) 88–95

21. Holley, K., Channabasavaiah, K., Tuggle, Jr. E. M.: Migrating to a Service-Oriented
Architecture, IBM DeveloperWorks (2003)

22. OMG: Common Object Request Broker Architecture: Core Specification, Object
Management Group. http://www.omg.org/docs/formal/04-03-12.pdf (2004)

23. MicrosoftCorporation: Distributed Component Object Model Protocol-DCOM/1.0, draft,
Microsoft Corporation. (1996)

24. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures and
Applications, Springer. (2004)

25. Rysavy, P.: General Packet Radio Service (GPRS), GSM Data Today online journal.
http://www.rysavy.com/Articles/GPRS/GPRS.htm (1998)

26. ETSI: GSM Technical Specification, GSM 03.64: General Packet Radio Service (GPRS).
(1997)

27. Ericsson: Enhanced Data Rates for GSM Evolution (EDGE) - Introduction of high-speed
data in GSM/GPRS networks, white paper, Ericsson AB.
http://www.ericsson.com/technology/whitepapers/edge_wp_technical.pdf (2003)

28. Umtsworld: Overview of the Universal Mobile Telecommunication System, UMTS world.
http://www.umtsworld.com/technology/overview.htm (2002)

29. 4G Press: World's First 2.5Gbps Packet Transmission in 4G Field Experiment,
http://www.4g.co.uk/PR2006/2056.htm (2005)

30. SonyEricsson: Java support in SonyEricsson mobile phones P800 and P802, Developer
guidelines from SonyEricsson Mobile CommunicationsAB, Jan.
www.SonyEricssonMobile.com (2003)

31. kSOAP2: An open source SOAP implementation for kVM, http://ksoap.org/ (2007)
32. J2ME: Java 2 Micro Edition (J2ME), http://java.sun.com/javame/index.jsp (2007)
33. Hummel, J., Lechner, U.: Business models and system architectures of virtual communities.

From a sociological phenomenon to peer-to-peer architectures, International Journal of
Electronic Commerce, 6(3) (2002) 41–53

34. Srirama, S.: Publishing and Discovery of Mobile Web Services in Peer to Peer Networks,
International Workshop on Mobile Services and Personalized Environments (MSPE'06),
Aachen, GI. (2006) 99-112

35. Apte, Deutsch, Jain: Wireless SOAP: Optimizations for Mobile Wireless Web Services,
http://www2005.org/cdrom/docs/p1178.pdf (2005)

36. Van Engelen, R., Galliva, K.: The gSOAP toolkit for web services and peer-to-peer
computing networks, In 2nd IEEE International Symposium on Cluster Computing and the
Grid. (2002)

37. eSOAP: eSOAP – Architecture. http://esoap.ultimodule.com/ (2007)
38. Sandoz, P., Pericas-Geertsen, S., Kawaguchi, K., Hadley, M., Pelegri-Llopart, E.: Fast Web

Services, http://java.sun.com/developer/technicalArticles/WebServices/fastWS/ (2003)
39. ETSI: GSM Technical Specification, GSM 03.34, High Speed Circuit Switched Data

(HSCSD). (1996)
40. Johnson, D., Perkins, C., Arkko, J.: Mobility Support in IPv6. IETF (2002)
41. Novak, L., Svensson, M.: MMS—Building on the Success of SMS, Ericsson Rev., No. 3.

(2001) 102–109
42. GPS: Global Positioning System: Data format. U.S. Coast Guard Navigation Center,

http://www.navcen.uscg.gov/pubs/gps/sigspec/gpssps1.pdf (2004)
43. Apache: Apache Axis, Apache Web Services Project, http://ws.apache.org/axis/ (2007)
44. 3GPP: 3GPP TS 24.011: Point-to-Point (PP) Short Message Service (SMS) support on

mobile radio interface.
45. Chatti, M., Srirama, S., Kensche, D., Cao, Y.: Mobile Web Services for Collaborative

Learning, in Proceedings of the 4th International Workshop on Wireless, Mobile and
Ubiquitous Technologies in Education (WMUTE 2006). Athens, Greece (2006)

46. Belov, N., Braude, I., Krandick, W., Shaffer, J.: Wireless Internet Collaboration System on
Smartphones, 3rd International Workshop on Ubiquitous Mobile Information and
Collaboration Systems, UMICS 2005, a CAiSE'05 workshop (2005)

47. IETF: The SSL Protocol Version 3.0, Internet draft, IETF.
http://www.freesoft.org/CIE/Topics/ssl-draft/INDEX.HTM (1996)

48. IETF: HTTP over TLS, IETF RFC 2818. http://www.ietf.org/rfc/rfc2818.txt (2000)
49. Meier, J.D., Mackman, A., Dunner, M., Vasireddy, S., Escamilla, R., Murukan, A.:

Improving Web Application Security: Threats and Countermeasures, MSDN, Microsoft
Corporation. (2003)

50. Reagle, J. et al: XML Encryption, W3C Working group note.
http://www.w3.org/Encryption/2001/ (2001)

51. Eastlake, D., Reagle, J., Solo, D. et al.: XML-Signature Syntax and Processing, W3C Note.
http://www.w3.org/TR/xmldsig-core/ (2002)

52. IBM: Security in a Web Services world: A Proposed Architecture and Roadmap, IBM
Developerworks. (2002)

53. Lockhart, H., Parducci, B.: OASIS eXtensible Access Control Markup Language
(XACML), OASIS Standard Specification. (2005)

54. LibertyAlliance: Liberty Alliance Project Whitepaper: Personal Identity, The Liberty
Alliance. (2006)

55. OMA: OMA Web Services Enabler (OWSER): Overview, Open mobile alliance group.
http://www.openmobilealliance.org/release_program/docs/OWSER/V1_0-20040715-
A/OMA-OWSER-Overview-V1_0-20040715-A.pdf (2004)

56. JSR 118: Mobile Information Device Profile (MIDP) V2.0., Java Community process.
http://java.sun.com/products/midp/ (2002)

57. JSR 139: Connected Limited Device Configuration (CLDC), Java Community process.
http://java.sun.com/products/cldc/ (2002)

58. BouncyCastle: Bouncy Castle Crypto APIs, The Legion of the Bouncy Castle.
http://www.bouncycastle.org/ (2007)

59. RSALabs: Cryptographic technologies, RSA Labs.
http://www.rsasecurity.com/rsalabs/node.asp?id=2212 (2007)

60. TRIPLEDES: Triple Digital Encryption Standard, RSA Labs.
http://www.rsasecurity.com/rsalabs/node.asp?id=2231 (2007)

61. AES: Advanced Encryption Standard, RSA Labs.
http://www.rsasecurity.com/rsalabs/node.asp?id=2234 (2007)

62. Rivest, R., Shamir, A. and Adleman, L. M.: A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems, Communications of the ACM, v. 21, n. 2. (1978) 120-126

63. DSS: Digital Signature Standard, RSA Labs.
http://www.rsasecurity.com/rsalabs/node.asp?id=2239 (2007)

64. Lai, X.: On the design and security of block ciphers, ETH Series in Information Processing,
Massey, J.L. (editor), vol. 1, Hartung-Gorre Verlag Konstanz, Technische Hochschule
(Zurich). (1992)

65. FIPS: Data Encryption Standard (DES), Federal Information Processing Standards
Publication, October, FIPS PUB-43. http://csrc.nist.gov/publications/fips/fips46-3/fips46-
3.pdf (1999)

66. Srirama, S., Jarke, M., Prinz, W.: A performance evaluation of mobile web services
security, 3rd International Conference on Web Information Systems and Technologies
(WEBIST 2007), Barcelona, Spain, INSTICC Press. (2007)

67. Laukkanen, M., Helin, H.: Web Services in wireless networks: What happened to the
performance, in the proceedings of the Int. Conf. on Web Services – ICWS ’03, CSREA
Press. (2003) 278-284

68. Boyer, J.: Canonical XML, W3C Recommendation. http://www.w3.org/TR/xml-c14n,
http://www.ietf.org/rfc/rfc3076.txt (2001)

69. Cokus, M., Pericas-Geertsen, S.: XML Binary Characterization Use Cases, W3C Working
Group Note. http://www.w3.org/TR/xbc-use-cases/ (2005)

70. Chiu, K., Govindaraju, M., Bramley, R.: Investigating the Limits of SOAP Performance for
Scientific Computing, 11th IEEE International Symposium on High Performance
Distributed Computing HPDC-11 2002, IEEE Computing Society. (2002) 256

71. Schulte, R.: Predicts 2003: Enterprise service buses emerge, Report, Gartner. (2002)
72. Srirama, S.N., Jarke, M., Prinz, W.: A Mediation Framework for Mobile Web Service

Provisioning, edocw, 10th IEEE International Enterprise Distributed Object Computing
Conference Workshops (EDOCW'06). (2006) 14

73. Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the Gnutella network: Properties of large-
scale peer-to-peer systems and implications for system design. IEEE Internet Computing
Journal, 6(1) (2002) 51–57

74. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., & Werthimer, D.: SETI@home: An
experiment in public-resource computing. Communications of the ACM, 45(11) (2002) 56–
61.

75. Carlsson, B., Gustavsson, R.: The Rise and Fall of Napster - An Evolutionary Approach.
Proceedings of the 6th International Computer Science Conference on Active Media
Technology. (2001) 347-354

76. Meta Search Inc: eDonkey2000 Home Page. http://www.edonkey2000.com/ (2007)
77. Pouwelse, J., Garbacki, P., Epema, D., Sips, H.: The bittorrent p2p file-sharing system:

Measurements and analysis, in Proc. 4th International Workshop on Peer-to-Peer Systems
(IPTPS’05), Ithaca, New York, USA. (2005)

78. Schneider, J.: Convergence of Peer and Web Services.
http://www.openp2p.com/pub/a/p2p/2001/07/20/convergence.html (2001)

79. Bolcer, G.A., Gorlick, M., Hitomi, P., Kammer, A.S., Morrow, B., Oreizy, P., et al.: Peer-
to-peer architectures and the Magi™ open-source infrastructure. from
http://www.endeavors.com/pdfs/ETI%20P2P%20white%20paper.pdf (2000)

80. JXME: The JXTA Java Micro Edition. http://jxme.jxta.org/ (2007)
81. Cutting, D.: Apache Lucene. http://lucene.apache.org/ (2007)
82. JSR 172: J2ME Web Services Specification, Java community process. (2004)
83. W3C: Web Ontology Language (OWL). http://www.w3.org/TR/owlfeatures/ (2004)
84. W3C: Web Ontology Language for Services (OWL-S) 1.1.

http://www.daml.org/services/owl-s/1.1/ (2007)

