
TARTU UNIVERSITY

FACULTY OF MATHEMATICS AND INFORMATICS
Institute of Computer Science
Chair of Distributed Systems

Aleksei Nazarov

Advanced Resource Connector
Information System

Master thesis (40 AP)

Supervisors: prof. Eero Vainikko
Ulrich Norbisrath

Author: …………………………………… “…..“ April 2008
Supervisor: ……………………………….. “…..“ April 2008

Defense allowed
Professor: ……………………..………….. “…..“ April 2008

TARTU 2008

 2

Table of contents
Introduction ___ 3

Aim of the thesis__ 3
Acknowledgment ___ 3
Structure of the document __ 4

1 Grid Information System__ 5
1.1 Role of Information System __ 5
1.2 Current Information System of the ARC.____________________________________ 5
1.3 The need for a new Information System ____________________________________ 6
1.4 Chapter summary __ 7

2 JXTA ___ 8
2.1 What is JXTA ___ 8
2.2 JXTA Components ___ 8
2.3 Advertisements ___ 11
2.4 Protocols __ 12
2.5 More information ___ 14

3 Definition of the Information Indexing Service (IIS) interface______________________ 15
3.1 Local Information Description Interface (LIDI) _____________________________ 15
3.2 IIS Service Specific Interface__ 16
3.3 Chapter summary ___ 18

4 System design description __ 19
4.1 Overview of components ___ 19
4.2 Structure and relationships __ 20
4.3 Further ___ 22

5 Description of the components __ 23
5.1 IIS-HED Component __ 23
5.2 IIS-MAIN Component ___ 23
5.3 Registrations Store Component __ 24
5.4 Registrant ___ 25
5.5 Query component ___ 25
5.6 Chapter summary ___ 25

6 Implementation details __ 26
6.1 IIS-HED Component. Handling SOAP message _____________________________ 26
6.2 IIS-MAIN Component ___ 26
6.3 Registrations Store Component __ 31
6.4 Chapter summary ___ 32

Conclusions __ 33
ARC’i Infosüsteem___ 34
Bibliography__ 36
Appendix A: Information Indexing Service XSD _________________________________ 38
Appendix B: Information Indexing Service WSDL________________________________ 42
Appendix C: eXist database configuration_______________________________________ 45
Appendix D: Dependency libraries __ 46
Appendix E: CD, Source code __ 47

 3

Introduction

Scientists and researchers around the world constantly face problems that require more and
more computational resources to solve them.

Leading corporations persistently compete with each other trying to develop the most
powerful system. To achieve that aim companies increase the number of processors and
their operating speed. But the creation of such multi-processor computers is very
expensive. A cheaper solution is a cluster system that combines a number of less
productive interconnected computers into a single computational resource. However, the
capacity of multi-processor and cluster systems is still limited.

An alternative to this approach is grid system, which can, at least in theory, to aggregate
unlimited number of multiprocessor computers, clusters, ordinary personal computers,
special devices etc.

By the grid we mean computational, storage or any other resources that are connected via
network forming a single resource that provides a new level service for its customers.
Resources are usually widely geographically distributed, but to users it seems as a single
system. Users should not be worried if the resource is placed in the next room or on
another side of the globe.

Another rapidly developing field is Peer-to-peer (P2P) technology. Peer-to-peer
networking model defines its members as equivalent nodes which do not rely on a
centralized server. That is the main difference from the server-based networks, when part
of the parties act as servers providing some services and others act as clients that use
available services. In P2P networks members act as both client and server providing
services to each other.

Recently there is a growing tendency to merge two technologies: grid systems and P2P
networks. It means that grid developers are trying to create distributed grid system with the
decentralized architecture that will be able to self-organize and would not have a single
point of failure.

This thesis is making an attempt to employ P2P approach to build grid.

Aim of the thesis

The aim of this work is to create new Information System for the next generation
Advanced Resource Connector (ARC) middleware as a part of Grid-enabled Know-how
Sharing Technology Based on Services and Open Standards (KnowARC) project [1]. An
Information System is responsible for collecting and keeping the information of grid’s
resources, providing that information to clients. It is very important for the system to be
scalable, reliable and efficient while fulfilling its tasks.

New ARC middleware is based on NorduGRID’s ARC [2] and is destined to improve its
predecessor’s features and become popular grid solution. The current ARC (version 0.6.1)
is widely used in Europe, especially in Nordic countries.

Acknowledgment

I would like to express my gratitude to my supervisors Eero Vainikko and Ulrich
Norbisrath for their support. I want to thank all the people from the Lund University and
especially Balázs Kónya for the productive collaboration.

 4

Structure of the document

The first chapter describes the role and the mission of the Information System. Also we
provide the description of old implementation. The next chapter contains a short
introduction into JXTA platform. Here you can find the theoretical basics and the
description of framework resources. Third chapter describes the external interface of the
Information Indexing Service. In the fourth chapter we define the design of the new
Information System. Last chapter provides the implementation details.

Appendixes A and B contain Information Indexing Service schema file and WSDL
definition file. Appendix C provides the configuration file for eXist database. Appendix D
enumerates dependency libraries that are required to compile and run the system.

Besides, there is a CD with the source codes attached to the work.

 5

1 Grid Information System

This chapter briefly describes current LDAP-based implementation of the Information
System of ARC middleware bringing out its disadvantages and enumerates goals that I try
to achieve developing new Information System.

1.1 Role of Information System

The main tasks of an Information System of a grid are to collect and hold the valid
information about available grid resource, and to provide that information to the clients
during resource discovery.

An Information System must be scalable, robust, dynamic and fault resistant while serving
these tasks.

Basically, the Information System must be able to perform the following activities:

• Collecting and maintaining resource information – the system must accept the
information that describes the resource, process it, organize it appropriately and
store it for the time while information is valid. Information system can be
implemented relying on a push or pull model.

• Serving client queries – client can execute different types of queries while doing
resource discovery. For instance, client wants to find suitable computational
resources to run a job, and the job requires certain number of CPUs, certain amount
of physical memory available, particular software installed.

1.2 Current Information System of the ARC.

The current implementation of the Information System (ARC version 0.6.1) is an LDAP-
based system [3]. It uses a customized OpenLDAP database that is a part of the Globus
Monitoring and Discovery Services framework [4] provided by the Globus Alliance.

The system consists of three components (see Figure 1):

• Local Information Tree (LIT) – this component is responsible for management
and generation of the dynamic state information. The LIT provides the information
that it holds for the requesting clients.

The information in the LIT database is stored as attribute-value pairs grouped in
entries which are organized into a hierarchical tree (LDAP database). The
information stored in the database includes information about computing resources,
grid jobs, users, storage elements and metadata catalogs.

• Index Service (IS) – the purpose of Index Service instances is to form the
information system by linking services to each other. Interconnected Index Services
organize tree-like structure: the root and the intermediate nodes are represented by
the Index Services and the bottom level of the tree is represented by the Local
Information Trees that hold end-use information.

• Registration Process Component – during the execution, a registration process
links Local Information Trees and the Index Service together. The registrations are
performed repeatedly: the information from the Local Information Trees and the
Index Services is sent to the parent Index Service.

In particular, activities taking place in the information system are:

 6

• Collection of the information into the Local Information Tree – special
programs, called information providers, collect local state information and push the
data into the LIT.

• Registration process – the activity that is carried out by the Registration Process
Components of the system. The result of the registration process is the coherent
Information System that consists of Index Services and Local Information Trees
and has structure described above.

• Resource discovery – during resource discovery the client traverses the tree of
Index Services moving from an upper level to level above. Finally, the client
reaches the Local Information Trees retrieving the actual information that describes
grid resources.

IS

IS

IS

IS

IS

LIT LIT LIT LITLITLIT

Linking
information

Resource
information

Figure 1 Structure of the current Information System

1.3 The need for a new Information System

Despite the fact that current LDAP-based implementation of the Information System has
proven its reliability (the system has been in use since May 2002 and the amount of
aggregated resources is approaching 50 sites with the total number of about 5000 CPUs)
the need of a new Information System has become clear due to the following reasons:

First, current Globus-patched OpenLDAP library is not supported by the vendor anymore.

Second, the aim of the project is to improve a number of ARC Information System’s
characteristics, namely:

• Dynamism – current LDAP-based information system requires a lot of setup and
maintenance efforts. For example, the addition of the new Index Service needs
manual configuration and administration. The new Information system will be
dynamic and self-organized, to implement this requirement I employ P2P
technology for building up the system.

• Scalability – grid systems grow exponentially [22]. This implies that the
Information System needs to be scalable. Using P2P approach for implementation
of the new Information System, I believe, this requirement will be satisfied.

• Data high availability – the design of the new Information System must ensure
replication and synchronization of the data. This will guarantee high availability of

 7

the data held by the system. In current Information System, if one of the Index
Services goes down then the data stored in the sub-tree is not available to clients
anymore.

• Interoperability – new Information System will have open external interface that
could be used by the clients of the other grid systems. For example, gLite [5] users
could work with ARC, using the same client program without installing additional
native software.

1.4 Chapter summary

This chapter I started with discussing the role of an Information System of a grid and
describing the current LDAP-based implementation of the system in ARC middleware. I
also identified the problems of the current Information System of ARC which the thesis is
intending to solve. P2P technology was chosen to achieve that purpose. Furthermore, to
suppress development efforts it was decided to pick up one of existing P2P platforms.

The next chapter introduces reader to JXTA – the P2P solution that is used to implement
new Information System. Upcoming chapter’s purpose is to help reader to get an
understanding of implementation details of the system.

 8

2 JXTA

This chapter gives an overview of JXTA and it should help the reader to understand
implementation details of the new Information System as long as JXTA was chosen to
develop the main component of the system, the component that is responsible for
networking of the system.

JXTA was chosen mainly due to the following reasons: JXTA is a full-featured P2P
platform that allows fast development of advanced P2P applications; JXTA itself is in
rapid development and is constantly improving, also providing support for developers, and
JXTA provides framework for writing P2P applications in Java.

2.1 What is JXTA

JXTA is an open source project under the patronage of Sun Microsystems [6]. The term
“JXTA” comes from the word “juxtapose” and means that peer-to-peer technology is a co-
existing alternative to the client-service computing.

JXTA defines the common set of open protocols that define different aspects of P2P
computing. Furthermore, JXTA also provides a number of language bindings – the
implementations of protocol specifications that allow writing JXTA applications. The
primary language binding is Java Standard Edition based API, but Java Micro Edition,
C/C++ and other bindings are also available.

The main advantages of JXTA are that the technology is independent from network
addressing and physical protocols, and also independent from programming languages and
platforms.

2.2 JXTA Components

JXTA defines a number of components and resources1 that may be used to build full-
functional P2P systems. The core part of the JXTA architecture includes basic elements
that are common to P2P networking. The JXTA service layer allows creating a flexible and
advanced environment with the ability to implement and host various client applications
(application layer) [7-10].

2.2.1 Peers

A peer is a logical unit that is able to perform network operations and implements at least
one JXTA protocol. Peers can be represented by various devices or applications.

To enable the communication peers must initiate one or more network addresses that can
be used by JXTA protocols and advertise them as peer endpoints. With the help of
endpoints peers can establish direct point-to-point connections to transmit data.

Peers in the JXTA network are divided in the following categories:

• Edge peers* – Simple peers that serve a single end user. Edge peer may implement
minimal required set of JXTA protocols or may implement all of them.

1 While I'm trying to cover most of JXTA resources, not all of the described components are used in the
implementation of the ARC Information System.
The components that I recommend to pay attention on I have marked with * symbol.

 9

• Super peers – Peers that play special role in building and deploying JXTA
network. The super peer may implement one or combine several of the following
functions:

o Relay – allows to store and forward messages between peers when it is not
possible to create direct connection because of firewalls or NAT.

o Rendezvous* – manages global advertisements indexes that augment the
efficiency of advertisements search. Also participates in propagation of
messages.

o Proxy – is responsible for supporting minimal-edge peers that are not able
to access to all JXTA network functionalities on their own.

2.2.2 Peer groups*

A peer group is a set of peers that imply the common interest that grouped peers are agreed
to serve.

• Service based grouping – the group provides specific services that are available
only to the members of the peer group.

• Security based grouping – the group can establish specific security policies to
limit access to the group's resources. Joining the group may require member
authentication.

• Information based grouping – the group allows its members to monitor the peer
group's resources. The state and activities information is available to all members
of the group.

Peers, basically, self-organize into peer groups. Peer groups can define membership
policies, it can be open or protected, and thus the peer interested to join the group must
provide valid credentials. Furthermore, a single peer can belong to more than one peer
group simultaneously. Groups themselves organize hierarchical tree-like structure where
each group has a single parent, except Net Peer Group that is on top of hierarchy. The Net
Peer Group is the default peer group for all peers in JXTA network.

2.2.3 Pipes

Peers utilize pipes to exchange messages. A pipe can be viewed as a virtual
communication channel that connects one peer as a sender on one side and one or more
receivers on the other side.

To use the pipe the peer endpoint must be bound to the pipe endpoints: to the input pipe for
receiving and to the output pipe for sending. The pipe binding occurs dynamically. It is a
requirement that the pipe endpoints belong to the same peer group.

JXTA provides three pipe types:

• Point-to-point – connection is established between exactly two pipe endpoints, an
input pipe on one peer to receive data and an output pipe on another pipe to send
data.

• Propagate – propagate pipes have multiple input pipes. Messages are sent from the
output pipe to every connected receiver.

• Secure unicast – the same as point-to-point pipe but also guarantees secure and
reliable transmission.

 10

2.2.4 Services

In P2P technology, each peer acts as a server, if needed, or takes the role of client. The
overall architecture relies on services. JXTA peers offer various network services to other
P2P network members and use services of other peers. The service can be status
monitoring, file transferring or any other “useful” functionality resided in the particular
JXTA application.

JXTA defines two types of network services:

• Peer Services – the service is accessible only at the peer that has published this
service. If home peer of the service is dead or not reachable then the service cannot
be invoked either.

• Peer Group Services* – the service is present in the peer group with multiple
instances running on different members of the peer group. Peer group service is
available till there exists at least one peer that provides the service in the group.

JXTA developers are able to write their own customized peer and peer group services
while JXTA provides the set of built-in peer group services. These include core obligatory
services and optional services.

Following services must be implemented by every JXTA peer:

• Endpoint Service – the service is responsible for message transmission between
peers, it also implements basic part of the Endpoint Routing Protocol to enable
message routing between JXTA peers.

• Resolver Service* – the service allows sending generic queries and handling
responses. Services that require information exchange are usually built on top of
the Resolver Service.

The remaining services are optional; peer group implementation may or may not include
these services:

• Discovery Service* – the service is used to obtain peer group resources, such as
peers, peer groups, pipes and services.

• Membership Service – the service allows a peer to provide its identity within a
peer group. Peer identity may be used by services and applications to determine the
requestor and check it against access rules.

• Access Service – the service is used to validate peer requests. Requested peer can
check the requesting peer credentials to determine if access is allowed.

• Pipe Service – the service is used to create and manage JXTA pipes.

• Monitoring Service – the service provides means to monitor state of other
members of the peer group.

2.2.5 Modules

JXTA modules are general abstractions used to represent functional entity and to define
corresponding interface. Modules are used to implement services, network transports or
any other loadable code compatible with JXTA.

Each module defines the way how peers can instantiate it. Module is represented by the
interface specification while many different implementations of module specification can

 11

exist in the network. Modules are language and platform independent, the implementation
of the same module specification can be written in Java, C/C++, .NET etc.

The module abstraction consists of three interconnected elements:

• Module class* – is used to ensure the presence of the module in the network.

• Module specification* – defines the way module can be accessed. Provides
information necessary to invoke the module.

• Module implementation* – the implementation of associated module
specification. Multiple implementations may exist for the particular specification.

2.3 Advertisements

Every component or resource listed above is described with the help of advertisement –
XML document that has particular structure defined by JXTA specification. When peer
discovers JXTA resource it basically searches for the advertisement representing that
resource. Found or discovered advertisements may be stored in local cache and can be used
later without any networking.

Created and published advertisement contains presumable lifetime that defines when
information becomes obsolete and should be discarded. An advertisement can be
republished; in this case the lifetime is updated/extended.

Following advertisement types are defined in the JXTA specification:

• Peer Advertisement – the peer's resources description. Contains peer specific
information: peer name, peer ID, available endpoints etc.

• Peer Group Advertisement* – contains peer-group attributes: name, peer group
ID, description, specification, and service parameters.

• Pipe Advertisement – represents a pipe and is used to create input and output pipe
endpoints. Pipe advertisement contains a unique pipe ID, type, and symbolic ID
(optional).

• Rendezvous Advertisement – represents a rendezvous peer of a peer group.

• Peer Info Advertisement – provides peer state information: uptime, inbound and
outbound message count, time last message received, and time last message sent.

• Module Class Advertisement* – describes a module class. Consists of a name,
description, and a unique ID.

• Module Specification Advertisement* – defines a module specification.
Advertisement may be used as a reference in case the implementation of
specification need to be created or may provide information how to run
implementation instance remotely with the help of a pipe. Advertisement includes
name, description, unique ID (ModuleSpecID), pipe advertisement, and parameter
field.

• Module Implementation Advertisement* – an implementation definition of a
corresponding module specification. Advertisement provides name, associated
ModuleSpecID, code, package, and parameters necessary for execution.

 12

2.4 Protocols

As it is described above the primary aim of JXTA is to define a set of protocols that enable
to build P2P applications. The protocols allow performing dynamic discovery, data
exchange, monitoring activities of parties, grouping peers and so on – the basic operations
of every full-featured P2P application.

Basically, JXTA protocols are XML messages transmitted between peers. The sender is
responsible for forming the message and sending it to remote peer. Remote peer receives
message, processes it and sends response if necessary. The communication is
asynchronous, zero or more responses can be given to a query in different times.

JXTA specification defines six protocols; each of them is responsible for one fundamental
aspect of P2P networking. Besides, the protocol suite has layered structure: each protocol
uses underlying protocol to pass messages (see Figure 2).

Peer Discovery
Protocol

Peer Information
Protocol

Pipe Binding
Protocol

Peer Resolver
Protocol

Rendezvous
Protocol

Peer Endpoint
Protocol

NETWORK TRANSPORT

Peer Discovery
Protocol

Peer Information
Protocol

Pipe Binding
Protocol

Peer Resolver
Protocol

Rendezvous
Protocol

Peer Endpoint
Protocol

Interaction between protocols,
message flow

Figure 2 JXTA protocols

• Peer Discovery Protocol (RDP)* – using this protocol peers can advertise their
resources and discover resources from remote peers. Description of available
resource is provided in the peer advertisement. A resource can be a peer, peer

 13

group, pipe, service etc. Thus, resource discovery means finding advertisement(s)
holding information about corresponding resource.

Peer composes discovery query message to obtain advertisements within a peer
group. This message is wrapped in resolver query message that is sent through peer
resolver service. Query may not return any responses or return multiple results
limited by the threshold value.

• Peer Information Protocol (RIP) – defines a number of messages that can be used
to obtain peer specific information such as uptime, state, traffic statistics etc.

The ping message should be used to check presence of a peer and to get
information about peer state. As a response to a ping message destination peer
sends PeerInfo message that contains full description of responding peer. Peer
Information Protocol as well as PDP uses Peer Resolver Protocol for message
transmission.

• Pipe Binding Protocol (PBP) – the protocol can be used to create virtual
communication channel, i.e. pipe, between peers. To use pipe, it must be bound to a
peer endpoint. It allows creating an input pipe used to receive data or an output pipe
to send data. Pipes are mainly used to transmit streamed data.

The PBP query message is used to discover if pipe with the given identifier is
bound. If receiver of the query has matching pipe in the cache it composes the PBP
answer message that contains Peer Advertisement with the endpoint information
included.

• Peer Resolver Protocol (PRP)* – provide means to send query to one or more
remote peers and receive responses to the queries. One query can result in zero, one
or multiple responses. The protocol may be used for any generic query that an
application implements.

The sending of the query requires of peer to create resolver query message that may
be send to one or more remote peers. To process resolver query messages
destination peer must register a handler. Handler is identified by name, the same
name should be given in the message. Peer may compose and send resolver
response message to a received query. Responses are also processed with the help
of query handlers.

• Rendezvous Protocol (RVP)* – the primary task of the protocol is to provide
efficient methods to enable message propagation within a peer group.

Peers utilize the protocol in different manner. On one hand, rendezvous peers with
the help of PeerView protocol, which is part of RVP, organize themselves and
share the distributed hash table address space that allows increasing message
propagation efficiency. On the other hand, client peers use the protocol to propagate
messages and to subscribe themselves for receiving propagation messages.

• Endpoint Routing Protocol (ERP) – the protocol is responsible for routing
messages to the destination peer(s). The “connection” between peers is not
necessary direct, the message may pass through a number of intermediate peers
(relay peers) before it is delivered to a recipient.

While the message is conveyed it is supplied with the routing information that
defines the path of the message from its source to the destination.

 14

To obtain route information to a destination peer requesting peer must create and
send route query message. The resulting route response contains identifiers of
source and destination peers as well as semi-ordered sequence of peer IDs that
represent complete or partial route. The sequence may include several alternative
routes.

2.5 More information

If reader feels the interest he or she can read one of the books listed in the bibliography of
this paper. I also strongly recommend visiting JXTA homepage where you can find the
latest JXTA news, documentation and forum.

In the next chapter I start to dive into the “real work” of the thesis, and the task to begin
with is to define the external interfaces of the new Information System.

 15

3 Definition of the Information Indexing Service (IIS)
interface

The aim of this chapter is to define the Web Service-based interfaces of the Information
Indexing Service. This is one of the core tasks of the thesis and accomplishing it I am
trying to achieve openness and interoperability of the system.

A general ARC service interface consists of Service Specific Interface (SSI), the
mandatory Local Information Description Interface (LIDI) and other optional interfaces
such as the Delegation Interface. The SSI is responsible for offering the main service
operations while the LIDI is used to present local information description. The optional
Delegation Interface of services can be used to pass proxy credentials to the service. IIS
implements only mandatory interfaces: SSI and LIDI.

The Information Indexing Service provides means to manage registrations of services and
to discover services registered in the IIS. Registrations are managed via the service specific
main interface of the IIS while the service discovery (queries about registered services) is
served via the Local Information Description Interface of IIS. The registrations represent
the activities of the Information Indexing Service. The collection of interacting Information
Indexing Services, referred as the Information System, can be considered as a distributed
store holding Registration Entries.

The service specific interface of the IIS provides the following operations to manage
registrations of grid:

• Register – request registration by submitting registration message

• RemoveRegistrations – request to remove registration entries

• GetRegistrationStatuses – request the statuses of a set of registration entries

Registration entry is the main logical unit of information managed by the Information
Indexing Services. A registration entry is an activity of the IIS. The Registration entry is a
composition of Service Advertisement and its metadata. Service Advertisement is a subset
of attributes from Full Service Description. Service Advertisement metadata is information
about Service advertisements, e.g. recommended lifetime, origin. Each Registration Entry
is uniquely identified by the Endpoint Reference of the service the entry corresponds to.
Endpoint reference is mandatory element of Service Advertisement.

Registration message is a message accepted by the IIS during the registration process.
Registration message consists of registration header element and the registration entries.
The header contains information about registration process. See the draft schema in
Appendix A and WSLD in Appendix B for details.

3.1 Local Information Description Interface (LIDI)

Each ARC service interface contains a subset interface which is used to publish the
complete local information, the Full Service Description (FSD). The FSD describes the
service, the resource behind the service, and activities managed by the service. This
interface is called the Local Information Description Interface (LIDI). Initially we will use
a subset of WS-ResourceProperties standard interface [11].

The FSD consists of the following information content, and will be made available through
LIDI:

 16

1. Core service description: common for all services and includes rather basic
information about the name and access end-point of the service.

2. Extended service description: service specific information which includes
uncommon special parameters about service itself.

3. Service Status: description of the service state like running, not running, overloaded
etc. It can be part of both the core and extended.

4. Resource description: since only the services can represent resources in the grid
environment the resource description contains the detailed description of the
resource behind the service if there are any.

5. Activities description: in general, the services manage activities (in case of IIS the
activity is resource registration information). This activity description should
include states and attributes of activities managed by certain service.

The exact information model will be defined by service specific schemas following the
emerging Glue-2.0 specification [12].

The access to the information content is based on a subset of OASIS Web Services
Resource Framework (WSRF) [11]. The following operations of WS-Resource Properties
specification were chosen to provide the necessary interface:

• GetResourcePropertyDocument – for obtaining all information at once

• GetResourceProperty – for obtaining specific sets of information

• QueryResourceProperties – for sophisticated selection of information. For query
language ARC services should support XPath.

For specification details of the above three operations see WS-Resource Properties 1.2
document by OASIS [13].

3.2 IIS Service Specific Interface

The service specific interface of the Information Indexing Service provides means to
manage the Registration Entries, to operate on the activities of IIS.

3.2.1 Common fault(s)

NotAuthorizedFault: This fault indicates that the client is not authorized to perform the
operation.

InvalidInputFault: This fault indicates that given input has invalid format, i.e. it doesn't
meet the schema definition. It is also possible that the input cannot be parsed and hence
cannot be processed.

ServiceUnavailableFault: This fault indicates that the service is too busy or unavailable at
the moment. Service cannot perform the operation.

ProcessingFault: This fault indicates that the operation failed because of an internal error.
The fault provides an exact description of the occurred problem

3.2.2 Register operation

This operation is used to push registration information, i.e. Registration Entries, to the
Information Indexing Service.

Input

 17

RegistrationMessageType RegistrationMessage: An XML document containing
registration information requested to be stored by the IIS.

A RegistrationMessage element consists of a single Header element that provides
secondary information, like the identifier of the registration requester (the registrant), and a
collection of RegistrationEntry elements. Each RegistrationEntry describes a single
Service registration including Service Advertisement and the related metadata [see schema
in Appendix A].

Output

None.

Fault(s)

No operation specific faults.

3.2.3 RemoveRegistrations operation

This operation is used to request removal of a collection of zero or more Registration
Entries stored in the Information System.

Input

wsa:EndpointReferenceType[] RegistrationEntryID: A collection of zero or more Endpoint
References, identifying Registration Entries the actor of the operation wants to remove.

Output

None.

Fault(s)

No operation specific faults.

3.2.4 GetRegistrationStatuses operation

This operation is used to request current statuses of zero or more Registration Entries
previously pushed into system by the Register operation. The operation receives a
collection of Endpoint References as its input and returns a collection of
<EndpointReference, RegistrationStatus> and/or <EndpointReference, Fault> tuples.

Input

wsa:EndpointReferenceType[] RegistrationEntryID: A collection of zero or more Endpoint
References, identifying Registration Entries whose status the requester wishes to obtain.

Output

GetRegistrationStatusesResponseType[] GetRegistrationStatusesResponse: An XML
document containing a collection of RegistrationStatus elements for each Endpoint
Reference given in the input.

The RegistrationStatus element represents the status of the RegistrationEntry identified by
the Endpoint Reference provided in the input. The RegistrationStatus element consist of
two child elements either the EndpointReference and the Status element or the
EndpointReference and the SOAP-1.1:fault element. Thus the RegistrationStatus element
consists of the pair of identification of the Registration entry and its status or fault in case
of error.

Fault(s)

 18

No operation specific faults.

3.3 Chapter summary

As I have defined the external interface, in the next chapter I develop the design of the
Information System distinguishing its main components, defining tasks carried out by the
component, and describing processes taking place.

 19

4 System design description

In designing the Information System my goal was to distribute business logic among
independent units. This goal was achieved and as a result we have created three
independent components that interact with each other components. Each of them is
intended to accomplish own portion of tasks.

I consider also some functional requirements that new Information System must satisfy.
First of all, the implementation must be based on the Hosting Environment Daemon (HED)
framework of ARC [14].

Additionally, the system must consist of collection of distributed independent instances
that are forming the Information System Network. The topology of the network must
ensure the absence of single point of failure which can break system's stability and
efficiency. To achieve that goal we employ the P2P approach to build the network
infrastructure.

The components are Information Indexing Service HED-Module, Information Indexing
Service Main Component and Registration Store Component.

4.1 Overview of components

New Information System consists of the following components:

• Information Indexing Service HED-Module (IIS-HED) – HED service that
implements Service Specific Interface and Local Information Description Interface
according to the specification [15].

• Information Indexing Service Main Component (IIS-MAIN) – component that
implements business logic of the Information System. It is responsible for the
formation of the network of IIS instances, sending and receiving messages within
that network etc.

• Registrations Store Component (RS) – component is responsible for organization
of the distributed store of registration information (Registration Entries). Single
Registration Store Component instance represents Local Registration Store.

There are also components representing Information System consumers:

• Registrant – HED module that is responsible for registration of grid services to the
Information System, which means pushing Registration Entries into Information
System Store through IIS-SSI.

• Query Component – component that is used to query Registration Entries stored
in the Information System. Query component uses IIS-LIDI to submit queries.

Detailed description of the components is given further in this document.

Registrant and Query component implementations are out of the scope of this work but we
give description and some recommendation apropos of their implementation.

 20

4.2 Structure and relationships

4.2.1 Information System

Information system has layered structure. Communication between different components
or their different instances occurs within particular layer or involves adjoining layers (see
Figure 3).

CONSUMERS
(Registrant, Query Component)

IIS-HED LAYER

IIS-MAIN LAYER

RS LAYER

SOAP

Figure 3 Information System layers

• IIS-HED Layer – basically this is an external gateway for the Information System
clients.

• IIS-MAIN Layer – this layer provides main business logic of the system, it is
responsible for setup of the network of Information Indexing Service instances and
implements the communication between them.

• RS Layer – layer provides the access to the data held by the system.

Figure 4 illustrates the distribution of the components between different system layers and
shows how the components interact with each other.

Consumer

RS LAYER
Store

instance
Store

instance

IIS-MAIN LAYER
IIS-MAIN
instance

IIS-MAIN
instance

IIS-HED LAYER
IIS-HED
instance

IIS-HED
instance

Figure 4 Interactions between components and component instances

 21

IIS-HED instance implements IIS-SSI and IIS-LIDI interfaces. It accepts requests from
clients; each request is a SOAP message. Received message is parsed on that level obtaining
method and input parameters. After parsing, method call is dispatched to the underlying
IIS-MAIN layer. IIS-MAIN instance does further processing performing necessary actions.
If processing requires data reading/writing then IIS-MAIN addresses to the RS instance
(Registration Store Layer).

As it is also shown on the Figure 4 different IIS-MAIN instances communicate with each
other within IIS-MAIN layer. This communication takes place if request processing
requires its propagation within IIS network.

4.2.2 Registration process

Registration of the grid services to the Information System means sending information
describing grid services to the Information System. Received information is held by the
Information System for a limited amount of time, expired information is discarded.

Registration process involves two parties, Registrant on one hand and single instance of
IIS-HED component on the other hand.

Registrant must form Registration Message that contains registration information about
grid services. Created Registration Message is delivered to the Information System over
SOAP, particularly to a single IIS instance through IIS-SSI interface. Format of the
Registration Message is described in the specification document.

Received information is stored in the Registration Store layer, in particular in the Local
Registration Store (see Figure 5).

HED

IIS

IIS-HED

LIDI

SSI

IIS-MAIN
Local
Store

Forward
registration

SOAP

Registration
message

Registrant

Forward
registration

Figure 5 Registration process

4.2.3 Query process

Querying information from the Information System occurs through IIS-LIDI interface.
Query client must compose proper XPath query and send it to the Information System,

 22

particularly to a single IIS instance, over SOAP. When clients create queries they must
consider IIS XSD schema.

Received through IIS-LIDI interface request is processed by the IIS-HED. IIS-HED
extracts XPath query from the received SOAP message and forwards method call to the IIS-
MAIN. IIS-MAIN component executes the query and returns results that satisfy given
query (see Figure 6).

HED

IIS

IIS-HED

LIDI

SSI

IIS-MAIN
Local
Store

Propagate
query

SOAP

XPath

Query client

Propagate
query

Figure 6 Query process

4.3 Further

Next chapter gives description of the each component in more details.

 23

5 Description of the components

5.1 IIS-HED Component

5.1.1 Purpose and description

Information Indexing Service HED component is a HED-loadable module. It means IIS-
HED is hosted by the HED environment and acts as every other HED service/module
implemented according to the HED specification. For that purpose class representing the
component implements special methods which format is defined by the specification.
These methods are responsible for handling SOAP messages addressed to Information
Indexing Service. For further information see the HED specification.

IIS-HED implements interfaces defined in the Chapter 3: Local Information Description
Interface and Service Specific Interface, by that (implementation) we mean that processing
methods handle SOAP messages that are specific for the interfaces referred above.

5.1.2 Function

As it has been described before the primary task of the component is accepting and parsing
SOAP messages addressed to the IIS. Thus the functionality of the component consists of
the following steps:

1. Accept SOAP message given as an input.

2. Parse input determining method to call and obtaining input values for the method.

3. Call corresponding method of the underlying IIS main component for further
processing.

4. Compose output SOAP message by putting result(s) returned by the method into in.

In order to make all these steps possible IIS-HED also instantiates IIS-MAIN component.

5.1.3 Interfaces

MCC_Status process(SOAPMessage inmsg, SOAPMessage outmsg) – processes input
SOAP message inmsg and creates output SOAP message outmsg. Function returns status of
the processing.

See HED specification [15] for further information.

5.2 IIS-MAIN Component

5.2.1 Purpose and description

Information Indexing Service Main component encapsulates business logic of the
Information System while IIS-HED is only “gateway” to it.

IIS-MAIN component is responsible for building “Information System Network” that
combines Information Indexing Service instances into single system so that they can
communicate to each other within IIS-MAIN layer. In different cases this communication
involves either all available IIS instances forming network or part of them. It depends on
the operation that must be performed by the Information System.

 24

To build such network infrastructure we employ one of the P2P solutions that is very
promising and has a great potential. It is JXTA [10].

5.2.2 Function

When one of functions is called (except getQueryResults) IIS-MAIN creates message
that is propagated over the network. Most of the operations also require re-propagation of
message.

The query function deserves special attention. This operation is non-blocking and at the
same time it returns collection of results. For that purpose function accepts listener as an
input parameter. The listener is notified when a portion of new results is arrived. Then
getQueryResults function is used to obtain query results. Each query has unique
identifier.

5.2.3 Interface

void store(String regMsg) – extracts registration entries from the given registration
message and stores them into the system.

int query(String queryString, QueryStateListener queryStateListener) –
queries the Information System. The queryString is an XPath query against which the
search is performed. The status of the search operation can be observed by the
queryStateListener that is also accepted by the method.

Collection getQueryResults(int queryID) – this method can be used to obtain
results of the query which has specified queryID.

void remove(Collection eprs) – this operation forces the removal of registration
entries store in the Information System. The registration entries with identifiers provided in
the idCol should be removed.

5.3 Registrations Store Component

5.3.1 Description and purpose

Registration Store Component's main purpose is to provide access to the persistence.

As long as primary data representation mean in Information System is XML and query
language used by clients is XPath we select one of the XML native databases that is
compliant with XML:DB API (developed by the XML:DB Initiative) [16].

5.3.2 Function

Component is responsible for creating new or opening existing Registration Store
Database.

It also provides three functions to manipulate the data: save, remove and search underlying
XML database. The save function saves given XML document into the database, remove
function accepts identifier of registration entry that should be removed; search function
executes given XPath query and returns corresponding results.

5.3.3 Interface

void save(String id, String regEntry) – saves given registration entry document
into the database with the given id.

 25

Collection search(String queryString) – searches the database for the registration
entries that satisfy the given queryString. The queryString contains XPath query.

void remove(String id) – method removes registration entry with the given id from
the registrations database.

void shutdown() – method shuts the database down.

5.4 Registrant

5.4.1 Purpose and description

Registrant is a HED loadable module that is responsible for sending registrations of
services which are running in the same local HED. Registrant must collect information
about locally running services. Then collected information is used to compile Registration
Message. When the Registration Message is formed it is sent to the Information System
using Service Specific Interface of the one of IIS instances

Registrant performs registration periodically depending on the lifetime of registration
which is defined by the registering service itself.

5.5 Query component

5.5.1 Purpose and description

Query component is used by the Information System clients to query registration
information stored in the system. Component must use Local Information Description
Interface. It must create proper XPath query, compose request according to OASIS Web
Service Resource Framework and send it over SOAP. For further information see the WSRF
specification [13].

5.6 Chapter summary

After reading chapters 4 and 5, reader should have a clear view of the Information System
structure and function.

In the next chapter I will proceed with the implementation details on the system and I will
bring up the description of system’s most critical parts.

 26

6 Implementation details

6.1 IIS-HED Component. Handling SOAP message

Component is responsible for parsing and processing SOAP messages. Message handing is
done with the help of ARC API [17].

First of all we parse input SOAP message extracting the name of method and input
parameters then we call corresponding method of the IIService. See register operation
dispatching below.

6.2 IIS-MAIN Component

6.2.1 JXTA platform configuration

As long as Information System is JXTA application we need to initialize the JXTA
platform and instantiate the Net Peer Group.

The Net Peer Group is the peer starting point. First thing the peer must do is to obtain Net
Peer Group, only then peer can join other peer group which are basically the subgroups of
the Net Peer Group. Thus the Net Peer Group is the top-level peer group that provides the
connectivity to the network.

In addition, JXTA platform defines the World Peer Group. The difference of the World
Peer Group is that it is just an abstract concept that serves the configuration means and is
generally used as a template for the Net Peer Group.

It is not possible to create Net Peer Group instance directly. Developers must use
NetPeerGroupFactory class instead:

Code below creates NetPeerGroupFactory with the default configuration that is hard-
coded in the JXTA framework. To create our private Net Peer Group we can configure the
platform using NetworkConfigurator tool class.

Using this class JXTA application developer can specify peer identification information,
security attributes, network description, peer transports etc.

XMLNode op = null;

if ((op = in_payload.Get("iis:Register")) != null) {

 String regMsg = op.Get("iis:RegistrationMessage").toString();

 try {

 service.store(regMsg);

 } catch (IOException ioe) {

 return new MCC_Status(StatusKind.UNKNOWN_SERVICE_ERROR);

 }

 ...

} else ...

NetPeerGroupFactory factory = new NetPeerGroupFactory();

netPeerGroup = factory.getInterface();

 27

When creating a private Net Peer Group the most important aspect is to specify the name
and the ID of the group that are different from the default configuration.

In the application we configure peers to act in two different modes: as Edge peer and as
Rendezvous peer.

The NetworkConfiguration also specifies the list of rendezvous seeds that is necessary
for system “bootstrap”. Moreover Edge peers are run in the auto-rendezvous mode, it
means Edge peers can become Rendezvous peer if peer cannot find Rendezvous Service to
connect to or there is a lack of Rendezvous peers in the network.

6.2.2 Network setup

Once we have configured and started JXTA platform, we obtain the instance of the Net
Peer Group.

Next step we want to accomplish is to create custom peer group service - IIService. That
requires us to create a number of advertisements and publish them. Finally, we also must
change our peer group advertisement by putting service implementation advertisement into
it.

For the IIService we must create three advertisements ModuleClassAdvertisement,
ModuleSpecAdvertisement and ModuleImplAdvertisement. For that purpose we have
three methods in Utils class:

• public static ModuleClassAdvertisement createModuleClassAdv(String

moduleClassID, String name, String description) – method creates new
Module Class Advertisement with given attributes: the ID, the name and the
description of new advertisement. Before setting these attributes we create the
advertisement using the following method of AdvertisementFactory class:

Two remaining methods are very similar to the createModuleClassAdv method.
The main difference is that we use different types when creating the object.

• public static ModuleSpecAdvertisement createModuleSpecAdv(String

moduleSpecID, String name, String description) – method creates new
Module Specification Advertisement with given attributes. The type of the
advertisement must be ModuleSpecAdvertisement.getAdvertisementType().

• public static ModuleImplAdvertisement createModuleImplAdv

(ModuleImplAdvertisement groupImpl, ModuleSpecID specID, String

NetPeerGroupFactory factory = new NetPeerGroupFactory(

 (ConfigParams)configurator.getPlatformConfig(),

 new File(jxtaHome).toURI(),

 IDFactory.fromURI(new URI(NetPeerGroupID)),

 NetPeerGroupName,

(XMLElement)StructuredDocumentFactory.newStructuredDocument(

 MimeMediaType.XMLUTF8,

 "desc",

 NetPeerGroupDesc));

netPeerGroup = factory.getInterface();

ModuleClassAdvertisement moduleClassAdv =

 (ModuleClassAdvertisement) AdvertisementFactory.newAdvertisement(

 ModuleClassAdvertisement.getAdvertisementType());

 28

description, String code) – method creates new Module Implementation
Advertisement with given attributes. The type of the advertisement must be
ModuleImplAdvertisement.getAdvertisementType().

In addition to IIService advertisements we also must fix implementation advertisement
of the service providing peer group. First, we create all purpose advertisement:

Then we add module implementation advertisement of Registrations Store Service to the
created peer group advertisement:

After peer group advertisement is ready we publish it locally and remotely.

Finally we create PeerGroup object:

When group is create it will have the ID that we have provided, and we also publish
PeerGroupAdvertisement. Now local peer and remote peer can discover and use
IIService.

All created JXTA resources need to have unique identifier. The IDs are generated during
the development using Utils.generateIDs() method and after that we hold generated
values as constants.

6.2.3 Building Peer Group Service

As a peer group service class IIServiceImpl implements Service interface. JXTA
Service interface defines a number of methods:

• public Advertisement getImplAdvertisement() - returns implementation
advertisement of this service

• public Service getInterface() - returns the service itself, we return this object

• public void init(PeerGroup group, ID assignedID, Advertisement

implAdv) - initiates this service. In this method we just cache input parameters,
peer group of the service, identifier of the service and its implementation
advertisement, also we obtain the ID of local peer.

• public int startApp(String[] args) - starts the service. First we obtain
JXTA service that our service uses – Resolver Service, we can say that IIService
is built on top of the JXTA Resolver Service. Then we create and register query
handlers. The role of the query handlers is discussed below in the document.

ModuleImplAdvertisement implAdv =
 netPeerGroup.getAllPurposePeerGroupImplAdvertisement();

Utils.importService(implAdv, iisClassAdv.getModuleClassID(),
iisImplAdv);

discovery.publish(adv);
discovery.remotePublish(adv);

arcGroup = netPeerGroup.newGroup(groupID, implAdv, GROUP_NAME,

GROUP_DESC);

 29

• public void stopApp() - method is used in order to stop the service. We perform
clean-up: remove references to objects obtained in startApp method and unregister
query handler.

IIServiceImpl class also implements external interface of the IIS-MAIN component –
IIService interface. The implementation of each IIService interface operation is similar
– the operation is executed locally and remotely.

Local execution of each operation implies the call of corresponding method of
RegStoreDAO – Registration Store Component:

• local store operation executes save method of RegStoreDAO

• local remove operation executes remove method of RegStoreDAO

• local query operation executes search method of RegStoreDAO

By the remote execution of the operation we mean that we compose operation specific
message and send it to remote peers. Peer that receives the message executes
corresponding operation locally.

For example, to execute store operation remotely we create StoreQuery message where
we put the collection of Registration Entries that need to be stored by remote peers.
Created StoreQuery message is wrapped then by ResolverQuery message which is then
sent to remote peers using Resolver Service:

While sending ResolverQuery message we don't specify destination peer. That means the
message will be sent to all discovered remote peers, i.e. so-called overlay network.

When ResolverQuery message is received by the remote peer, JXTA platform checks if
there is a Query Handler that is responsible for handling received message.

Query Handler processes received message defined by the name that is provided in the
massage itself. After Query Handler has determined message it is passed to the following
method for processing:

Let us demonstrate query processing with an example of store operation. First of all, we
need to extract Store Query message from wrapping it Resolver Query message.

StoreQuery msg = new StoreQuery();

msg.setRegEntryCol(regEntryCol);

ResolverQuery resolverMsg = new ResolverQuery();

resolverMsg.setHandlerName(StoreQueryHander.getHandlerName(assgndID)

);

resolverMsg.setCredential(null);

resolverMsg.setSrc(peerID);

resolverMsg.setQueryId(StoreQueryHander.ID());

resolverMsg.setQuery(msg.toString());

resolver.sendQuery(null, resolverMsg);

public int processQuery(ResolverQueryMsg query)

 30

StoreQuery is basically a bean representing the message. For all Registration Entries held
by the StoreQuery object we obtain the ID of the entry and then store Registration Entry
in the database.

For store operation we stop propagation of the message, but for remove and query
operations we re-propagate the message thus all the peers in the network receive it. To
indicate that we want re-propagate the message method must return
ResolverService.Repropagate.

You may have noticed that store and remove “remote” operations don't return any answer
while in case of search operation we create Resolver Response message and send it to the
source peer of the request. This resulting response contains the results on the query
execution.

To handle search operation responses SearchQueryHandler class also implements the
following method:

Processing of the response also starts with extraction of the content of the Resolver
Response message. After we obtain the results of the search operation from the message
we notify the listeners about arrived operation results:

To handle search operation events IIServiceImpl class implements SearchListener. On
SearchEvent we cache results of the operation, the results are distinguished by the
Resolver Query ID. Results are held in the cache until

method is called, where queryID parameter identifies the query.

6.2.4 Cleaning expired entries

As we have mentioned above each Registration Entry stored in the Information System has
two attributes which define the status and lifetime of the entry - the generation date-time

XMLDocument asDoc = (XMLDocument)StructuredDocumentFactory

.newStructuredDocument(MimeMediaType.XMLUTF8,

 new StringReader(query.getQuery()));

storeQuery = new StoreQuery(asDoc);

XMLDocument asDoc = (XMLDocument)StructuredDocumentFactory

.newStructuredDocument(MimeMediaType.XMLUTF8,

 new StringReader(entry));

String id = (String)((Element)asDoc.getChildren("ID").nextElement())

.getValue();

regStoreDAO.save(id, entry);

public void processResponse(ResolverResponseMsg response)

SearchEvent event = new SearchEvent(response.getQueryId(),

 res.getResultCol());

public Collection getQueryResults(int queryID)

 31

and the expiration in milliseconds. To clean obsolete information from the database IIS-
MAIN starts separate process that is responsible for cleaning up expired information.

Clean-up process is implemented using Timer and TimerTask classes provided in the Sun
Java API.

First, we search for expired Registration Entries executing following XPath query:

Then we remove all found Registration Entries:

The clean-up task is run repeatedly, once in a predefined period.

6.3 Registrations Store Component

We use eXist database [18] in embedded access mode [19] that allows us to reduce efforts
needed to maintain and administrate the database. eXist instance is set up and run in the
same JVM as the IIS.

6.3.1 Database configuration

Configuration of the eXist database [20] used in Information System doesn't require any
special setup or administration. We provide the configuration file with the source code of
the system. You can also fine the conf.xml in the Appendix C. For the information about
configuring eXist see the documentation.

On the first run we need to create the collection where we will hold registration
information.

In addition we configure the indexes [21] for the created collection. We store indexes
configuration file in the system collection:

In case the collection already exists we just obtain the reference to the collection of
registration entries – the information that we store in database, and use that reference to
perform operations with the data.

String query =

"data(/iis:RegEntry/iis:ID[xs:dateTime(../iis:MetaSrcAdv/iis:GenTime
) + xdt:dayTimeDuration(\"PT24H\") < current-dateTime()])";

Collection col = DAO.search(query);

for (Iterator it = col.iterator(); it.hasNext();) {

regStoreDAO.remove((String)it.next());
}

CollectionManagementService mgtService =

(CollectionManagementService)

root.getService("CollectionManagementService", "1.0");

regStoreCollection = mgtService.createCollection(COLLECTION_NAME);

<collection xmlns="http://exist-db.org/collection-config/1.0">

 <index xmlns:x="http://www.nordugrid.org">

 <fulltext default="none" attributes="false" alphanum="false">

 <include path="/RegMsg/RegEntry/SrcAdv/AuthzInfo"/>

 <include path="/RegMsg/RegEntry/SrcAdv/Type"/>

 </fulltext>

 </index>
</collection>

 32

6.3.2 Saving XML documents

According to the XML:DB API in order to store a piece of XML data we must create
XMLResource object that will wrap the data we want to store in the database. When
creating XMLResource object we also must specify unique identifier for XML that we are
trying to store.

The code that is responsible for storing XML data into the database is provided below.

6.3.3 Executing XPath queries

Before executing XPath query we need to obtain special service that is responsible for
XPath execution. The service is named XPathQueryService.

After XPathQueryService is acquired we use it to query the database. The result of this
execution is ResourceSet object which contains Resources that satisfy given query.

6.4 Chapter summary

Thus, I have described the implementation of the most important functions of the system.
Next, I summarize accomplished work and determine further activities to be done.

regStoreCollection = DatabaseManager.getCollection(uri,

 "admin",

 null);

Collection col = getRegStoreCollection();

XMLResource document = (XMLResource)col.createResource(id,

"XMLResource");

document.setContent(regEntry);
col.storeResource(document);

Collection col = getRegStoreCollection();

XPathQueryService service = (XPathQueryService) col

.getService("XPathQueryService", "1.0");
ResourceSet resultSet = service.query(queryString);

 33

Conclusions

The primary objective of this work is to define and specify the external interface of the
Information System together with specification of the system design: the determination of
components of the Information System, the description of relationships and interactions
between those components. The design is developed taking into account that new system
should be based on P2P technology. Besides that the work includes initial implementation
of the Information System. In consequence of a number of reasons given in the chapter 2,
JXTA platform has been chosen for the implementation of the system. Therefore, Chapter
2 is dedicated to the overview of resources that JXTA provides for P2P application
development.

On the one hand using Web Service approach for specification of the external interface of
ARC Information System is attempted to improve the system openness and
interoperability. In such way, users could easily create their own client applications which
may be optimized to solve certain problems.

On the other hand results of the work show that merging P2P and grid technologies is
beneficial to grid systems. The most desired advantage which brings P2P integration
within a grid system is reduction of configuration and administration efforts: the system
should be able to self-organize.

It is worth mentioning, that the current work provides the initial draft specification of the
external interface to the ARC Information System. It is meant that after a system is put into
use in a production environment, the interface could be extended and/or modified
according to new emerging needs.

Reader should also consider JXTA based implementation of the Information System as a
trial which must go through testing for approval, although results of another research [23]
count on favour of the platform.

One of the most critical outstanding problems at the current moment is the security issues.
How to make sure that we can trust particular instance of Information Indexing Service and
allow it to join the Information System? How to protect clients from fake malicious
Information Indexing Service? It is desired that the Information System uses the same
authentication and authorization approaches as described in the design document [14]. By
now the work on the security framework of ARC is in progress.

Up to now the preliminary unit testing of the system is done. The action plan for the
nearest future concerning this work is the integration into the HED1 environment, the
system’s setup, and further testing of the system.

1 Hosting Environment Daemon [14]

 34

ARC’i Infosüsteem

Magistritöö

Aleksei Nazarov

Kokkuvõte

Hajussüsteemid on muutumas üha olulisemaks tänapäevases IT maailmas. Hetkel on kaks
mõnevõrra sarnast kuid seni siiski eraldiseisvat tehnoloogiat selles vallas, mis on mõlemad
väga kiires arengus: Grid ja Peer-to-peer (P2P) süsteemid. Käesoleva tööga tehakse katse
rakendada P2P lähenemisviisi Gridi ülesehituseks.

 P2P võrgumudel defineerib kõik liikmed samaväärsete sõlmedena ning väldib seeläbi
keskserveri olemasolu. Sellega erineb P2P muudel klient-serveri võrgumudelist, kui üks
osapool tegutseb serveri rollis tagades teatud teenuseid, ning teine osapool ehk klient
kasutab pakutavaid teenuseid. P2P võrkudes käituvad mõlemad pooled samal ajal nii
kliendi kui ka serveri rollis, pakkudes vastastikku teenuseid kasutamiseks.

Grid on arvutus-, andmehaldus- ja/või muu ressursside kogu. Ressursid on ühendatud
omavahel võrgu kaudu moodustades ühtse süsteemi, mis pakub klientidele mitmesuguseid
teenuseid. Ressursid on tavaliselt geograafiliselt hajutatud, kuid kasutajale paistavad need
ühe süsteemina. Kasutajad ei pruugi teada kas kasutatav ressurss asub kõrvalruumis või
maakera teisel poolel.

Töö eesmärk on uue Infosüsteemi loomine järgmise põlvkonna Advanced Resource

Connector (ARC) vahevara jaoks KnowARC (Grid-enabled Know-how Sharing Technology

Based on Services and Open Standards) projekti raames [1]. Infosüsteem vastutab Gridi
ressursside kirjeldatava informatsiooni kogumise ja hoidmise eest ning esitab kogunenud
andmeid klientidele. Kusjuures on väga tähtis, et süsteem oleks skaleeruv, dünaamiline,
tõrkekindel ning efektiivne oma ülesannete täitmisel.

Uus ARC vahevara versioon baseerub NorduGRID ARC’il ning on mõeldud parendama
oma eelkäija omadusi ning saamaks populaarseks Grid lahenduseks. Käesolev ARC
versioon (0.6.1) on laialt levinud Euroopas, eriti põhjamaades.

Töö põhieesmärgiks on defineerida ja täpselt määratleda Infosüsteemi välisliides ning
töötada välja süsteemi disain: Infosüsteemi tuuma komponentide määratlemine,
komponentide vaheliste seoste ja vastastikuse toime kirjeldamine. Süsteem on kavandatud
võttes arvesse seda, et uus versioon peab olema arendatud P2P tehnoloogia baasil. Lisaks
sisaldab töö Infosüsteemi esialgset realisatsiooni. Mõnede teises peatükis toodud põhjuste
tõttu on süsteemi realiseerimiseks valitud JXTA platvorm. Seetõttu on töö teine peatükk
pühendatud JXTA platvormile, sisaldades ülevaadet raamistikust ja JXTA ressurssidest, mis
võimaldavad P2P rakenduste arendamist.

Ühelt poolt, kasutades veebiteenuste lähenemisviisi uue Infosüsteemi välisliidese
detailseks kirjeldamiseks, on püüe parendada süsteemi avatust ja koostööd erinevate
osapooltega. Sellisel viisil on võimalik kasutajatel lihtsalt luua nende omi rakendusi, mida
on võimalik optimeerida spetsiifiliste probleemide lahendamiseks.

Teiselt poolt, selle töö tulemused näitavad, et P2P ja Grid tehnoloogia ühendamine toob
kasu eelkõige Grid süsteemidele. Suurim loodetud eelis, mida P2P juurutamine Gridile
toob, on pingutuste vähenemine süsteemi administreerimisel ning seadistamsel. Süsteem
peaks olema võimeline iseseisvalt ennast haldama.

 35

Väärib mainimist, et käesolev töö pakub esialgset spetsifikatsiooni kavandit ARC
infosüsteemi välisele liidesele. Selle all pean silmas, et pärast süsteemi käikulaskmist
toodangusse on võimalik süsteemi laiendada ning muuta vastavalt uutele tekkida võivatele
vajadustele.

Kuigi uuringute tulemused [23] räägivad erineva platvormi kasuks, võiks lugeja ka
kaalutleda katsetamist JXTA baasil teostatud Infosüsteemiga, mida testida enne heakiidu
saamist.

Hetkel on peamiseks kriitilisteks probleemideks turvalisusega seonduvad teemad. Kuidas
teha kindlaks kas me võime usaldada mõnda kindlat Information Indexing Service isendit
kaasamaks teda infosüsteemi? Kuidas kaitsta kliente võimaliku Information Indexing

Service võlts-isendi eest? On see soovitav, et Infosüsteem kasutab autentimiseks ning
autoriseerimiseks KnowARC disaini dokumendis [14] eelkirjeldatud lähenemisi?
Käesoleval hetkel on töö alanud ARC turvalisusega tegeleva raamistiku arendamisel.

Hetkel on eel-ühiktestimine teostatud. Tegevuskava lähituleviku jaoks on lõimida see
HED

1 keskkonda, süsteemi häälestamine ja edasine süsteemi testimine.

1 Hosting Environment Daemon [14]

 36

Bibliography

[1] KnowARC, Homepage

http://www.knowarc.org/, last time viewed on 15.09.2007

[2] NorduGrid, Homepage
http://www.nordugrid.org/, last time viewed on 15.09.2007

[3] B.Kónya, The NorduGrid/ARC Information System

http://www.nordugrid.org/documents/arc_infosys.pdf, last time viewed on
15.09.2007

[4] Globus, GT Information Services: Monitoring & Discovery System (MDS)
http://www.globus.org/toolkit/mds/, last time viewed on 15.09.2007

[5] gLite, Homepage
http://glite.web.cern.ch/glite/, last time viewed on 14.09.2007

[6] JXTA, Homepage
https://jxta.dev.java.net/, last time viewed on 01.09.2007

[7] Brendon J. Wilson, JXTA, New Riders Publishing, 2002

[8] By Li Gong, Scot t Oaks, Bernard Traversat, JXTA in a Nutshell, O'Reilly, 2002

[9] JXTA Java Standard Edition v2.5: Programmers GuideJune, 2007
https://jxta-guide.dev.java.net/source/browse/*checkout*/jxta-
guide/trunk/src/guide_v2.5/JXSE_ProgGuide_v2.5.pdf, last time viewed on
15.09.2007

[10] JXTA v2.0 Protocols Specification, 2006
https://jxta-spec.dev.java.net/nonav/JXTAProtocols.html, last time viewed on
10.09.2007

[11] OASIS, WS-ResourceProperties (WSRF-RP) WSDL

http://docs.oasis-open.org/wsrf/rpw-2.wsdl

[12] OGF, GLUE 2.0 Specification
http://forge.ogf.org/sf/go/doc14639?nav=1, last time viewed on 10.09.2007

[13] OASIS, Web Services Resource Properties 1.2 (WS-ResourceProperties), 2006
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf, last
time viewed on 20.08.2007

[14] KnowARC, Design Document, 2007
http://www.knowarc.org/documents/Knowarc_D1.1-1_07.pdf, last time viewed on
15.08.2007

[15] KnowARC, The ARC Container, 2007
http://www.knowarc.org/documents/Knowarc_D1.2-2_07.pdf, last time viewed on
01.09.2007

[16] XML:DB Initiative for XML Databases, Homepage
http://xmldb-org.sourceforge.net/, last time viewed on 10.09.2007

[17] KnowARC Reference Manual
http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/doc/KnowARC-API.pdf,
last time viewed 15.09.2007

 37

[18] eXist, Homepage

http://exist.sourceforge.net/, last time viewed on 10.09.2007

[19] eXist, Database Deployment
http://exist.sourceforge.net/deployment.html, last time viewed on 10.09.2007

[20] eXist, Service configuration
http://exist.sourceforge.net/configuration.html, last time viewed on 10.09.2007

[21] eXist, Configuring Database Indexes
http://exist.sourceforge.net/indexing.html, last time viewed on 10.09.2007

[22] Grid Information Systems Meeting
http://indico.hep.lu.se/materialDisplay.py?contribId=1&sessionId=0&mat
erialId=slides&confId=8, last time viewed on 20.09.2007

[23] A practical example of convergence of P2P and grid computing: an evaluation of
JXTA’s communication performance on grid networking infrastructures, 2005
ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-5718.pdf, last time viewed on
10.09.2007

 38

Appendix A: Information Indexing Service XSD
<?xml version="1.0" encoding="UTF-8"?>

<!--

 Data types of Information Indexing Service

-->

<xsd:schema

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:iis="http://www.knowarc.org/iis"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 targetNamespace="http://www.knowarc.org/iis"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <!-- xsd:import namespace="http://www.w3.org/2005/08/addressing" schemaLocation="./ws-

addr.xsd"/ -->

 <xsd:import namespace="http://www.w3.org/2005/08/addressing"

schemaLocation="http://www.w3.org/2006/03/addressing/ws-addr.xsd"/>

<!-- This is an initial and incomplete DRAFT which mainly concentrates on the structure but

not on the actual names. Final version will use GLUE-2.0 ternminology. -->

 <!-- ==== Input and output types for IIS operations ==== -->

 <!-- Input type for Register operation -->

 <xsd:complexType name="RegistrationMessageType">

 <xsd:sequence>

 <xsd:element name="Header" type="iis:HeaderType" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="RegEntry" type="iis:RegistrationEntryType" minOccurs="1"

maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="RegisterRequest">

 <xsd:sequence>

 <xsd:element name="RegistrationMessage" type="iis:RegistrationMessageType"

minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="Register" type="iis:RegisterRequest"/>

 <!-- Output type for Register operation -->

 <xsd:complexType name="RegisterResponseType">

 <xsd:sequence>

 <xsd:element name="Fault" type="iis:FaultType" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <element name="RegisterResponse" type="iis:RegisterResponseType"/>

 <!-- Input type for RemoveRegistrations and GetRegistrationStatuses operations -->

 <xsd:complexType name="RegistrationEntryIDListType">

 <xsd:sequence>

 <xsd:element name="RegEntryID" type="xsd:string" minOccurs="1"

maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="RemoveRegistrations" type="iis:RegistrationEntryIDListType"/>

 <xsd:element name="GetRegistrationStatuses" type="iis:RegistrationEntryIDListType"/>

 <!-- Output type for RemoveRegistrations operation -->

 <xsd:complexType name="RemoveRegistrationsResponseType">

 <xsd:sequence>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="RemoveRegistrationsResponse"

type="iis:RemoveRegistrationsResponseType"/>

 <!-- Output type for GetRegistrationStatuses operation -->

 <xsd:complexType name="GetRegistrationStatusesResponseType">

 <xsd:sequence>

 <xsd:element name="RegEntryStatus" type="iis:RegistrationEntryStatus"

minOccurs="1" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 39

 <element name="GetRegistrationStatusesResponse"

type="iis:GetRegistrationStatusesResponseType"/>

 <!-- === Helper type definitions === -->

 <xsd:complexType name="RegistrationEntryStatus">

 <xsd:sequence>

 <xsd:element name="RegEntryID" type="wsa:EndpointReferenceType" minOccurs="1"

maxOccurs="1"/>

 <xsd:element name="Status" type="iis:StatusType" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="Fault" type="iis:FaultType" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:simpleType name="StatusType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="1"/>

 <xsd:enumeration value="2"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:complexType name="HeaderType">

 <xsd:sequence>

 <xsd:element name="RequesterID" type="xsd:string"/> <!-- Identifier of the

source HED -->

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="RegistrationEntryType">

 <xsd:sequence>

 <xsd:element name="ID" type="xsd:string" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="SrcAdv" type="iis:ServiceAdvertisementType" minOccurs="1"

maxOccurs="1"/>

 <xsd:element name="MetaSrcAdv" type="iis:ServiceAdvertisementMetadataType"

minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ServiceAdvertisementType">

 <xsd:sequence>

 <xsd:element name="Type" type="iis:ServiceTypeType"/>

 <xsd:element name="EPR" type="wsa:EndpointReferenceType"/>

 <xsd:element name="Impl" type="xsd:string"/>

 <xsd:element name="Version" type="xsd:string"/>

 <xsd:element name="URI" type="xsd:anyURI"/>

 <xsd:element name="AuthzInfo" type="iis:AuthorizationInfoType"/> <!--

Authorization information -->

 <xsd:element name="SSPair" type="iis:NameValuePairType" minOccurs="0"

maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ServiceAdvertisementMetadataType">

 <xsd:sequence>

 <xsd:element name="Expiration" type="xsd:duration"/>

 <xsd:element name="GenTime" type="xsd:dateTime"/>

 <xsd:element name="Source" type="wsa:EndpointReferenceType"/>

 <xsd:element name="Status" type="xsd:string"/> <!-- Registration status: NEW,

ACCEPTED ... -->

 </xsd:sequence>

 </xsd:complexType>

 <xsd:simpleType name="FaultTypeType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="1"/>

 <xsd:enumeration value="2"/>

 </xsd:restriction>

 </xsd:simpleType>

 <!-- description of fault -->

 <xsd:complexType name="FaultType">

 <xsd:sequence>

 <xsd:element name="Name" type="xsd:string"/>

 <xsd:element name="Type" type="iis:FaultTypeType"/>

 <xsd:element name="Description" type="xsd:string"/>

 </xsd:sequence>

 40

 </xsd:complexType>

 <xsd:complexType name="FullServiceDescriptionType">

 <xsd:sequence>

 <xsd:element name="CoreSD" type="iis:CoreServiceDescriptionType" minOccurs="1"

maxOccurs="1"/>

 <xsd:element name="ExtSD" type="iis:ExtendedServiceDescriptionType"

minOccurs="1" maxOccurs="1"/>

 <xsd:element name="Resource" type="iis:ResourceDescriptionType" minOccurs="0"

maxOccurs="1"/>

 <xsd:element name="Activity" type="iis:ActivityDescriptionType" minOccurs="0"

maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="CoreServiceDescriptionType">

 <xsd:sequence>

 <xsd:element name="Status" type="xsd:string"/>

 <xsd:element name="Type" type="iis:ServiceTypeType"/>

 <xsd:element name="EPR" type="wsa:EndpointReferenceType"/> <!-- Endpoint

reference -->

 <xsd:element name="URI" type="xsd:anyURI"/>

 <xsd:element name="Name" type="xsd:string"/>

 <xsd:element name="Impl" type="xsd:string"/> <!-- Name of the implementation

(ComputingService: A-REX, ...) -->

 <xsd:element name="Version" type="xsd:string"/> <!-- Version of the service

implementation -->

 <xsd:element name="Profile" type="iis:ProfileType"/> <!-- Supported profiles --

>

 <xsd:element name="AuthzInfo" type="iis:AuthorizationInfoType"/> <!--

Authorization information -->

 <xsd:element name="AuthInfo" type="iis:AuthenticationInfoType"/> <!--

Authentication information -->

 </xsd:sequence>

 </xsd:complexType>

 <!-- List of the service types will be provided by the GLUE-2.0 -->

 <xsd:simpleType name="ServiceTypeType">

 <xsd:restriction base="xsd:string">

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:complexType name="ProfileType">

 <xsd:sequence>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="AuthorizationInfoType">

 <xsd:sequence>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="AuthenticationInfoType">

 <xsd:sequence>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="NameValuePairType">

 <xsd:sequence>

 <xsd:element name="Name" type="xsd:string"/>

 <xsd:element name="Value" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- Service Specific attributes will be defined later following GLUE-2.0 -->

 <xsd:complexType name="ExtendedServiceDescriptionType">

 <xsd:sequence>

 <xsd:element name="Pair" type="iis:NameValuePairType" minOccurs="0"

maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- Service Specific attributes describing resources will be defined later following

GLUE-2.0 -->

 <xsd:complexType name="ResourceDescriptionType">

 41

 <xsd:sequence>

 <xsd:element name="Pair" type="iis:NameValuePairType" minOccurs="0"

maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <!-- Service Specific attributes describing activity will be defined later following

GLUE-2.0 -->

 <xsd:complexType name="ActivityDescriptionType">

 <xsd:sequence>

 <xsd:element name="Pair" type="iis:NameValuePairType" minOccurs="0"

maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

 42

Appendix B: Information Indexing Service WSDL
<?xml version="1.0" encoding="utf-8"?>

<!--

Interface of Information Indexing Service

-->

<wsdl:definitions

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:iis="http://www.knowarc.org/iis"

 xmlns:wsrf-bf="http://docs.oasis-open.org/wsrf/bf-2"

 xmlns:wsrf-rp="http://docs.oasis-open.org/wsrf/rp-2"

 xmlns:wsrf-rpw="http://docs.oasis-open.org/wsrf/rpw-2"

 xmlns:wsrf-rw="http://docs.oasis-open.org/wsrf/rw-2"

 targetNamespace="http://www.knowarc.org/iis"

>

 <wsdl:import namespace="http://docs.oasis-open.org/wsrf/rpw-2"

location="http://docs.oasis-open.org/wsrf/rpw-2.wsdl"/>

 <!-- wsdl:import namespace="http://docs.oasis-open.org/wsrf/rpw-2" location="./rpw-

2.wsdl"/ -->

 <!-- ======= Type definitions ====== -->

 <wsdl:types>

 <xsd:schema targetNamespace="http://www.knowarc.org/iis"

xmlns="http://www.w3.org/2001/XMLSchema" xmlns:iis="http://www.knowarc.org/iis">

 <xsd:include schemaLocation="./iis.xsd"/>

 </xsd:schema>

 </wsdl:types>

<!-- ====== Messages definitions ====== -->

<!-- ====== Register ====== -->

<wsdl:message name="RegisterRequest">

 <wsdl:part name="RegisterRequest" element="iis:Register"/>

</wsdl:message>

<wsdl:message name="RegisterResponse">

 <wsdl:part name="RegisterResponse" element="iis:RegisterResponse"/>

</wsdl:message>

<!-- ====== RemoveRegistrations ====== -->

<wsdl:message name="RemoveRegistrationsRequest">

 <wsdl:part name="RemoveRegistrationsRequest" element="iis:RemoveRegistrations"/>

</wsdl:message>

<wsdl:message name="RemoveRegistrationsResponse">

 <wsdl:part name="RemoveRegistrationsResponse"

element="iis:RemoveRegistrationsResponse"/>

</wsdl:message>

<!-- ====== GetRegistrationStatuses ====== -->

<wsdl:message name="GetRegistrationStatusesRequest">

 <wsdl:part name="GetRegistrationStatusesRequest"

element="iis:GetRegistrationStatuses"/>

</wsdl:message>

<wsdl:message name="GetRegistrationStatusesResponse">

 <wsdl:part name="GetRegistrationStatusesResponse"

element="iis:GetRegistrationStatusesResponse"/>

</wsdl:message>

<!-- ====== PortType definitions ====== -->

<wsdl:portType name="IISPortType">

 <wsdl:operation name="Register">

 <wsdl:input name="RegisterRequest" message="iis:RegisterRequest"/>

 <wsdl:output name="RegisterResponse" message="iis:RegisterResponse"/>

 </wsdl:operation>

 43

 <wsdl:operation name="RemoveRegistrations">

 <wsdl:input name="RemoveRegistrationsRequest"

message="iis:RemoveRegistrationsRequest"/>

 <wsdl:output name="RemoveRegistrationsResponse"

message="iis:RemoveRegistrationsResponse"/>

 </wsdl:operation>

 <wsdl:operation name="GetRegistrationStatuses">

 <wsdl:input name="GetRegistrationStatusesRequest"

message="iis:GetRegistrationStatusesRequest"/>

 <wsdl:output name="GetRegistrationStatusesResponse"

message="iis:GetRegistrationStatusesResponse"/>

 </wsdl:operation>

</wsdl:portType>

<!-- ====== Bindings ====== -->

<wsdl:binding name="iis" type="iis:IISPortType">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="Register">

 <soap:operation soapAction="Register"/>

 <wsdl:input name="RegisterRequest">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="RegisterResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="RemoveRegistrations">

 <soap:operation soapAction="RemoveRegistrations"/>

 <wsdl:input name="RemoveRegistrationsRequest">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="RemoveRegistrationsResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetRegistrationStatuses">

 <soap:operation soapAction="GetRegistrationStatuses"/>

 <wsdl:input name="GetRegistrationStatusesRequest">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="GetRegistrationStatusesResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

</wsdl:binding>

<wsdl:binding name="GetResourcePropertyDocument" type="wsrf-

rpw:GetResourcePropertyDocument">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="GetResourcePropertyDocument">

 <soap:operation soapAction="GetResourcePropertyDocument"/>

 <wsdl:input name="GetResourcePropertyDocumentRequest">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="GetResourcePropertyDocumentResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 <wsdl:fault name="ResourceUnknownFault">

 <soap:fault name="ResourceUnknownFault" use="literal"/>

 </wsdl:fault>

 <wsdl:fault name="ResourceUnavailableFault">

 <soap:fault name="ResourceUnavailableFault" use="literal"/>

 </wsdl:fault>

 </wsdl:operation>

</wsdl:binding>

<wsdl:binding name="GetResourceProperty" type="wsrf-rpw:GetResourceProperty">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="GetResourceProperty">

 <soap:operation soapAction="GetResourceProperty"/>

 <wsdl:input name="GetResourcePropertyRequest">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="GetResourcePropertyResponse">

 <soap:body use="literal"/>

 44

 </wsdl:output>

 <wsdl:fault name="ResourceUnknownFault">

 <soap:fault name="ResourceUnknownFault" use="literal"/>

 </wsdl:fault>

 <wsdl:fault name="ResourceUnavailableFault">

 <soap:fault name="ResourceUnavailableFault" use="literal"/>

 </wsdl:fault>

 <wsdl:fault name="InvalidResourcePropertyQNameFault">

 <soap:fault name="InvalidResourcePropertyQNameFault" use="literal"/>

 </wsdl:fault>

 </wsdl:operation>

</wsdl:binding>

<wsdl:binding name="QueryResourceProperties" type="wsrf-rpw:QueryResourceProperties">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="QueryResourceProperties">

 <soap:operation soapAction="QueryResourceProperties"/>

 <wsdl:input name="QueryResourcePropertiesRequest">

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="QueryResourcePropertiesResponse">

 <soap:body use="literal"/>

 </wsdl:output>

 <wsdl:fault name="ResourceUnknownFault">

 <soap:fault name="ResourceUnknownFault" use="literal"/>

 </wsdl:fault>

 <wsdl:fault name="ResourceUnavailableFault">

 <soap:fault name="ResourceUnavailableFault" use="literal"/>

 </wsdl:fault>

 <wsdl:fault name="InvalidResourcePropertyQNameFault">

 <soap:fault name="InvalidResourcePropertyQNameFault" use="literal"/>

 </wsdl:fault>

 <wsdl:fault name="UnknownQueryExpressionDialectFault">

 <soap:fault name="UnknownQueryExpressionDialectFault" use="literal"/>

 </wsdl:fault>

 <wsdl:fault name="InvalidQueryExpressionFault">

 <soap:fault name="InvalidQueryExpressionFault" use="literal"/>

 </wsdl:fault>

 <wsdl:fault name="QueryEvaluationErrorFault">

 <soap:fault name="QueryEvaluationErrorFault" use="literal"/>

 </wsdl:fault>

 </wsdl:operation>

</wsdl:binding>

<!-- ====== Service definition ====== -->

<wsdl:service name="iis">

 <wsdl:port name="GetResourcePropertyDocument"

binding="iis:GetResourcePropertyDocument">

 <soap:address location="mailto:test@test.com"/>

 </wsdl:port>

 <wsdl:port name="GetResourceProperty" binding="iis:GetResourceProperty">

 <soap:address location="mailto:test@test.com"/>

 </wsdl:port>

 <wsdl:port name="QueryResourceProperties" binding="iis:QueryResourceProperties">

 <soap:address location="mailto:test@test.com"/>

 </wsdl:port>

 <wsdl:port name="iis" binding="iis:iis">

 <soap:address location="mailto:test@test.com"/>

 </wsdl:port>

</wsdl:service>

</wsdl:definitions>

 45

Appendix C: eXist database configuration
<?xml version="1.0" encoding="UTF-8"?>

<exist>

 <db-connection cacheSize="48M" collectionCacheSize="128" database="native" files="data"

free_mem_min="5" pageSize="4096">

 <pool max="5" min="1" sync-period="120000" wait-before-shutdown="120000" />

 <recovery enabled="yes" group-commit="no" journal-dir="data" size="100M" sync-on-

commit="no" />

 <watchdog output-size-limit="10000" query-timeout="-1" />

 </db-connection>

 <indexer caseSensitive="no" index-depth="5" preserve-whitespace-mixed-content="no"

stemming="no" suppress-whitespace="both"

tokenizer="org.exist.storage.analysis.SimpleTokenizer" track-term-freq="yes"

validation="no"/>

 <serializer add-exist-id="none" compress-output="no" enable-xinclude="yes" enable-

xsl="no" indent="yes" match-tagging-attributes="no" match-tagging-elements="yes" />

 <xquery enable-java-binding="no">

 <builtin-modules>

 <module class="org.exist.xquery.functions.util.UtilModule" uri="http://exist-

db.org/xquery/util" />

 <module class="org.exist.xquery.functions.transform.TransformModule"

uri="http://exist-db.org/xquery/transform" />

 <module class="org.exist.xquery.functions.xmldb.XMLDBModule" uri="http://exist-

db.org/xquery/xmldb" />

 <module class="org.exist.xquery.functions.request.RequestModule"

uri="http://exist-db.org/xquery/request" />

 <module class="org.exist.xquery.functions.response.ResponseModule"

uri="http://exist-db.org/xquery/response" />

 <module class="org.exist.xquery.functions.session.SessionModule"

uri="http://exist-db.org/xquery/session" />

 <module class="org.exist.xquery.functions.text.TextModule" uri="http://exist-

db.org/xquery/text" />

 <module class="org.exist.xquery.modules.example.ExampleModule"

uri="http://exist-db.org/xquery/examples" />

 <module class="org.exist.xquery.functions.validation.ValidationModule"

uri="http://exist-db.org/xquery/validation" />

 <module class="org.exist.xquery.functions.system.SystemModule"

uri="http://exist-db.org/xquery/system" />

 </builtin-modules>

 </xquery>

 <xupdate allowed-fragmentation="5" enable-consistency-checks="no" growth-factor="20" />

</exist>

 46

Appendix D: Dependency libraries

Common

• log4j-X.X.X.jar

JXTA dependencies

• bcprov-jdk14.jar
• javax.servlet.jar
• jdom.jar
• jxta.jar
• jxtaext.jar
• org.mortbay.jetty.jar
• swixml.jar

eXist dependencies

• exist.jar
• exist-modules.jar
• antlr-X.X.X.jar
• commons-pool-X.X.jar
• jgroups-all.jar
• resolver.jar
• sunxacml.jar
• xmldb.jar
• xmlrpc-1.2-patched.jar

 47

Appendix E: CD, Source code

